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Abstract: We propose a new family from Burr XII distribution, calleB-Burr family of distributions based on th&-R{Y}
framework. For this family, we consider the quantile fuoo8 of three well-known distributions, namely, Lomax, kigi and
Weibull, and further developed three sub-famille8urr{Lomax}, T-Burr{Log-logistic} and T-Burr{Weibull}. Some mathematical
properties such as quantile function, mode, Shannon gptrepments, and mean deviations, oR{Y } family are obtained. One
special model, namely, Weibull-Byicomax} from T-Burr{Lomax} family is considered and its properties are obtained. Tludeh
is flexible and can produce the shapes of the density suchtaskésved, right-skewed, symmetrical, J, and reversethid,can have
constant, increasing and decreasing hazard rate shapessé&fulness of this model is demonstrated through apjgitato censored
and complete data sets.

Keywords: Burr XlI distribution, generalization, quantile functiof-X family, T-R{Y} family.

The Burr family of distributions (due to Burr, 1942) is a wedlcognized family that contains twelve different
functional forms. Among these forms, the Burr XII (or simfurr) model is very popular and has wide applications in
the fields of reliability, actuarial science, forestry, gnaology, and survival analysis, among others.

The art of generalizing distributions is an old practice iniet location, scale, shape, or inequality parameters) ar
inducted to the parent (or baseline) distributions. Theuatidn of parameter(s) increases flexibility in terms of tai
properties, and also improves goodness-of-fit of the pregakistribution. The modern parameter induction technique
suggests inducting shape parameter(s) into the cumuldisiebution function (CDF) or survival function (SF) oféh
baseline distribution. Azzalini (1985), Marshall and @IKiL997), Gupta et al. (1998), and Zografos and Balakrishnan
(2009) first started single shape parameter induction tobteeline distribution. Later, two- and three- parameters
induction was proposed by Eugene et al. (2002), Cordeiro dm€astro (2011), and Alexander et al. (2012) by
introducing betes, KumaraswamyG, and McDonalds classes, which have received wide recognition in stadiktic
literature. In their approach, the properties of two dttions are mixed together for better exploration of thensiess
and tail properties, and to enhance the goodness-of-fieadligtribution.

A rather more generalized approach of parameter inductaspioneered by Alzaatreh et al. (2013), by defining the
transformed-transforméf-X)technique. Let(t) be the probability density function (PDF) of a random valedbe [a, b]
for —eo < a < b < , and letF (x) be the CDF of a random variab¥esuch that the transformatio(-) : [0,1] — [a,b]
satisfies the following conditions: (W(-) is differentiable and monotonically non-decreasing, anil¢(0) — a and
W(1) — b.

Alzaatreh et al. (2013) defined the CDF of theX family of distributions as

G(xX) = / F(t)dt. (L)
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If T € (0,), then,X is a continuous random variable aWwdF (x)] = —log[1 — F(x)]. Then, the PDF corresponds to
Eqg. (1) is given by
_ _
99 = T"F o0 r(~log[1-F()]) = he(r (Hr (x)), 2)
wherehs (X) = 1_f§:X(>X) andH; (x) = —log[1 — F(x)] are the hazard and cumulative hazard rate functions camelpg to

any baseline PDF(x), respectively.

Aljarrah et al. (2014) proposed the functigWi(F (x)) as the quantile function of a random varialfleand defined
the T-R{Y} family. Alzaatreh et al. (2014), Alzaatreh et al. (2015)d &imheidat et al. (2015) proposed and studied
normal Y}, T-Gammd Y}, andT-Weibull{ Y} families of distributions, respectively. The beauty osthpproach is that it
allows us to study the simultaneous effect of the paraméteostly shape parameters) of the three models at a time, and
in this way, most of the data characteristics are capturkis. Method allow us to enhance the flexibility of the proposed
model and provide better goodness-of-fits.

In this article, our objective is to propose theBurr family of distributions by using th&-R{Y} approach pioneered
by Aljarrah et al. (2014).

A random variableX is said to have a two-parameter Burr Xl distribution if itBE and PDF are, respectively, given
by
Mok(x) = 1= (14X (3)
and
Tek(X) = ckxE L (140~ x>0, (4

wherec > 0 andk > 0 are both shape parameters. Henceforth, a random variabieghPDF ) is denoted byX ~
Burr(c,k). The closed-form of the Burr CDF and SF ensure that the ptiggenf the Burr distribution can be explored
easily for censored and non-censored cases. In literatonee generalizations of the Burr distribution are repovied
the beta-Burr XII distribution by Paranaiba et al. (201h¥ Marshall-Olkin extended Burr XlI distribution by Al- i

et al. (2014), the Kumaraswamy-Burr XlI distribution by &aaiba et al. (2013), the McDonald-Burr Xl distribution by
Gomes et al. (2015), odd Burr Il by Jamal et al. (2017), antkgalized Burr-G by Nasir et al. (2017).

The paper is outlined as follows: In Section 2, we define theegaized family of Burr distribution and three associated
generalized families from it viZT-Burr{Lomax}, T-Burr{Log-logistic}, and T-Burr{Weibull}. In Section 3, we give
some general properties of tAeBurr{Y} family of distributions including the modes, moments, Si@amentropy, and
mean deviations. In Section 4, three special sub-modeiselyaGamma-Burlog-logistic}, Dagum-BurfWeibull}, and
Weibull-Burr{Lomax} are considered. Some properties of Weibull-Buomax} are discussed in detail. In Section 5,
a simulation study is performed to assess the performantteeahethod of maximum likelihood estimation (MML) of
Weibull-Burr{Lomax} distribution. In Section 6, two applications of the WeibBlirr{Lomax} are presented for real-life
data sets. In Section 7, we conclude the paper.

1 The proposed family

LetT, R, andY be three random variables with their CBI(x) = P(T < x), Fr(X) = P(R < x), andFRy(x) = P(Y < X).
The quantile functions of these three CDFs &¢(u), Qr(u), and Qy(u), where the quantile function is defined as
Qz(u) =inf{z: Fz(2) > u}, 0 < u< 1. The densities of, R, andY are denoted byt (x), fr(x), andfy(x), respectively.
We assume the random variablEs (a,b) andY € (c,d), for —o <a< b <o and—cw < c < d < . Aljarrah et al.
(2014) (see also Alzaatreh et al., 2014) presented the CEfedtR{Y} family as follows:

Qv (FR(¥)
Ry = [ frtdt=Fr(Qv(F(x))- (5)
The PDF and HRF that correspond to E5). dre, respectively, given by
fr(Qr(R))
fx () =
fr(Qr(Fix))
and
()
hx (x)
h (Qv(Fi))
(@© 2017 NSP
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Table 1: Quantile functions for different distributions.

SNo|Y Qv (u)

1. Lomax ﬁ[(l—u)’%—l]l
2. Weibull [-a~t In(l—lu)] B
3. Log-Logistic | a[ut-1] A

Let the random variabI® follow the Burr distribution given in Eq.3), then Eq. b) gives the CDF ofT-Burr{Y?}
family as

Qr(1-(1+x) %) K
/ fr()dt=Fr(Q(1 - (1+x) ). ©®)

R = |
The PDF corresponding to Edg)(is given by
fr(Qv(1-@+¢)™)
(- (1+x97")

fx(X) = ckoé 1 (14672

which can be written as
fr (Qv(Burr(c,K))) -
fv (Qv (Burr(c.k)))’
where burfc,k) and Burfc, k) are the PDF and CDF of the Burr random variable, respectittgdnceforth, the family of
distributions given in Eq.7) is called theT-Burr{Y} family and is denoted b¥-Burr{Y}. The PDF in Eq.7) is clearly
a generalization of Burr distribution.

Many generalizations of the Burr distributions can be cdeitd as members of-Burr{Y} family. When
T ~ Betaa,b) andY ~ Uniform(0,1), the T-Burr{Y} reduces to the beta-Burr XII distribution (Paranaiba et2011).
When T ~ Kumaraswamga,b) and Y ~ uniform(0,1), the T-Burr{Y} reduces to the Kumaraswamy-Burr XII
distribution (Paranaiba et al., 2013). WhEn- McDonald a, 3, y) andY ~ Uniform(0, 1), theT-Burr{Y} reduces to the
McDonald Burr XII distribution (Gomes et al., 2015). Tablgyizes three quantile functions of popular distributions,
which will be used to generafeBurr{Y} sub-families in the following subsections.

Table1l gives the quantile functions of well-known distributioige can generate different generalized Burr families
of T-Burr{Y} by using these quantile functions to E@).(

fx (X) = burr(c, k)

Remarkf X follows theT-Burr{Y} family of distributions given by&), then we have the following:

(i x < {[1_FY(T)]% _1}C.
13
() Q) = {1 Fe(erw)] F-1}",

(iii) if Y 2 Burr(c,k), thenX 2 T.

1.1 T-Bur{Lomax family of distributions
By using,Qy, the quantile function of the Lomax distribution in Tabletie Fx (x) in Eq. (7) can be written as
Fex) = Fr {B{(1+) ~1}}. ®)
Whena = 1, the CDF in Eq. &) becomes
Rx) = Fr {B{@+x)~1}}. ©)
The PDF corresponding to E)(is given by
fx (x) = Bburr(c, —K) fr {B {(1+x€)" - 1}} ,

whereburr(c, —k) = cky¢~ (&
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1.2 T-Burf{Log-Logistig family of distributions

By using,Qy, the quantile function of the Log-logistic distributionTiable 1, theFx (x) in Eq. (7) is given by
Fx(x):Fr{a[(HxC)k—lﬁ}. (10)

The PDF corresponding to EdL() is given by

fx (X) = % burr(c, k) {(1+xc)k - 1} bt fr {a {(1+xc)k - 1} b } .

Whenp = 1, then theT-Burr{log-logistic} distribution reduces t®-Burr{Lomax} distribution.

1.3 T-Burf{Weibull} family of distributions

By using,Qy, the quantile function of the Weibull distribution in TaldletheFx (x) in Eq. (7) is given by

Fx(x)zFr{[gln(lerc)]B}. (11)
Whena = 1 the CDF in (1) becomes )
Fx(¥) = Fr { [kIn (1)) 7 } . (12)
The PDF corresponding to EdL3) is given by
-1 1 1
fxa%:ﬁ%§%%5WM<r+fﬂﬂ1fT{WM<r+fﬂB}- (13)

2 Some properties of the T-Burr{Y} family of distributions

In this section, some general properties of Th8urr {Y} family of distributions are provided including the modes,
moments, Shannon entropy, and mean deviations.

2.1 Mode
The mode(s) or-Burr{Y} family can be obtained by finding the solution to the equation

c(k+1)xct

x=(-D | =15

—W[Q [fs()]] — W {fr[Qv[fa(X)]]}| . (14)

whereW(f) = f’/f. The result in {4) can be proved by setting the derivative of the PDF in Ejjefual to zero.

2.2 Moments

On the basis of Remark 1 (i), we have the rth momerft-&urr{Y} is
r -1 _4]¢
E(X')=E [{1—Fy(T)} : —1} .

Using generalized binomial theorem, we héxe-y)" = 55, (:) Xyl (x| > |y|), we obtain

(r=j)

50)= 3 (§) Co'ER-Rm) (15)
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The expression1f) leads to the rth moments af-Burr{Lomax}, T-Burr{Log-logistic}, and T-Burr{Weibull}

distributions as follows: Lol
) r ] T\ k!
E(X") = (@)(_1)JE{(1+—) } (16)
J.ZO j B

E(Xr):ji (7) (_1)jE{<1+<%)B)%M} (17)

E(X") = 3 (‘?)(—1)j]E{exp[%(r—j)TB]}. (18)

and

2.3 Shannon entropy

The entropy of a random variable is a measure of the variation of uncertainty. Entropy hasynagplications in the
fields such as physics, chemistry, engineering, and ecarsaniong others. The Shannon entropy of a continuous random
variable was introduced by Shannon in 1948.

From Theorem 2 of Aljarrah et al. (2014), the Shannon entaddy-Burr {Y} is given by

Nnx=nt —|—E(|09 fY(T))"’E(lOgQ/Burr [FY(T)]) ’ (19)

1-c
whereQg,,, = ﬁ( {(1—)\)‘% - 1} ¢ (1—)\)‘%_1 for all A €(0,1) is the derivative of the quantile function of the Burr
distribution.

From Eq. (9), the Shannon entropy far-Burr{Lomax}, T-Burr{Log-logistic}, and T-Burr{Weibull distributions,

respectively, is given by

Nx = Nt +log (B—1ck> +(1-c)E(logX)+ (14—%) E [Iog (1+ %)] , (20)
nx=(2—B)nt +log <%(> +(1-¢)E (logX) + (% - 1) E |log <1+ (%)ﬁﬂ (21)
" Nx=(2—p)nr +log (g() + %E (Tﬁ) +(1—c)E (logX). (22)

2.4 Mean deviation

The mean deviations from the mean and median are defined as

01 = 2UF (1) — 21c(1); &2 = P — 2lc (1), (23)

whereFy is given by Eq. 6). The mearu can be obtained fromlf) with r = 1. The median can be obtained from Remark
1(ii) after replacing u with 0.5. The first incomplete mom#gyts) is obtained as

s (Fr(9)
le(s) = /0 X f (X)X = /0 Qr(Fy (W) fr (w) dw (24)

On the basis of the result E@4), the three first incomplete moments Burr{ Lomax}, T-Burr{Log-logistic}, and
T-Burr{Weibull} families of distributions can be calculated as follows:

le(s) = Ji) (%) (1)) /OBKHSC)k_l] (1+%>%(1j) fr(t)dt,

(@© 2017 NSP
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© /1 ) a[(l+sc)k71]% t % A=)
w0 =3 (5) ' {1+<§> } frit)d,

© /1 . rlkin(1 sc)]% B(1_ij
le(s) = (%)(_1)1/0 : expl#] fr(t)dt.

and

3 Special Sub-Models

In this section, we consider some different distributiaosIf random variable to generate some new models. We consider
three special sub-models, namely, Gamma-Baog-logistic}, Dagum-BurfWeibull} and Weibull-Bur{Lomax}. We
develop some properties of the Weibull-B{ltomax} model as an illustration.

3.1 Gamma-BurLog-logistic} distribution

If T follow the Gamma random variable with parametarand b having CDFF(t) = y(a,t) /[ (a) ,t > 0, where
y(ax) = [§x@ e *dx (the lower gamma function). Then from Ed.1j, the CDF of Gamma-Buft.og-Logistic} is
given as

F(x) = P (a,a[Burr(c, k) %) , (25)

where Burtc, —k) = (1+x%)k — 1 andP(a,x) = 2.

Settinga = 1, the CDF in Eq.25) becomes

Fx(x) =P (a, [Burr(c, —k)]%) . (26)
The PDF corresponding to EQ®) is given by
fx(X) = % (Burr(c,—k)) exp[% ((Burr(c,—k))%)} .

If a=1 then, the Gamma-Buftog-Logistic} reduces to Exponential-Byirog-Logistic}.

(a) (b)

0.4

T T
b ' — c=2k=05a=2b=22p=04 ' —_—
' - - ¢=05k=03a=2b=02p=2 4
' c=25k=05a=15b=08 =15
«=-. €=15k=05a=2b=05p=05 -

=2 k=05a=2hb=22p=04
=05 k=03 a=2b=02p=2
=15k=03a=15b=08 p=1.2
=15k=05a=2b=08 p=0.6

0.3
I

pdf
0.2
I

0.1

0.0

Fig. 1: Plots of PDF and HRF of Exponential-B§trog-logistic} distribution.

The plots in Fig. 1) give (a) reversed J, symmetrical, and left-skewed deskipes, and (b) decreasing, increasing,
and upside-down bathtub hazard rate shapes.
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3.2 Dagum-Bur{Weibull} distribution

Let T follow the Dagum distribution with parametessandb, Fr(t) = [1+t‘a]_b, t > 0. Then, the CDF of Dagum-

Burr{Lomax} is as follows:

Fx (X) = [1+[k|n(1+x0)]*%] . 27)
Settinga= 1, the CDF in Eq.27) becomes
() = [1+[k|n(1+x°)]‘%]_b. (28)

The PDF corresponding to EQ8) is given by

19 —b-1
kbt [L+KIn(2x) 7]
MM =B ane Kin(1xeF T 29

(@) (b)

pf

Fig. 2: Plots of PDF and HRF of Dagum-Byiweibull} distribution.

The plots in Fig. 2) give (a) reversed J and left-skewed shapes density shapegb) decreasing and upside-down
bathtub hazard rate shapes.

3.3 Weibull-Bur{ Lomax distribution

Let T follow the Weibull distribution with parameteesandb Fr(t) = 1— &3 Then, the CDF of Weibull-Bufl.omax}
is as follows:

Fx(X) = 1— exp [-ap({(l+x€)§ —1})b]. (30)
SettingB = 1 anda = 1, the CDF in Eq.30) becomes
Fx(X) = 1— exp [—a({(lerc)k—l})b]. (31)
The PDF corresponding to E®1) is given by
fx (x) = ckabX~1 (1 4+ xo)« {(1+x°)k— 1}b_1 X exp {—a{(ljtxc)k— 1}? . (32)
© 2017N8P
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(a) (b)

1.0
2.0
I

— a=06b=1c=1k=1
- a=1b=15c=09 k=05
‘I a=0.6 b=15c350.9 k=1
| <=+ a=1b=15c=p8 k=05
— - a=05b=15 ¢=09 k=1
/

pdf
06 0.8
I
15
I

hrf
1.0
I

0.4
I

0.2
I
05
I

0.0
I
0.0
I

Fig. 3: Plots of PDF and HRF of Weibull-Buftomax} distribution.

Whenk = 1, the distribution in 82) reduces to Weibull distribution with parametexs andc. The plots in Fig. 8)
give (a) reversed J, left-skewed, right-skewed, and symica¢tdensity shapes and (b) increasing, decreasing, epsid
down bathtub, and constant hazard rate shapes. The quiamiigon of Weibull-Bur{Lomax} can be obtained form

Remark 1(ii)
1 B\ ¢
Qx(u) = <1+[—5In(1—u)} ) -1

The Weibull-Bur{ Lomax} mode can be obtained form Equatid).

1
c

d c-1 ot XL (14 x0)k1

ax T = = k=) e H b Lek T STy

dx —abCk({(1+xC)k_1})b_ (1—|—X)k 11

The mode(s) will be the solution of the above equation.
Moments of Weibull-BurfLomax} can be obtained form Eql§) as

X') = ii(—l)i <%> (rITJ) y(1+%,a> +r <1+ r;"jb_i,aﬂ , (33)
S

X <]
wherey(a,x) = [t3le"tdtandl (a,x) = [t® le ' dtare the lower and upper incomplete gamma functions, reispbct
0 X

From Eq. @0), the Shannon entropy fot that follows the Weibull-BurfLomax} is given by

nx = nt —log(ck) + (%‘) E(log(1+T))+ (1—c)E(logX),

wherent = log(ab) + (1+ %) & —a, & is the Euler gamma constant, and

~+1a) +§1(;;§n (z+1a)

E(log(1+T)) = bTloga exp—a i n+1a5 (

(Aljarrah et al., 2015), wheréll(x) = [* t~l€dt is the exponential integral (Abramowitz and Stegun 1972),
E (logX) = lim,_,0 $E(X") andE(X") is given in @3).

(@© 2017 NSP
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Estimation of the parameters: Let X1,X,..., Xy be a random sample from the Weibull-B{iromax} distribution
defined in Eqg.82). Then the log-likelihood function is given by

(@) =nlog(abck + (c—1) ilogxi +(k—1) ilog(lﬂf)

+ (b—1) _ilog{(l—kxﬁ)k— 1} -

The score vector are as follows:

Ua = E—i{(uﬁ)k—l}b,
Up = —+zilog{ (1+x5)K } i{ 1+ x6)K 1}blog{(1+xic)k—1},
Ue =—+Zlogx.+ (k—1) Iiﬁ'iiﬁ'% .n [ 1+1>jrc:cl><°|09>Q]

= ab,;{(lﬂq-“)k— 1}b71 k(1) logx,

n

a_zi{(1+>q°)k—1}b.

Uk = E+_i|og(1+xf)+(b—l);[(liflk)l(?)g (1) ] —ab Z{ 14 xE)k } T (140)KI0g(1+X9).

SettingUp, Ua, Uk, andU; equal to zero and solving these equations simultaneousdirsbthe maximum likelihood
estimates (MLEs).

4 Simulation of Weibull-Burr{L omax}

In this section, we perform a simulation study to assesséh@pnance of maximum likelihood method used to estimate
parameters of the Weibull-Buitomax} distribution. We consider simulations for sample sizes100, 200, 500) by
using R-language. We simulate 1,000 samples for the trusepsater values lc=2k=0.5a=1b=1 and Il:c=3k=1.5a=1.5
b=0.5 to obtain average estimates (AEs), biases, and mearnesguiors (MSESs) of the parameters. These values are listed
in Table 2. The values of the biases and MSEs decrease asnipéessize increases. The results of the Table 2 indicate
that the method of MLE performs well in estimating the modaigmeters of the proposed distribution.

Table2: Estimated AEs, biases, and MSEs of the MLEs of parametersdiiN-Burr{Lomax} distribution based on 1000 simulations
of with n=100, 200, and 500.

| I
n parameters| A.E Bias MSE | AE Bias MSE
100 c 2.752 0.752 4.622| 4571 1.571 11.839
k 0.554  0.054 0.059| 1.844 0.344 0.955
a 1.385 0.385 1.710| 1.663 0.163 1.432
b 1.074 0.074 0.439| 0.557 0.057 0.202
200 [§ 2.298 0.298 1.185| 4.021 1.021 6.407
k 0.538 0.038 0.033| 1.618 0.118 0.311
a 1.380 0.380 1.588| 1.503  0.043 0.356
b 1.041 0.041 0.244| 0.546 0.046 0.122
500 c 2.046 0.246 1.128] 3.680 0.680  4.757
k 0.501 0.001 0.017| 1.610 0.110 0.146
a 1.020 0.300 0.895| 1.418 0.003 0.246
b 1.038 0.038 0.153| 0.527 0.037 0.118

5 Application

This section provides two applications, one for completecéinsored) data sets and the other for censored data sets to
show how the Weibull-BudlLomax} (for short, W-BY Lx }) distribution can be applied in practice. In these appiices,

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

508 NS 2 M. A. Nasir et al.: A new generalized Burr family of distrilons

the distribution parameters are estimated by using the mani likelihood method. The Akaike information criterion
(AIC), Anderson-DarlingA*), Cramer-von Misesq/*), and Kolmogrov-Smirnov (K-S) statistics are obtainedampare

the fitted models. In general, a smaller value of the steistorresponds to a better fit to the data. The plots of the fitte
PDFs and CDFs of some distributions are displayed for visoaiparison. The required computations are performed in
R-language.

5.1 Uncensored (or complete) data sets

In this subsection, we show that how W-Bix} distribution can be applied in practice for two completed@msored)
real data sets. We fit the W-BLx }, Kumaraswamy Burr (Kw-Bu), Beta Burr (B-Bu), Beta expornainB-Exp), Burr,
and Weibull to this data set.

The data set of 50 observations, with a hole diameter and #hiekness of 9 and 2 mm, respectively, is given in
Table 3. Hole diameter readings are taken on jobs with réspeane hole, selected, and fixed as per a predetermined
orientation. The data set is given by Dasgupta (2011).

Table 3: Data set 1
0.06 0.12 0.14 004 0.14 0.16 0.08 0.26 032 0.22
0.16 0.12 024 006 0.02 018 0.22 0.14 0.22 0.16
0.12 024 0.06 002 0.18 022 0.14 0.02 0.18 0.22
0.14 0.06 0.04 014 022 014 0.06 0.04 0.16 0.24
0.16 032 0.18 024 022 004 0.14 0.26 0.18 0.16

The summary statistics from the first data set are as follaws0.152,s = 0.0061,y; = 0.0061, ands = 2.301226,
wherey; andys are the sample skewness and kurtosis, respectively.

Table 4: MLEs and their standard errors (in parentheses) for dath. set
Distribution a b c k a B
W-BU{Lx} 0.565 0.807 1.663 19.342 - -

(0.82) (0.41)  (1.11) (22.99)

Kw-Bu 0.227  11.522  8.340 - 39.720
(0.028) (3.658) (0.007) - (0.999) -
B-Bu 27.607  9.738  5.070 - 0.029 -
(87.432) (1.951) (10.925) - (0.032)
B-Exp 2.667  18.006 - - - 0.9321
0.5042  99.87 - - - 4.96
Burr - - 2.043 37.66 -
- - (0.231) - (14.540) -
Weibull 3445  2.002 - - - -

(13.755)  (0.235) - - ; )

Table 5: The valuel, W*, A*, KS, P-value for data set 1.

Dist 4 W* A* KS P-Value
W-Bu{Lx} 59.62026 0.1103664 0.6764127 0.1269 0.3969
Kw-Bu 57.88482 0.1976216 1.119699 0.1597 0.1558
B-Bu 54.90359 0.3194159 1.75434 0.2073 0.02716
B-Exp 54.62055 0.3224291 1.777851 0.2098 0.02455
Burr 57.10991 0.2166066 1.227761 0.1689 0.1153
Weibull 57.30266 0.212311 1.203196 0.1691 0.1144
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From Table 5, we see that the W-Hix} model has the smallest values of #vg W*, and K-S statistics among the
fitted B-Bu, Kw-Bu, B-Exp, Burr and Weibull distributiondiéreby suggesting that the W-Bix} model provides the
best fit. Thus, the W-B{Lx} model could be chosen as the most adequate model to expieaata set. The histogram
of the first data set and the estimated PDFs and CDFs of the Ws8umodel and the competitive models are displayed
in Figure 4.

5.2 Censored data set

In this subsection, we fit the W-Blix} model to a censored data set. We use AIC and BIC statistiosnipare the fits
of the W-Bu{Lx} with Kw-Bu and B-Bu distribution. The data below are renosstimes, in weeks, for a group of 30
patients with leukemia who received similar treatment, ssted in Lawless (2003). Asterisks denote censoring times.

Consider a data s& = (x,r), wherex = (X, %2,...,%n)! is the observed failure times, and= (r1,r»,....r,)" are the
censored failure times. Thieis equal to 1 if a failure is observed and 0 otherwise. Assuraethe data are independently
and identically distributed and come from a distributiothWPDF given by Eq.32). Let © = (c,k,a,b)T denote the
vector of parameters. The likelihood &fcan be written as

n

(D;0) = rl[f(xi;e)]ri [1-F(;0)" ", (34)

Then, the log-likelihood is reduced as follows:

(= iri [Iog(ckab)+(c—1)logx4+(k—1)log(1+>qc)+ (b_1)|og{(1+xc)k_1}_a{(1+xc)k_1}b]

+_i(1—ri) {—a{(1+x°)k—1}b]. (35)

The log-likelihood function can be maximized numericaltydbtain the MLEs. Various routines are available for
numerical maximization of. We use the routineptim in the R software.

Table 6: Data set 2
1 1 2 4 4 6 6 6 7
8 9 9 10 12 13 14 18 19
24 26 29 31* 42 45 50* 57
60 71* 85* 91.

Table 7: Data set 2

Model Parameters MLE Standard error  Log-Likelihood AIC BIC
W-BU Lx} c 1.2902 0.7573 -108.2892 2245785 230.1832
k 0.0675 0.0600
a 9.2729 19.2363
b 1.9982 0.4593
Kw-Bu c 1.6530 0.3119 -111.7468 231.4935 237.0983
k 15.7654 14.8965
a 12.3872 9.3006
b 0.0051 0.0023
B-Bu c 0.2236 0.2691 -108.3125 224.6249 230.2297
k 2.9653 7.0795
a 0.6207 0.2738
b 26.4381 30.1542

We observed thahlC andBIC statistics W-BLx} are lower than the Kw-Bu and B-Bu distributions.
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Fig. 4: Estimated PDFs and CDfs for data set 1.
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Fig. 5: Plots of estimated CDF for data set 2.

6 Conclusions and Results

Recently, statisticians and researchers have focusedwatogéng flexible distributions to facilitate better mouhgj of
lifetime data. Consequently, a significant progress has bresle toward the generalization of some well-known lifetim
models. In this context, we define th&-Burr{Y} class of distributions, and three new distributions
Gamma-BurfLog-logistic}, Dagum-BurfWeibull}, and Weibull-BurfLomax}, are introduced. We obtain explicit
expressions for their quantile functions, ordinary andi@@moments, mean deviations, and Shannon entropy. We also
presented two applications of the proposed family to réaldata sets (censored and complete) to illustrate the
usefulness of the new family.
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