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Abstract: Generation of distributions, by composition of cumulatiistribution functions (CDFs), compounding or mixing,dedahe
population distribution to be more flexible to analyzingad@n the other hand, heavy-tailed skewed distributionseagenerated by
compounding. Different generating methods are surveyech ethods include generation by composition, compougnalitd mixing
(countable or finite). Relationships of some of the gendrdistributions to other distributions, or functions aregented.
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1 Introduction

New distribution functions can be generated by using dffiégenerating methods. For example, composition of EDF
with another CDFG, generates a new CDF that performs better than the base iRe3;in the setting. In this article,
the following generating methods will be surveyed in Sewid-4, followed by some concluding remarks in Section 5.

2. Generation by Composition
2.1 Composition of a CDF with another CDF on the support)
2.2 Composition of a CDF with a function of another CDF, in ¢femeral case
2.3 Composition of a symmetric probability density funoti@DF) with a transformation of scale
3. Generation by Compounding
4. Generation by Mixing
4.1 Generation by countable mixtures
4.2 Generation by finite mixtures
5. Conclusion

2 Generation by Composition

2.1 Composition of a CDF with another CDF on the supg@rtl)

Suppose thdil (.) andG(.) are two absolutely continuous CDFs whose correspondingRiDda(.) andg(.), respectively.
Suppose also that the compositiortbf.) andG(.) yields a CDF given by

G(x)
FO) =H[GM = [ hiy)ay, @

with PDF f(.). In this compositionH(.) is assumed to have support the unit interi@ll), while G(.) is an arbitrary
CDF, defined on the whole real line. Two choices for the PDIFare known in literature:

—whenh(.) is the beta PDF,
—whenh(.) is the Kumaraswamy (Kw) PDF.
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2.1.1 The betds family

In this caseh(y) is chosen to be the beta PDF, given by

_ 1 ~1/4 _\pb-1
h(y)——B(a’b)ya (I-y)7, O<y<l
Therefore, Equationl) becomes
1
B(a,b)

FO)=HIGW) = o [ MLy @

whereB(a, b) is the beta function. The CDF, given bg){(is known as the bet&-distribution.
Eugene et al]] studied the beta-normal distribution. Jongkdeneralized the beta-normal distribution to include an
arbitraryG instead of specifying to be normal.

Remark 1 F(x), given by ), is the incomplete beta ratio, denoted kya, b). So, we can write
F (X) = IG(aa b)a (3)
where k(a,b) is given by 2).

Remark 2 An important special case o) is the case of exponentiated-distributions which can kainbd by taking
b=1,in (2), so that
F(x) = [G(x)]*. (4)

For more details on exponentiated distributions, see Alsddini and Ahsanullal8]. Nadarajah 4] and Nadarajah et al
[5] surveyed the exponentiated Weibull and exponentiatedmeptial distributions, respectively.
By specifyingG, some of the bet& distributions were obtained and studied by the followingg@rchers (Table 1).

2.1.2 Kumaraswamys (Kw-G) Family
Kw [6] suggested the use of a CDF of the form
Hy)=1-(1-y3®, 0<y<1, (ab>0),
as a model in hydrology processes. The corresponding PDies by
h(y) = aby* {(1—y*)°.

So that, for arbitrarys, composite functionl) becomes

F(x) = H[G(X)] = 1 (1 [G(X)]%", (5)
and the corresponding PDF takes the form

f(x) = ab[G(x)]* (1 - [G(x)]*)"*. (6)

The Kw-G distribution was used by some researchers vihe@narbitrary and wheiG has specific form. A list of such
researchers is given in Table 2.

The Kw - Weibull model was used in accelerated life testindRlegk R7], Rezk et al 8] and AL-Dayan et al29].

Jones B0] compared the beta distribution with Kw distribution. Heremarized pros, cons and equivalences for the
two distributions and concluded by saying that: “The Kw igtaimly not superior to the beta distribution in any way, but
it might be worth consideration from time to time by researstwho wish to utilize one or more of its simple properties”.
In addition to its “simple properties”, Cordeiro et &ll] noticed that the Kya, b) distribution has a physical interpretation
whena andb are positive integers. They explain their remark as foltows
Suppose that a system is madeboindependent components and that each component is made aipndépendent
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Table 1: BetaG family whenG is specified as given and reference.

G(x) Reference

Normal Eugene et alf]

Fréchet Nadarajah and Guptd]

Gumble Nadarajah and KotA], Jonsson9]
Weibull Famoye et al10], Cordeiro et al 1L.1]
Exponential Nadarajah and KotzlP]

Gamma Kong et al [L3]

Extreme value type I Zafar and Aleem14]

Pareto type | Akinsete et al 15

Exponentiated Exponentidl Barreto-Souza et allp)]

Laplace Condeiro and Lemontel[]

Burr type XI| Paranoiba et allig]

Exponentiated Weibull Singla etal 19]

Power Cordeiro and Brito20]
Exponentiated logistic Nassar and El-Masr2fl]

Table 2: Kw-G family whenG is specified as given and reference.

G(x) Reference

Weibull Cordeiro et al 11]
Modified Weibull Mateas-Salvadero et &3]
Arbitrary Nadarajah et ald3]
Pareto Bourguignon et al24]
Log-logistic De-Santana et aPp|
Generalized gamma De-Pascoa et aPf)

sub-components. Suppose that the system fails if any ab temponents fail and that each component of all ofdhe
sub-components fail. Let be the lifetime of the entire system. Cordeiro etl][showed that the CDF of is given by

PX <X =1-(1-[G(X)]*".

So that the Kw-G distribution represents the time distidnubf the entire system.
Nadarajah 31] pointed out that the Kw distribution is a special case of MaoBId’s [32] distribution whose PDF is
given by
Bxﬁafl 1— (X Bajb—1
SR
B(a,b)yfa

Infact, ifa=1 andy =1, then

x>0, (a,B,y>0).

f(x) = b’ H1—xP P,

which is the PDF of Kw(S3, b) distribution. It can be shown that the K&distribution is the same as a beta-exponentiated
G (EG) distribution, when the beta distribution has paramsdte b) and the exponent of the EG distributiorcis

2.1.3 Relation of the beta- family to the hyper-geometriechion and other CDFs

(i) Relation to the hyper-geometric function:
By expanding 1 — y)°~1in the integral/>* y2-1(1 —y)P~1dy, it follows that:
(G

lo(a.b) = 5@ b

2 a)j(b)jZJ .
b, d)j =d(d ...(d —-1).
2F1(a,b,c;2) JZO ©;]! nd(d); (d+1)...(d+]j—-1)

oF1(a,1—b,a+ 1;G(x)),
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(ii) Relation to the binomial distribution:
By repeated integration by parts,

ls(an—a+1)= Y (MGX)/[1-Gx)"

(iii) Relation to the negative binomial distribution:
n .
lic(@an) =Y ( ”“ HieX)"1- G(X)]'.

(iv) Relation to thex?-distribution:
If X3 andX; are two independent random variables (RVs) suchXhatxz(vi), i=1,2,then

= x1+1x2 ~ betd vy, v2) = Fz(2) = P(Z < 2) = Ig(v1/2,v2/2).

(v) Relation to the- distribution:
IG(V/Za 1/2) = 1_A(t)7

where

t 1 2 v
At :/ ——e 2y,  x=—0.
() —t /21T V+t2

(vi) Relation to thef- distribution:

Ix(v2/2,v1/2) = Q(x),

where

L oogy, x—

):/t V2n ’ Vo + gt
See Abramowitz and Stegur8g], p. 945).

2.2 Composition of a CDF with a function of another CDF, in gemeral case

2.2.1 Composition oH with n;(x) = —InG(x)

In
o =Himoo = [ = [ " gy Q

whereG(x) = 1— G(x) andH is a CDF over the whole real line.
If H is gamm&d, 1) with PDF

y) = %y‘”ey, y>0, (5>0), )

a generateé is then given by

—InG(x)
0 = Him) s [ ¥ te ey

_ €)
_¥[6,—InG(x)]
re -’
wherey(9,2) is the incomplete gamma function, given by
We2 = [ revdy (10)
0
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The corresponding PDF is given by

f(x) = %[— ING(x)]°g(x), x>0. (11)

The functiong is the PDF corresponding .

Abdel-Hamid and Albasuoni3f] applied this technique to obtain a new distribution by cosipg a log-logistic
distribution with a Weibull distribution.

Zografos and Balakrishna89], showed that if in {1), d = nis a positive integer, therl() is the PDF of the upper
record value from a sequence of independently identicadliriduted (iid) RVs, drawn from a population with P
They also showed that if a RX follows a distribution with PDFX1), thenZ = —InG(x) ~ gammdd, 1), given by @)
and ifZ ~ gammad, 1), thenX = G (1 —e %) ~ f, given by (1).

2.2.2 Composition oH with na(x) = —InG(x)

— N2(X)
F(0) =Hn2(0] = [ hiy)dy

1 —InG(x) 51y

_ -1lg- 12
FE Y (12)

_y(57_|nG(X))

re) -’

wherey(9,z) is the incomplete gamma function, given i)l with z= — InG(x).
The corresponding PDF is given by
_ 1 5-1

f(x)_l'(é)[ ING(x)]°""g(x), xeO, &>0. (13)

Risti¢ and Balakrishnan3g] studied this “dual” case whose population survival fuaot{SF) is given by 12). They
showed that i is a positive integer, therlp) represents the SF of the lower record from a sequence oMglffom a
population with PDFy(x). Similarly, they showed that X ~ f, given by (3), thenZ = —InG(x) ~ gammadd, 1) and if
Z ~ gammdd,1), thenX = G~ 1(e %) ~ f given by (L3).

If G(x) is chosen to be exponentiated exponential distributior(EBiven byG(x) = [1—e FX|9, then Equation®3)
becomes

- 1 —aln(1—e P
F0 =7 /O Yo leV dy. (14)

Some properties and inferences, in this case were studiishig and Balakrishnan3g).

(i) Relation ofF (x) to the confluent hyper-geometric function
It can be shown that

E

M[3,1+3,In(1—e P¥)], (15)

1 |(—aln(1—eBx)°
=5 l 5

whereM[a, b; 7 is the confluent hyper-geometric function, defined by

(@)n2"
(D)o +..., (16)

M[a,b;Z =1+ %Z+ ES;;;ZI

where(d); =d(d+1)...(d+j-1), j=12....
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(i) Relation of F(x) to the Poisson distribution
Assuming tha = k is a non-negative integer ane In(1— e #¥) = z it follows, from (13) that

o

oo
l Ek—. 1 (17)
[in@—e )i

—(1—e P Zk it

(ii) A simple series for the incomplete gamma integral, gested by Lau37], can be used to write the SF as follows

_ y(k,2) 1 Z o4
P00 =55 e Sy

LAY C(5.2),
,Zo j
e d

(18)

where

yA .
6—HCJ_1(5,Z), J - 1,2,....

For proof of (L8), see B7].

2.3 Composition of a symmetric PDF with a transformationaafle
Jones B8] generated a PDF by composing a symmetric POfwith transformation of scalgx), in such a way that
f(x) =29[t(x)], —o0 < X< co. (19)
Two of such transformations were suggested by Bak€r [
tl(x):x—)—tz, x>0, b>0,

and
ta(x) = In( -1, x>0, a>0.

In addition, Jones38| suggested the following four transformations of scale:

tg(x):c<2\/§—1>I(0<X<C)+xl(x>c), x>0, ¢>0,

d 2 5
2X
t5(x):1—|(x<0)+T|(x20), —l<a<l -—-w<x<ow
2 1 1
te(x):FXal(x<—§(1 1 Vi-a(@x+a)l (- 1+a )<x<3(1-a)
2X 1

+ml(xz§(1—a)), —n<x<o, —l<a<l,
wherel (A) = {é X;i’ is the indicator function.
@© 2018 NSP
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For example, if the symmetric POdHs chosen to be the standard normal distribubig, 1), then the generated PDF
f(x) is given, usinds(x), by

2
exp<—5>, X > C.

It can be shown that the generated functfois a PDF. In fact,

© 2 c X 2 2 © 2
f(x dx:—/ e (Ve dx+—/ e/ 2dx
/—oo ) V2o Vv2me

=l1+1p,

where

2 c X 2
I = ——— / e [e2V/T- P gy
Y= anl

and

2 © 2
|:—/ e /2dx = 2P[X > ],
2= Vo )e x>l

whereX ~ N(0,1).
By applying the substitutior= c(2,/x/c— 1) to I, we havex = c[3(Z + 1)]2, so &k = 3(Z +1)dz (0,c) — (—c,cC).
It follows that

_ 2 [fe2rl? _Z/szz/z__ 1
ll_\/ﬁ/—ce 2(c+1)dz_\/§[ _Ce dz=P[-c<X<(=1-2P[X <.

Adding uply andly, [, f(X)dx = 1.

3 Generation by Compounding

Suppose that CDFS(x|6) andH (6) have PDFg(x|6) andh(6), respectively. A generated COF-is given by

F(x) = /@ G(x/6)dH (6). (20)

Fisher B0Q] called this generated distribution “compound” distribut Teicher #1] called it “mixture” of the two
distributionsG andH. If G(x|8) andH (6) are absolutely continuous, then the corresponding gesteRIDF is given by

f(x) = /@ g(x/6)h(8)de. (21)

Table 3 displays some generated POBs) = [, g(x|0)h(6)d6 for giveng(x|6) andh(H).

Remark 3 If, in the Poisson-gamma case (first in Table 8)=r and 3 = (1— p)/p, where r is a positive integer and
0< p< 1, then
f =3P a-p% x=012..,

which is the probability mass function (PMF) of the negabiromial (r, p) distribution.

Remark 4 If, in the normal-gamma case (fourth in Table 8)=r/2 and3 = 2/r, where r is a positive integer, then X
has the student’s t-distribution with r degrees of freedom.

Remark 5 Heavy-tailed skewed distributions can be obtained by camg@ing. For example, in the gamma-gamma case,
(third in Table 3), the resulting distribution, is also knowas thée' generalized Pareto distribution”. Both of the compound
PDFs have their tails thicker than (conditional) gamma digition.
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Table 3: Generated PDF§(X) = [5°

9(x|6)h(0)de for giveng(x|6) andh(0)

9(x6) h(6) fx)
1. Poisson Gammda, 3) Poisson-gamma
—6 6~ 1o~ 8 B (x+a) -
e W < )ﬁuea e B W7X70717...
2. Binomial Betda,3) Binomial-beta
- _ _ B(a-+x.n—
MOA-0)"* | gdpoola-0)Ff | @B x=01..n
3. Gammaék, %;) Gammda, 3) Gamma-gamma
X yk-1g-60 1 ~lg§ Bl
rgX e rapr 9 € " By X~ 0
4. NormalO, 9) Gammda, [3) Normal-gamma
0 —6x2)2 a-1 ra+1/2 « 2B \a+1/2 _
Ve rape 0 e P | G () e <x<n
5. Weibull (b, %) Gammda, 3) \ Weibull-gamma
Obx>— 10X Fape 0 te 7 abB(1+Bx) @1 x>0
Also known as Burr type Xlla,b,3).
6. Exp(a) Marshall-Olkin
9[17670‘)()51 —ab — _ ae*()\x)ﬁ
e ae G(x) T (1-a)e 9P x> 0.

Remark 6 Relation between Pareto type Il and Burr type XII.
When k= 1, so that X6 ~ Exp(0), then the gamma-exponential case leads to

h(x) = aB(1+pBx) "4,

This is the PDF of Pareto type (la,3) distribution (also known as Lomaja, 3) or compound exponentidh, 3)
distribution).

x>0, (a,B>0). (22)

The CDF corresponding t®) is given by

Hx)=1-(14+Bx)"9 x>0. (23)
If X =Y€, whereX ~ gamma-gamméa, 3,k = 1) andc > 0, thenY ~ Burr type XlIl (a,3,c). This is so because
R(y) =Fx(Y)=1-(1+By) " y>0. (24)

This is the three-parameter Burr type Xtt, 3,c), which is useful in modeling thicker tailed distributions.

The three-parameter Burr type Xll distribution can be aiedi by compounding the Weibull with the gamma
distributions, as given in the fifth case of Table 3, s&8.[

Following the approach of Marshall and Olki#dJ], Abdel-Hamid §4] obtained a new distribution by compounding
the half-logistic distribution with the Poisson distrilmri.

4 Generation by Mixing

4.1 Generation by countable mixtures

If, in (20), the entire mass of the corresponding measuté & confined to a countable number of poifi{s6,, ..., and
the masses &, j = 1,2,..., areH(6;), then

F(x) = Z (x|6;)H Z p;iG (25)
=1
pj=H(6;) =0< pJ<1and2J 1Pj =1,Gj(x) = G(x/6)).
Similarly, (21) becomes
fx) = > 9(x6))H Z Pigj (X (26)
=1
9i(X) = 9(x(6)).
(@© 2018 NSP
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Remark 7 A related but slightly different concept of compoundingssf@lows: A RV Y is said to have a compound
distribution if Y = 3N ; X;, where the number of terms N is random. It is assumed thatWseX® Xo, ..., Xy are iid and
each is independent of N. The CDF of Y is given by

F(y) = ipnGn(Y)

where p = P[N = n|,Gp(y) is the CDF of the sum of XXz,..., Xy and G(y) is the point mass at s O, (degenerate
case).

Remark 8 Non-central distributions are obtained as countable mis$uof Poisson mixing proportions and (central)
distributions such as thg?, f, Fisher and beta PDFs are given as follows:

(a)Non-centraly?(v,A) PDF is obtained as a countable mixture of Pois§dn mass function and centrad?(v + 2j)
distributions, wherev represents the degrees of freedom anid the non centrality parameter.

00 —)\)\ JX(V+21)/2e—x/2

zoJ'F [(v+2j)/2)2(v+21)/2"

(b)Non-central f,, ., ») PDF is obtained as a countable mixture of Poissbpmass function and centralf, . »j)/2,v,)
distributions. = '

—)\)\J V1+21)/V2] (vi+2])/2y(v1+2j)/2-1
%J'B [(Vi+2))/2,v2/2)[1+ (v1+ 2))x/vp](vatVva)/2+i"

(c)Non-central Fisher(v1,v,,A) distribution is obtained as a countable mixture of Poiggonand the central Fisher
(v1, Vo) distributions.

e AN [(vy + 2j) /vg] (Vi+2D)/2x(vi+2))/2-1
zO“B [(Vi+2))/2,v2/2][(v1+ 2])€+ [vp](vatva)/2”

(d)Non-central betd(vy + 2j)/2,v2/2,A] distribution is obtained as a countable mixture of Poiggonand the central
betavy/2,v,/2) distributions.

_)\)\J
;j'B [(vi+2))/2,v2/2]
In general, we can “choose” other mixing proportignsind other PDFg; to generate the PDF of the countable mixture,
given by @5).

Remark 9 It may be noticed that all terms vanish in the above non-egctases, wheid = 0, except the first term. So
that, whem = 0, expressions (a)-(d) reduce to:

(i+20)/2=1(1 _ x)(va)/2-1,

, Xv/2—1e—x/2
(a)f(x) = T2 a centralx?(v) PDF.
, V1/2yV1/2—1
(B)f(x) [va/va] X acentral f,, ,,) PDF.

B[v1/2,Va/2][1+ vix/ v, (VitV2)/2’
! _ [V1/ vo]Va/2xV1/2-1 .
(€)f(x) = BV /2.5 2] v T o central Fishefvy, v») PDF.

(d)f(x) = val/2*1(1 —x)(2/2-1 0 < x < 1, a central betdv; /2, v»/2] PDF.

Remark 10 A countable mixture of S5 (x) = 35, p;Gj(x) whereGj(x) = [G(x)]!,j =r,r+1,... has the form
- pG() T
F = — , 27
- | s @)

if and only if the mixing proportionsjp= (gj) Pt j=rr+1,....

For proof, see AL-Hussaini and Ghitand4]. Notice thatF, (x) is the exponentiated SF 7}@)&)'

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

100 N SS 2 E. K. AL-Hussaini, A. H. Abdel-Hamid: Generation of distuition functions

Remark 11 Suppose thaty¥,, ..., Ynn are the order statistics of a random sample of size n from aifadjpn whose SF
and PDF are given, respectively, by

Fr(x) = [GX)]",
_ (28)
fr (x) = r[G(x)]*g(x),
whereG(x) = 18?2() and gx) = %. The PDF of the sth order statistic ¥, can be given by
s-1 .
{(y)=rg(y) _Z}a@ [Gy)I™ ™, (29)
i=

where a= (—-1)'n(2°1) (51), m=n—s+i+1.

Remark 12 It can be shown that the Marshall-Olkid 8] extended Weibull distribution can be obtained by compdngnd
the SF

Gx|6) —ex8(1—e™ )], x>0, (B,A,0>0),

with the exponential PDF
h(@)=ae?® 6>0, (a>0),

as follows
P = | “G(x6)h(6)d6

:/mee[ane("x)p}de

e P _(1—a)

ae AP

For more details, sed§).

4.2 Generation by finite mixtures

If, in (20), the entire mass of the corresponding measutd & confined to a finite number of poinés, 6., ..., 6 and
the masses &, j = 1,2,... .k areH(6;), similar expressions of CDR2p) and PDF 26) can be shown to be

k
F) =3 piGj(x). (30)

=1

and )
FO) =3 pigi(X). (31)

=1

A CDF of the form B0) (or PDF of the form 81)) is known as finite mixture ok components mixed with proportions
P P 0< pj < landyk_; pj=1.

A heterogeneous population consistingkafub-populations, mixed with proportiops, j = 1,...,k can be represented
by a finite mixture whose generated CDF is given 8§)(

The study of homogeneous populations with “single” commbmstribution was the main concern of statisticians
along history, although NewcomH@T] and Pearson4g] were two pioneers who approached heterogenous popuation
with finite mixture of distributions. With the advent of conng facilities the study of heterogeneous populatiortgcty
is the case of many real world populations, attracted therést of several researchers from about the middle of the
century. Books have collected and organized the resultssgfarch published in several articles, see for exardgl&0,
51,52,53,54,55].
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Titterington et al §Q] listed and gave examples of direct applications of finit&tomie models to fisheries research,
economics, medicine, psycology, paleontology, electoogsis, sedimentology, botany, agriculture, zoology-tiésting
and reliability, among others. Indirect applications ird# outliers, normal mixtures as checks to robustness,S&aus
sums, cluster analysis, latent structural models, mogdeliior densities, empirical Bayes method, non-paramgteimel)
density estimation, random generation and approximatiomxture models by non-mixture models.

McLachlan and Peebf3] discussed fitting of finite mixtures through use of the EMoaiithm, see Dempster et &),
the properties of maximum likelihood estimators, the emsest of the number of components to be used in the mixture,
applications in areas such as unsupervised pattern reémgrspeech recognition and medical imaging.

Several publications on finite mixtures appeared in theysts. We list only a few, as the comprehensive list includes
much more publications in the same period of time. Exampleg\ékin and Tunnicliffe-Wilson 7], AL-Hussaini and
Ahmad [8,59], Aitkin and Rubin pB0], Basford and McLachlan€[1,62,63], Bernardo and Girong4], Dean et al 5],
AL-Hussaini and Abdel-Hakimd6,67,68], Evans et al§9], Chen [7(], Diebolt and Robert]1], Crawford [72], Escobar
and West 73], AL-Hussaini and Osman7H], Celeux et al 75, AL-Hussaini et al f6], AL-Hussaini [77], Woodward
and Sain 78], McLachlan et al 79|, Besbeas and Morga®(], AL-Hussaini and Abdel-Hamidd1,82], AL-Hussaini
and Ghitany 45], Griin and Leisch§3], Abdel-Hamid and AL-Hussainig4,85], Al-Jaralla and AL-Hussainig6], AL-
Hussaini and Husseir8f], among others. AL-Hussaini and Sulte88] reviewed reliability and hazard functions under
finite mixture models. Finally, BarakaB9] suggested a new distribution family via a mixture of a bimeeCDF and its
reverse, after adding and subtracting, respectively,dmtthe same positive location parameter. He also showethinat
suggested family is capable of describing many types oistital data than many other known families. Moreover, via
mixture, Barakat and Khale®(] suggested a new method for constructing a family of CDFsckvicontains all the
possible types of CDFs and possess very wide range of theeimdi skewness and kurtosis.

5 Conclusion

Generation of new distributions may be needed if the newikligions are more flexible to analyzing data in the sense of
having better fit, more shapes of the HRF, etc. These featuagsender to the more parameters that will be added to the
new distributions. In this article, we have surveyed andulised three methods of generation of new distributions.
These methods are:

—Generation by composition. This method includes compwsitif a CDF with another CDF on the supp@®t1),
composition of a CDF with a function of another CDF, in the g&h case, and composition of a symmetric PDF
with a transformation of scale.

—Generation by compounding.

—Generation by mixing. This method includes generation hyntable mixtures and generation by finite mixture& of
distributions.
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