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Abstract: In this paper, we solve the eigen solutions to some nonlisigiaor equations, and compute several functions reflethieig
characteristics. The numerical results show that, theimeat spinor equation has only finite meaningful eigen sahst which have
positive discrete mass spectra and anomalous magnetic moffe weird properties of the nonlinear spinors might losely related
with the elementary particles and their interactions, snesdeeper investigations on them are significant.
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1 Introduction Define 4x 4 Hermitian matrices as follows

10Y) (0 I o 0 —il
{69 ()} ~(62) 0-(29) e
where u € {0,1,2,3}, xX = ct and a* = yPy¥. In this
aper, we adopt the Hermitian matricels?j instead of

irac matricesy* for the convenience of calculation. For
Dirac’s bispinorg, the quadratic forms o are defined

Since Dirac established relativistic quantum mechanics

many scientists such as H. Weyl, W. Heisenberg, hav

attempted to associate the elementary particles with th

eigenstates of the nonlinear spinor equatio®|[3,4,5, 6].

In 1951, R. Finkelsten solved some rigorous solutions of

the nonlinear spinor equation by numerical simulation, . .

and pointed out that the corresponding particles havd” = ¢ ake, V=0 yp, B=0¢"Bo, (1.3)

quantized mass spect7af]. The theoretical proof about where the superscript ‘+' stands for the transposed

the existence of solitons was investigated9rip, 11,12, conjugation. By the definitionl(3) we havedH = @'y ¢

13,14]. The symmetries and many conditional exact etc., wherep' = ¢+ is the Dirac conjugatior?s. Erf‘ is

solutions of the nonlinear spinor equations are collecteca contra-variant 4-vectory a true scalar and8 a

in [19]. pseudo-scalar. they are not independent due to Pauli-Fierz
In recent years, the nonlinear spinor models for darkidentitiesp6,27], such asi, Gt = v+ [;2_

energy and dark matter may give an explanation for the  |n general, the Lagrangian of the nonlinear bispipor

accelerating expansion of the universe. Some researchggith a vector potentiah* and scalat is given byp§|

get a number of interesting result§/17,18,19,20,21, R . .o .

22]. In this paper, we define some functions which reflect” — ¢ a¥(Rid, —eA) Q- uy+V(y,B) — s/G

the prpperties of eigen squtions' to the nonlinear spinor —}duA\,d“A" _ }(d“Gd“G— bZGZ). (1.4)

equations, and compute the typical values, then extract 2 2

some important information from the data. Some previoudn this paper, we only consider the case-V(y) > 0 is a

works are given irg3, 24]. concave function satisfying
At first, we introduce some notations and conventionsV'(y)y > V(y), (for y > 0). (1.5)
Denote the Minkowski metric by  The corresponding dynamical equation is given by
Nuv = diag(1,—1,—1,—1), Pauli matrices by ak(Rid, —eAy)p = (uc+sG—V')yg. (1.6)
i ((01) (0=i\ (10 0a 0 AH = edH, (L.7)
U—(U)—{(10>’<i o)’<0—1>}' (1.1) (040° +B?)G = . (1.8)
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The Hamiltonian form of 1.6) is given by The initial data of 2.4) and @.5) satisfy f(0) = 0, g(0) >
W g A N\ 0. For .4) and @.5), we have positive massOm < L if

hicp=Hep, H=cleA+a p+(uc+sG-V')y|(1.9) and only ifw > 0[23.

wherep’= —hilJ — €A is the momentum operator. For the Making transformation

angular momentum operator

1 H+m ro= h (az+l)ﬁ o T 26)
j 2 2 ’ ) .
J=r x p+ zhy, w = diag(gk,ok), (1.10) p—m’ c/uZ—m?  2auc fo

2 \/TH_ w(a2+1) f o
the eigenfunctions of; = —hidy + 3hys are given by SaiC

wherea is equivalent to the spectrum, takes the unit of
length. @.4) and @.5) can be rewritten in a dimensionless
where the index ‘T' stands for transpose, form. For .4) we have

iz = ]+ %,j e {0,£1,+2,---}. For all the

B = jshg, @ = (ug,ue? ivy,ivoe?)Tel? (1.11)

N I (A 122 _
eigenfunctions,J; is commutative with the nonlinear {\u/ B (? u2+v2)v, 2 u(g)_ go >0, (2.8)
Hamiltonian operator like the linear case, so the solutionsl * — (g—w+viju—gv  v(0)=0,
of (1.9 take the following form, 2 where prime stands fod%. For (2.5 we have
o= (ul,u2e¢"|vl,IV2e¢l)T exp(j i — ?It), (1.12) U = (; + u2—V2)V u(0) =up >0

, {\/— (§+ u2—v2)u’— 2y v(0)=0 7 (2.9)
where uy, w(k = 1,2) are real functions ofr,8). The - po -

normalizing condition becomes The normalizing conditiona.3) becomes
0 m
2n [ rdr [ s 2B+ =1 (L1 ° 22
n/o redr 0 SiNBdB (L + o +vi +2) (1.13) (E:H—a*1)2/o (u2+v2)p2dp:825—wug , (2.10)

. . . whereSis a dimensionless constant to be determined.

2 Properties of the dark nonlinear spinor The computation shows that, for any given> 1,

i . . ) there exists a sequence of initial data
The s!mplest case ofl(9 |s_dark spinor described by the o u(0); < u(0); < ---, such that 2.4) and @.5) have
following dynamical equation, eigen solutions. The theoretical analysis proves thatther
Rid @ = H¢, H = cla - p+ (uc—wy)yl. (2.1) are infinite eigen solutions for eaefl1]. In [23] we have
shown three families of eigen solutions with even parity
and the first family of eigen functions with odd parity.
To describe the properties of the eigen solutions, we
ine the following dimensionless functions, which are
continuous functions of spectrumfor the same family
solutions.

Different from the linear case, the nonlinear spinor
equation generally has continuous spectra if the
restriction of (.13 is absent, so the normalizing defi
condition becomes quantizing condition for nonlinear
spinors, and the nonlinear coupling coefficient is

meaningful only if the solution satisfies the normalizing

condition (1.13. 1.The dimensionless norpia)
The eigen solutions td2(1) with spin j3 = i% can be ®

solved rigorously as follows = —Ig ((a+ a‘l)z/ (u2+v2)p2dp> . (2.11)
= (g,0,if cos,if sinBe?')T exp(— |m°2t) for(P: =1 . ° . L .
— (0,0,if sinfe¢1, —if cos8)T expl(— ,_czt) for(P=1 ja=~4) 5 For the same family of eigen soluthﬁ!s acontinuous
= (fcosb, f sinGef'.ig, 0)T exp(~i "), for(Pffl a=1) function ofa. By (2.10, the normalizing condition is

@, = (fsinfe% —fcosd, 0,ig)T exp(—i 1), for (P =1, js=—3) equivalent to the equation=1g S.

where P — 1 corresponds to even parity, aRi= —1 2.The dimensionless energi(a) in the Nother's sense,

corresponds to odd parity. For the above eigenfunctions, ©
we ha\E)e party J & = iz (mcz+ }WC/ y2-4nr2dr>
" uc 2 0
v 2 ¢2 2 2y 24y — 2 TR AY Y
y=P(g-— f°), 471/0 (g°+ f9)redr=1. (2.3) _ @ 1+ a Jour—vo)p dp. (2.12)

241 2401 [2°(u? 2\ 02
The radial equation of even parity satisfies a*+1 a*+1 [y (w+v)p=dp
d 2 2 2
a 9= — el +m)c” —we(g” — f9)]f, 2.4
{Jf———[(u M —welg? - 2)g-21. >

3.The mean diameter of an eigen soluttin)
2 [r|pPd _ a+1 f5(w+)pdp

= = % , (2.13)
For the odd parity, we have A [lePd3x a Jfo (u+v3)p2dp
d ﬁc[(“ m)c? 4 we(g? — f2)]f, 2.5) whereA = u—ﬁc is a universal Compton wave length for
Jf = —[(u+m)c?+we(g? — F2)]g— 2f. ' all solutions.
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4.The total dimensionless inner pressBfa)

_ 1 [ 2e Loy 42
P = e (mc2 /0 (uc?y+ 2wcyz) Amr dr) o ]
P/(u c?)*10°
(@1 FWviprp _a [F(P-vpp) o 3l AW ]
T3\ @+l [Q(W@+)pdp  a+1 [J(uB+v?)pdp ) T

The physical meanings of(a), £(a) and d(a) are
evident. The inner pressuR¥a) is defined from general
relativity. For the nonlinear spinor2(l) in curved
space-time with diagonal metric, we have energy
momentum tensotf] -

THY = %D«pﬂpuiav +pYidM) @) + (V'y—V)gH’ (2.15) T

Dimensionless E & P
-
T

a<3.67
P<0

|
|
P : : :
! .
} ] 7 |
I El(u c)
0
|
|
|

0 0.5 1 15 2 25 3

For static spinor, we have Dimensionless Spectra lg(a)

1 1 o1
P=3(T0-Ti) = 3(Mof*—uy—Swy).  (2.16)

3 . .
. . . Fig. 2: The total ener a) and inner pressurB(a) of a dark
The dimensionless form of the total inner pressure of the g 9@ P @

spinor becomes2(14). Spinor
The curves of the dimensionless functions defined

above are shown in Fifj. and Fig2. In Fig.l, the

normalizing condition y = IgS = 0918 and

y = IgS = 0.647 are derived from the anomalous —1os 1
magnetic moment(AMM) of an electron according to acb s
different definition of mass, as computed in the next a=45.7
section. A rough computation was once givenad][ a=100
0
5 ‘ 2 u(r)>0
“lg(dn) &
1.8 n u—
s 2
16 ‘ . = a=100
2 14 . : : | L] SSS—
B I =
§ 12f | | . =
& i Elue’y i
g M Ao —
S ogl y=0.918 ]
é 0.8 : via : —oslt ) v(r)<07
5 06 // P [ ¥=0.647 1
0.4} // | | i
/ | |
0.2 7/ | | . : 4
' /0.29,2=1.95 | 1.66, a=45.7 -1 - : - :
00 0.5 1 15 2 25 3 0 2 . 4, 6, 8 10
Dimensionless Spectra Ig(a) Dimensionless Radius r/A

Fig. 1. The norm functiony(a), dimensionless energy’ =
% and mean diameted(a) of a spinor. Only the solutions
corresponding to the intersectimia) = Ig S are meaningful in

physics

Fig. 3: The radial distribution of the nonlinear dark spinors

45.7. The norm functiory(a) of all other families of eigen
solutions have no intersection points wjtk= 0.918.

S 21y o R . . A :
Foran e;ictron,we haye=me = 9.11x 10" “kg,h= The radial functions(G,F) of solutions with even
1.055x 10~ J.S,C = 2.998x 108m/5 By qu andS= pa”ty are shown in F|@, where

8.277, we can estimate the value

/W a /W [/ a
- _”5352'23 385x 107°/(Jsnt) (2.17) R R N e o
pzc? The unit of the coordinateis the universal Compton wave

In this case, the nonlinear spinor equation has only twdengthu—ﬁc. So the images of different solutions are visually
valid eigen solutions corresponding @ac= 1.95 anda = comparable in Fig.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

126 NS 2 Y. Q. Gu: Characteristic Functions of Nonlinear Spinor

3 The nonlinear spinor with electromagnetic Substituting 8.4), (3.5 into (3.1) we get the energy

J= 4nc/.mr2dr{h"[(f’+ %f)g—g’f]+(ufm)cng(u+m)cf2— %w(gz— 2)2 ¢
The nonlinear spinor with self electromagnetic interactio ° 4 L 5 1 ,
was researched by a few authors. In 1966, M. Wakano has (g + %A~ zegfAt+ SA0(07 + L 0)Ao— SAdF + 0 — 72)A} +mc (3.6)
approximately analyzed the casesfgfdominance and o )
dominance whenw = 0, and reached the following The approximation is only caused by the vector potential
conclusions2d]. In the case ofA dominance, the eigen A: By variation, we get a closed system of ordinary
solutions or the solitons do not exist for the first orderd'ﬁeremelI equations

approximation. In the case &, dominance, the eigen g =~ jlu+mec—er—w(g - 12)]f - feAg

solutions exist but all with negative energy. In fact, the { F'=pl(H—micte —w(g - g+ (eA— D), @7
negative mass is equivalent to change the sign@f Aot rho=—el@ ), ATH A - GA= —2egt

which implies to transform the repulsive potential A&f Make transformation

into the absorbent one. M. Soler and A. F. Rafada F

: . o pm ¢ 1
calculated the eigen solutions df.§) by omitting A. But 0= Jiz—wee ATV u-m 97 amh ~ 137035999 (3.8)
they neglected the normalizing condition and did not use ; o wio e 2ery
the true value o®[30,31]. Besides, the eigen solutions P=; Y=\ {9 V="y/ 7 I P="h Q="737A 3.9)

with Born-Infeld potential were studied in3g]. The

detailed non-relativistic  approximation of the . ; o
many-spinors equations was given 28] confused with the pressure defined h1@. Substituting

In general, the coordinates and 6 can not be theminto .7, we getthe dimensionless form
separable for nonlinear spinor with vector potential due to .~y _ (a—P— w2 +v2)v—Qu
the term A. However uy and v can be conveniently 1 "5
i i i V=(Z+P-u2+V)u+(Q—2)y,
expressed by spherical harmonics, and the equations o a p/Vs

where P is dimensionless potential, which can not be

the radial functions can be derived via variation principle | p” 4 2p' = — g W2 (3.10)
because the eigen solutions are the critical points of the| =~ £~ JoWsvi)pide”
following energy functional Q' +5Q - 2Q=F Fwvzp

J:gn/‘mrzdr/‘"smedg(w,qw }chz,}CDA“ADAu,mCzaong(g_l) In (3.10 only a is a free parameter, which acts as the
0 0 2 2 spectrum similar to the dark case @& = 0. The
So the problem 1.9 can be changed into an ordinary normalizing condition is stillZ.10. (3.10 is independent
differential equation system which can be solved by©n the undetermined coefficient but it becomes a global
numerical computation problem. The natural boundary conditions are given by

In this paper, we only consider the eigen solutions with ( u(0) >0, v(0)=P(0) =Q(0) =Q(0) =0, a1t
$-spin and even parity, which is the only valid case for {Uﬂuwe"’» Vo e P P g, Qo 3 (P o). @1
a free electron. In the dimensionless form, we have thel_h .
magpnitude for the fields e solutions of P, Q) can be expressed as

P:#wi ’ R0+ t2drdp, 3.12
A~ Ad~alg, (1~ b sk @y T FEEm Lk 0l o

a a 137 B —4a P,
. N . Q= ey P, uOvddn (313)
where a is the dimensionless spectrum. Since the high 0
order terms are caused by the vector poteéiah- <|g, ~ We haveP > 0,Q > 0 for the meaningful solutions. The
for adequately largea, we only keep the first order solution of 8.12 and @.13 can be soundly solved by
approximation for simplicity. Then we have iterative algorithm.
~ The total energy of the system in Nother's sense is

¢=(g,0,if cosh, if sinfe?’)T exp(—im—;zt), @3 IVven by

E :2n/l)wr2dr/0nsin9d6((p+lfl(p+ %chzf %CDA“ -OAH), (3.14)

whereg and f are real functions of with g(0) > 0. For
large spectruma = 49.12, the relative error of the Substituting 8.8), (3.9) into it, we get the dimensionless
approximation is less than 16, so the approximation is form

accurate enough to reveal the anomalous magnetic E _a-1  a [F[(W—v)>—P(+v) - 20uip’dp

. . . . b= — = = 3.15
moment of a spinor with electromagnetic field. The less K¢ @+1 a+1 Jo (WP +V2)p2dp ©19
the value ofa, the large the error of approximation. The mass of a particle is a complex classical concept,
The quadratic forms of are given by which depends on the method of measurement and the
Go= @+ 2, Y=g —f2 &= 2gfsind(—sing,cosp,0). (3.4) context of theory. Using different definition of mass, we

dinal h will get different spectruma and constantS. In what
Correspondingly we have follows, we takeme and u as the classical mass for
Ao=Ao(r), A =A(r)sinB(—sing,cosp,0). (3.5) computation. To get the anomalous magnetic moment, we

(@© 2017 NSP
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introduce an infinitesimal external magnetic field
Bext = (0,0,B) with

13

12+ . . ; 4

1 1 .
Aext = EB(—y,x, 0) = iBrSInG(—Sln(P,COS(P,O). (3.16) 1wl | |
Adding Aey; to (3.5 and substituting it into3.6), we get i . ——— ]
the increment of the energy - / ‘ i
0.9 / | B, y=.918
8 B / | Bl cd)
AS = |?ec/ gfridr|B= B, (3.17) o8f ‘ sgmen |
JO | Ag, m,=m,
0.7 4
where L, is the magnetic moment of the spinor. The R ye)
. . B . L A, y=647 i
dimensionless form is given by 06 S P
R , a=11.: .69, a=49.
B 2(a°+1) K I uvp3dp| __€eh 0% 05 1 - 15 2 25 3
Hz = 3a _/SO(UZ +V2)p2dp ‘U, HB= ﬁ7 (318) Dimensionless Spectra Ig(a)

where the constantg is the Bohr magneton,
Fig. 5: The dimensionless functiongs'(a),Ag(a),y(a)). The

k = 1 _if Mk = U, 3.19 constantSSis determined by the intersection points A or B, which
& if me= (3.19)
T mg = Me. correspond to the empirical anomalous magnetic moment
By (3.18, we get the anomalous magnetic moment of
a particle
g He—He _ 2(a?+ 1)k| [y uvpdp| 1 320 In Fig 4, the trends ofAg shows thatdg is a decreasing
9= pe 3a (@ +wp2dp (3:20)  function of a, andAg — 0 asa — «. By the empirical
0 data ofAg, we can compute the following undetermined
The empirical value of the AMM of an electron 48y = parameters, If takingy = &, we have

0.0011_59652. Thg computatlona! result shows nonhneara:“g_lz S= 8277 = 3385x 105 Jsrf, E, — 1.088keV, Ex = 856V (3.21)
potential can provide an explanation for AMM. )

To compare with the dark spinor, we also define thelf taking mq = 1, we have
dimensionless norm by2(11). The normalizing condition . _ 1135 - 4434 w— 0.723x 10 s, B — 1508keV, Ex — 330eV (3.22)
(2.10 is equivalent toy = IgS. The dimensionless o
functions(&,Ag,y) are all continuous functions af for Fig.5 shows the realistic values of some parameters such as
the same family of solutions. Fig.shows how to thetotal energy’, the normfunctiory(a). The constants
determine the spectruna by the empirical AMM. orwis determined by normalizing conditign=Ig S, and

Different definition of mass leads to different valuesof ~ then all other parameters can be computed. By3r-ige
learn that, the value @ is larger than that of dark spinor,

namely, the electromagnetic interaction increases the res
massm of a spinor.

o ‘ ‘ ‘ ‘ ‘ Sincea =%, is quite small, by 8.2 we learn that, if
Lo mem, a > 10, the electromagnetic field only have a little
b e me || influence on the eigen solution. F&g.shows the
G lg(A g), empirical

comparison of the dimensionless fields wiaen 49.12.

!
N
T
i

1 4 Discussion and conclusion

|
kS
T

We have solved the particle-like eigen solutions to some
nonlinear spinor equations, and computed several
functions which reflect their characteristics. The
‘ | L05,a=11.35 | 169, a=49.12 ‘ numerical results show that, the nonlinear spinor

0 05 Y mensionfees & 2 25 3 equations have positive discrete mass spectra and
imensionless Spectra Ig(a) . R

anomalous magnetic moment. These unusual properties

of spinor may have close relationship with the nature of

Fig. 4: The anomalous magnetic moment of the systgrhGjvs,  the elementary particles.
the spectra, the true value for an electron4sg = 0.001159652

Anomalous Magnetic Moment Ig( A g)
&
T

|
&)
T

-6

or lg(Ag) — —2.936 1.ByP — 0 and .14, forV = 2wy? we find
m - / s %wc{ﬁ) 47 2dr. 4.1)
0
(@© 2017 NSP
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Dimensionless Fields

a=49.12

0 1 2 3 4 5
Dimensionless Radius p

Fig. 6: The dimensionless radial function(s, v) correspond to
spinor fields(P, Q) correspond to the dimensionless potentials.

More calculations show that such relation also holds

Jl

for other kind nonlinear potential/(y) satisfying
V'y—V > 0, namely we always havfP| < E. An

interesting problem is whether the error is just cause

by numerical approximation and = 0 is a rigorous
relation generally valid for nonlinear spinors.

2.All dimensionless energy’(a) have a similar trend
& — 1(a — ). For large enougla, we always have
E — uc’.

3.For the nonlinear spinor equation with a scalar

interactive potential

abfidu@ = (Hc+SG—V')yp, (040% +b*)G=Asy, 4.2)

similar to 3.12 and 3.13, G can be expressed as

s
Tor

r oo
6(r) =22 [ (e Tt [ je)ge v dg, (4.3)
0 T
so the solution to 4.2) can be soundly solved by
iteration. For the AMM Ag defined by 8.20,
computations show that we always havey ~ 0

similar to the above cases with electromagnetic

interaction.
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