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Abstract: Prediction of generalized order sample can be done with normal bounds having suitable confidence. However, given
independent samples from the same absolutely continuous distribution, the prediction based on some accelerated bounds can be
achieved. In this regard, this paper deals some various exact non-parametric prediction intervals for the future generalized order
statistics under normal operating conditions based on stressed generalized order variables were observed in step stress accelerated life
test: The tampered failure rate model. The progressive Type-II right-censoring order sample of failure time data that presented by
Xiong [1] are used in numerical computations to illustrate the proposed procedures.

Keywords: Tampered failure rate model; Step-stress acceleration; Prediction intervals; Generalized order statistics; Two-sample
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1 Introduction

Our problem here basically are constructed from three pivotal statistical procedures: Non-parametric prediction method,
generalized order statistics(gOSs) and the accelerated life test(ALT ). Firstly, the prediction of future events is one of the
most important problems in statistics. In absence of prior knowledge, it may be resorted to the non-parametric prediction
method to avoid many statistical procedures errors, such asselection of nearest suitable parent distribution, regression
and estimation etc.. Non-parametric predictive interval uses the observed ordered data without any information aboutthe
sampling distributionF other than being continuous. Such these intervals corresponding coverage probabilities are
known exactly and do not depend onF .
Next, the concept ofgOSs had introduced by Kamps [2] and then developed by Kamps and Cramer [3]. The use of such
concept has been steadily growing through the years becausesuch concept includes important well-known models of
ordered random variables that have been treated separatelyin statistical literature.

Moreover,ALT experiments are conducted at stress levels higher than normal use stress levels. Stress can be applied
in different ways such that constant stress and step stress.In constant stressALT , each unit is subjected to an accelerated
stress level and this level remains unchanged during the testing period, so the test might delay for a long time if the
considered stress is relatively weak. The step stress is considered to reduce the testing time. In this procedure, the stress
subjected to each test unit is not constant, but is changing in a stepwise manner and goes up like stairs.
Under the normal operating conditions, many contexts discussed the non-parametric prediction problem using special
assumptions [4]-[14]. None of these papers can be useful wherein the observed units are suffered higher stress level than
normal. For this purpose, this paper develops non-parametric prediction intervals for futuregOSs under normal
conditions based on some accelerated generalized order bounds that observed inALT . We have to get specific model of
ALT be compatible with the non-parametric prediction method. Therefor, the tampered failure rate(T FR) model due to
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Bhattacharrya and Soejoeti [15] is devoted.

T FR model is also called, tampered hazard model and proportional hazard model. This model consider some products
are undergone a step stressALT . They suffer a stressS1 from beginning time to a prescribed timet. Those that survive att
will face a stronger stressS2(> S1) such that, the stress reflected in the hazard rate function. Let f (x) andF(x) be thepd f
and the survival function of the product lifetimeX under the stressS1. Given the failure rate at the initial stress, the change
in the stress effect is assumed to multiply the failure rate functionh(x) = f (x)

F(x)
by unknown positive factorα to current

failure rate over the remaining life that is related to the time pointt. The accelerated survival functionF
∗
(x) = F(x | S2)

relates withF(x) = F(x | S1) such it depends only on the product distribution and the lossfactor under the stressS1, and
it claims nothing from the product life or it’s distributionunder the stressS2.
Let h∗(x) denote the failure rate function of the step-stress life timeX∗. The proposedT FR model is

h∗(x) =






h(x), x ≤ t,

αh(x), x > t.
(1)

From the relationF(x) = e−
∫ x
0 h(y)dy, the survival function and the pdf corresponding toTFR model are respectively

expressed as

F
∗
(x) =





F(x), x ≤ t,

F(t)
[

F(x)
F(t)

]α
, x > t.

(2)

f ∗(x) =





f (x), x ≤ t,

α
[

F(x)
F(t)

]1−α
f (x), x > t.

(3)

The rest of this paper proceeds as follows: In Section 2, somepreliminaries are given. In Section 3, we derive non-
parametric prediction intervals for future singlegOSs samples under normal operating conditions, based on some stressed
generalized order data that suffered the tampered failure rate acceleration model. In Section 4, outer and inner prediction
intervals for futuregOSs intervals are derived. Section 5, includes numerical computations. Finally, conclusions are given
in Section 6.

2 Preliminaries

Suppose thegOSs {X1,n,m̃,k < X2,n,m̃,k < .. . < Xn,n,m̃,k} be observed sample of sizen ∈ N having an absolutely
continuous cdfF and pdf f that developed by Kamps and Cramer [3] under assumptionγi 6= γ j, i, j = 1,2, . . . ,n−1 and
i 6= j. The survival function ofXi,n,m̃,k is expressed as

FXi,n,m̃,k(x) = ci−1

i

∑
ν=1

aν(i)
γν

(1−F(x))γν , (4)

wheren∈N, m̃=(m1, . . . ,mn−1)∈Rn−1 andk ≥1, be given constants such that for all 1≤ i≤ n−1,γi = k+n− i+Mi >0,
whereMi = ∑n−1

j=i m j andai(r) = ∏r
j=1, j 6=i

1
γ j−γi

, 1≤ r ≤ n.
Also, the joint pdf of any twogOSs, sayXr,n,m̃,k andXs,n,m̃,k such that 1≤ r < s ≤ n, is expressed as

fXi, j,n,m̃,k(u,v) = c j−1

[
j

∑
λ=i+1

a(i)λ ( j)

(
F(v)

F(u)

)γλ
][

i

∑
µ=1

aµ(i)
(
F(u)

)γµ

]
f (u) f (v)

F(u)F(v)
, (5)

such thatu < v, a(r)i (s) = ∏s
j=r+1, j 6=i

1
γ j−γi

andai(s) = a(0)i (s). ∀1≤ i ≤ n,

Next, assume{Y1,n∗,m̃∗,k∗ ,Y2,n∗,m̃∗,k∗ , . . . ,Yn∗,n∗,m̃∗,k∗} be futuregOSs sample of sizen∗ from the same population
under assumptionγ∗i 6= γ∗j , i, j = 1,2, . . . ,n∗−1 andi 6= j. Likewise, each of the coefficients of X-sample will carry an
asterisk with(∗) when it refers toY -sample. We aim basically to make inference about this sample.
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Lemma 1. The survival function, the pdf of theith acceleratedgOS X∗
i,n,m̃,k for x > t and the joint distribution function

of ith and jth acceleratedgOSs X∗
i,n,m̃,k andX∗

j,n,m̃,k for u,v > t due toT FR model in terms ofF and f , respectively, can
expressed as.

FX∗
i,n,m̃,k

(x) = cr−1

r

∑
ν=1

aν(r)
γν

F
(1−α)γν (t)F

αγν (x), (6)

fX∗
i,n,m̃,k

(x) = αci−1

i

∑
ν=1

aν(i)F
(1−α)γν (t)F

αγν−1
(x) f (x), (7)

fX∗
i, j,n,m̃,k

(u,v) = α2c j−1

j

∑
λ=i+1

a(i)λ ( j)
i

∑
µ=1

aµ(i)F
(1−α)γµ (t)F

α(γµ−γλ )−1
(u)F

αγλ−1
(v) f (u) f (v). (8)

3 Prediction of individual gOS

This Section interested in obtaining two-sided non-parametric prediction intervals for a futureYr,n∗,m̃∗,k∗ , under normal
conditions based on somegOSs, which was observed under some kind of stress of the form(X∗

i,n,m̃,k,X
∗
j,n,m̃,k) where i and

j are integers such that 1≤ i < j ≤ n.

Such that, the purposed coverage probabilityP
(

X∗
i,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ ≤ X∗

j,n,m̃,k

)
= 1− ε, which does not depend on the

particular continuousF. Then we call (X∗
i,n,m̃,k,X

∗
j,n,m̃,k) a (1 − ε)100% prediction interval forYr,n∗,m̃∗,k∗ . The

corresponding confidence coefficient for the prediction interval is exact and do not depend on the sampling distribution.

The following lemma give accelerated upper bounds for the purposed prediction intervals.

Lemma 2. Under the preliminaries assumptions, then(−∞,X∗
i,n,m̃,k), 1≤ i ≤ n, is accelerated upper prediction interval for

the futureYr,n∗,m̃∗,k∗ , with the coverage probability is given by

P
(

X∗
i,n,m̃,k > Yr,n∗,m̃∗,k∗

)
=

i

∑
ν=1

ci−1aν(i)
γν

r

∑
λ=1

c∗r−1a∗λ (r)

αγν + γ∗λ

[
F(t)

](1−α)γν
. (9)

Proof. Under the assumption that{Yr,n∗,m̃∗,k∗ ,1≤ r ≤ n∗} are continuous r.v.’s, we can write

P
(

X∗
i,n,m̃,k > Yr,n∗,m̃∗,k∗

)
=

∫ ∞

−∞
P
(

X∗
i,n,m̃,k > y

)
fYr,n∗,m̃∗,k∗

(y)dy. (10)

Upon substituting (6) and fYr,n∗ ,m̃∗,k∗
(y) = dFYr,n∗,m̃∗,k∗

(y), then solving the integration (10) using the transformation

F(y) = y, the proof completed.

The corresponding normal upper prediction interval(−∞,Xi,n,m̃,k), 1≤ i ≤ n, which was discussed separately in [12],
can be expressed by settingα = 1 in (9) as

P
(
Xi,n,m̃,k > Yr,n∗,m̃∗,k∗

)
=

i

∑
ν=1

ci−1aν(i)
γν

r

∑
λ=1

c∗r−1a∗λ (r)

γν + γ∗λ
. (11)

The coverage probability of the eventXi,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ ≤ X∗
j,n,m̃,k, which mean the lower bound was observed in

normal operating conditions and the upper bound is sufferedstress higher than normal, can be set by subtracting (11)
from (9), as

P
(

Xi,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ ≤ X∗
j,n,m̃,k

)
=

r

∑
λ=1

c∗r−1a∗λ (r)

(
j

∑
ν=1

c j−1aν( j)
γν(αγν + γ∗λ )

[
F(t)

](1−α)γν −
i

∑
µ=1

ci−1aµ(i)

γµ(γµ + γ∗λ )

)
. (12)

The following theorem discuss the augmented coverage probabilities when the two bounds are suffered high stress.
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Theorem 1. Under the preliminaries assumptions, then(X∗
i,n,m,k,X

∗
j,n,m̃,k), 1≤ i < j ≤ n, is stressed two sided prediction

interval for the futureYr,n∗,m̃∗,k∗ , with the coverage probability is given by

P
(

X∗
i,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ ≤ X∗

j,n,m̃,k

)
=

j

∑
λ=i+1

c j−1a(i)λ ( j)

γλ

i

∑
µ=1

c∗r−1aµ(i)

γµ − γλ

r

∑
ω=1

a∗ω(r)
[
F(t)

](1−α)γµ
(

1
αγλ + γ∗ω

−
1

αγµ + γ∗ω

)
.

Proof. Under the assumption thatX∗
i,n,m̃,k andX∗

j,n,m̃,k are continuous r.v.’s, we can write

P
(

X∗
i,n,m̃,k ≤ y ≤ X∗

j,n,m̃,k

)
=

∫ ∞

y

∫ y

−∞
fX∗

i, j,n,m̃,k
(u,v)dudv. (13)

Using (8) and the transformationsF(∗) = ∗, equation (13) can take the form

P
(

X∗
i,n,m̃,k ≤ y ≤ X∗

j,n,m̃,k

)
= c j−1

j

∑
λ=i+1

a(i)λ ( j)
i

∑
µ=1

aµ(i)α2 [F(t)
](1−α)γµ Iα

λ ,µ(F(y),F(y)). (14)

WhereIα
λ ,µ(x,y), is given by

Iα
λ ,µ(x,y) =

∫ 1

x
uα(γµ−γλ )−1du

∫ y

0
vαγλ−1dv

=
1

α2

(
1− xα(γµ−γλ )

γµ − γλ

)
yαγλ

γλ
. (15)

Such thatYr,n∗,m̃∗,k∗ is continuous r.v., we can write

P
(

X∗
i,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ ≤ X∗

j,n,m̃,k

)
=

∫ ∞

−∞
P
(

X∗
i,n,m̃,k ≤ y ≤ X∗

j,n,m̃,k

)
fYr,n∗ ,m̃∗,k∗

(y)dy. (16)

By using (14) with (15), F(∗) = ∗ in (16) and simplifying, the proof completed.

4 Outer and inner prediction of gOSs intervals

To describe the outer and inner prediction problem generally, suppose(Yr,Ys)) is an interval of the unobserved Y-sample
and letX be theth random variable from observed X-sequence. We are interested in obtaining at least 100(1− ε)%
prediction intervals for it of the form(Xi,X j). The interval (Xi,X j) called, outer prediction intervals if
p(Xi ≤ Yr ≤ Ys ≤ X j) ≥ 1− ε and inner prediction intervals ifp(Yr ≤ Xi ≤ X j ≤ Ys) ≥ 1− ε. Such that the interested
coverage probabilities that in focuss are exact and free of the parent distribution. This chapter discusses this problem
with the consideration, the two samples aregOSs, independent and X-sample are suffered the tampered failure rate
acceleration model.

Theorem 2. Under the preliminaries assumptions, the coverage probability of the event
X∗

i,n,m,k ≤ Yr,n∗,m∗,k∗ < Yr,n∗,m∗,k∗ ≤ X∗
j,n,m,k, can take the form

P
(

X∗
i,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ < Ys,n∗,m̃∗,k∗ ≤ X∗

j,n,m̃,k

)

=
j

∑
λ=i+1

c j−1a(i)λ ( j)

γλ

i

∑
µ=1

c∗s−1aµ(i)

γµ − γλ

s

∑
ν=r+1

a∗(r)ν (s)
αγλ + γ∗ν

r

∑
ω=1

a∗ω(r)
[
F(t)

](1−α)γµ
(

1
αγλ + γ∗ω

−
1

αγµ + γ∗ω

)
. (17)

Proof. Using (14) with (15), we can write

P
(

X∗
i,n,m̃,k ≤ x < y ≤ X∗

j,n,m̃,k

)
= c j−1

j

∑
λ=i+1

a(i)λ ( j)

γλ

i

∑
µ=1

aµ(i)

γµ − γλ

[
F(t)

](1−α)γµ
(

1−F
α(γµ−γλ )(x)

)
F

αγλ (y). (18)
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By assuming thatYr,n∗,m∗,k∗ andYs,n∗,m∗,k∗ are continuous r.v.’s, we can write

P
(

X∗
i,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ < Ys,n∗,m̃∗,k∗ ≤ X∗

j,n,m̃,k

)
=

∫ ∞

−∞

∫ ∞

x
P
(

X∗
i,n,m̃,k ≤ x < y ≤ X∗

j,n,m̃,k

)
fYr,s,n∗,m̃∗,k∗

(x,y)dydx. (19)

Substituting (18) and fYr,s,n∗,m̃∗,k∗
(y) in (19), then usingF(∗) = ∗, equation (19) take the form

P
(

X∗
i,n,m̃,k ≤ Yr,n∗,m̃∗,k∗ < Ys,n∗,m̃∗,k∗ ≤ X∗

j,n,m̃,k

)

= c j−1

j

∑
λ=i+1

a(i)λ ( j)

γλ

i

∑
µ=1

aµ(i)

γµ − γλ

[
F(t)

](1−α)γµ c∗s−1

s

∑
ν=r+1

a∗(r)ν (s)
r

∑
ω=1

a∗ω(s)
∫ 1

0

(
1− xα(γµ−γλ )

)
xγ∗ω−γ∗ν−1

×

{∫ x

0
yαγλ+γ∗ν−1dy

}
dx. (20)

By solving the integration in (20) and simplifying, the proof completed.

Theorem 3. Under the preliminaries assumptions, the coverage probability of the event
Yr,n∗,m̃∗,k∗ ≤ X∗

i,n,m̃,k < X∗
j,n,m̃,k ≤ Ys,n∗,m̃∗,k∗ , can take the form

P
(

Yr,n∗,m̃∗,k∗ ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ Ys,n∗,m̃∗,k∗

)

= c j−1

j

∑
λ=i+1

a(i)λ ( j)
i

∑
µ=1

aµ(i)c∗s−1

γµ − γλ

s

∑
ν=r+1

a∗(r)ν (s)
r

∑
ω=1

a∗ω(r)
αγµ + γ∗ω

[
F(t)

](1−α)γµ

×

(
1

αγλ

(
1
γ∗ν

−
1

αγλ + γ∗ν

)
−

α
γ∗ν (αγµ + γ∗ν)

)
. (21)

Proof. Under the assumption thatX∗
i,n,m̃,k andX∗

j,n,m̃,k are continuous r.v.’s, we can write

P
(

x ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ y
)
=

∫ y

x

∫ v

x
fX∗

i, j,n,m̃,k
(u,v)dudv. (22)

Substituting (8) in (22) then usingF(∗) = ∗, equation (22) can be written as

P
(

x ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ y
)
= c j−1

j

∑
λ=i+1

a(i)λ ( j)
i

∑
µ=1

aµ(i)α2 [F(t)
](1−α)γµ Jα

λ ,µ(F(x),F(y)). (23)

WhereJα
λ ,µ(x,y), is given by

Jα
λ ,µ(x,y) =

∫ x

y

{∫ x

v
uα(γµ−γλ )−1du

}
vαγλ−1dv

=
1

α2(γµ − γλ )

(
xα(γµ−γλ )

(
xαγλ − yαγλ

γλ

)
−

xαγµ − yαγµ

γµ

)
. (24)

Now, the coverage probability of the eventYr,n∗,m̃∗,k∗ ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ Ys,n∗,m̃∗,k∗ , can be derived from

P
(

Yr,n∗,m̃∗,k∗ ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ Ys,n∗,m̃∗,k∗

)

=
∫ ∞

−∞

∫ ∞

x
P
(

x ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ y
)

fYr,s,n∗,m̃∗,k∗
(x,y)dydx. (25)

Substituting (23) with (24) and fYr,s,n∗,m̃∗,k∗
(y) in (25), then using the transformationF(∗) = ∗, equation (25) can take

the form

P
(

Yr,n∗,m̃∗,k∗ ≤ X∗
i,n,m̃,k < X∗

j,n,m̃,k ≤ Ys,n∗,m̃∗,k∗

)

= c j−1

j

∑
λ=i+1

a(i)λ ( j)
i

∑
µ=1

aµ(i)

γµ − γλ

[
F(t)

](1−α)γµ c∗s−1

s

∑
ν=r+1

a∗(r)ν (s)
r

∑
ω=1

a∗ω(r)J
α
λ ,µ,ν,ω . (26)
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Fig. 1: Plot the relation betweenF(x) andF∗
(x),∀x andt = 0.

WhereJα
λ ,µ,ν,ω , is given by

Jα
λ ,µ,ν,ω =

∫ 1

0

∫ x

0

(
xα(γµ−γλ )

(
xαγλ − yαγλ

γλ

)
−

xαγµ − yαγµ

γµ

)
xγ∗ω−γ∗ν−1yγ∗ν−1dydx

=

(
1

αγλ

(
1
γ∗ν

−
1

αγλ + γ∗ν

)
−

α
γ∗ν (αγµ + γ∗ν)

)∫ 1

0
xαγµ+γ∗ω−1dx. (27)

By using (26) and (27) after completing the integration then simplifying, the proof of Theorem 3. completed.

5 Numerical Results

This paper develops non-parametric prediction intervals for gOSs under normal operating conditions based on some
gOSs observations that subjected in step stressALT due toT FR model. For high reliable products or material under
normal operating conditions in industrial experiments that are tested often requires long periods. It may be resorted to
accelerate the lifetime testing whereas the units are subjected to higher stress levels than normal, which results in a shorter
lifetime. This lifetime can be accelerated by using very high levels of: temperature, load, force, voltage, vibration,etc. on
the lifetime of a product. In this section, to illustrate theinferential procedures developed in the preceding sections, we
calculate some prediction coefficients for some choices ofi, j,r,s,α and by usingF(t) = xn−t

xn−x1
∈ [0,1].

The acceleration factor will typically depend on the natureof the product, the test method,Sl andS2 (0< α < 1 for
slowing down,α = 1 give the normal case andα > 1 for the acceleration) and possibly also ont but it is plausible to
assume that it does not depend onx. Also, becauseS2 is the single accelerated stress, we can leaveα without specifying a
regression structure on the stress variable. Based on equation (2), Figure 1 plots the relation between the normalF(x) and
the tampered failure rate model of the acceleratedF

∗
(x),∀x for different values ofα = 1.3,1.2,1.1,1,0.9,0.5 and 0.1.

Let us consider the failure time data in Table 1, which presented by Xiong [1]. The data in use represents progressive
Type-II right-censoring order statistics sample of size 20, pre-specified number of observed lifetimes 16, low test stress
S1 = 0.5, high test stressS2 = 1.5 and the time of stress-changet = 5. It consider as a special case of a pastX −gOSs (by
settingγi = 20− i+1, for 1< i ≤ 4 andγi = 16− i+1, for 4< i ≤ 16 ).

Table 1:
Stress level Xi:16:20
S1 2.01 3.60 4.12 4.34
S2 5.04 5.94 6.68 7.09 7.17 7.49

7.60 8.23 8.24 8.25 8.69 12.05
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Based on the observedPCOs data that given in Table 1, suppose that, we interest in predicting a future complete
ordinary order sampleoOSs of size 15 as special case of the futureY − gOSs (by settingγ∗r = 15− r+1). For different

values ofα, which discussed in Table 1, theP
(

Xi:16:20≤ Yr:15 ≤ X∗
j:16:20

)
due to equation (12) are presented in Table 2

and P
(

X∗
i:16:20≤ Yr:15 ≤ X∗

j:16:20

)
due to equation (13) are presented in Table 3. The prediction coefficients are

constructed under assumption that F(t) = 12.05−5
12.05−2.01.

Table 2:Values ofP
(

Xi:16:20≤ Yr:15 ≤ X∗
j:16:20

)
for some choices ofi, j;r andα.

r i j (Xi,X∗
j ) P

(
Xi:16:20≤ Yr:15 ≤ X∗

j:16:20

)

α = 1.3 1.2 1.1 1 0.9 0.5 0.1
1 1 7 (2.01,6.68) 0.5688 0.5662 0.5655 0.5645 0.5629 0.5289 0.3760
2 1 8 (2.01,7.09) 0.8090 0.8089 0.8087 0.8082 0.8073 0.7939 0.7360
3 1 9 (2.01,7.17) 0.9037 0.9052 0.9066 0.9078 0.9089 0.9100 0.8971
4 1 9 (2.01,7.17) 0.8458 0.8502 0.8545 0.8587 0.8628 0.8741 0.8673
5 3 10 (4.12,7.49) 0.8062 0.8153 0.8244 0.8334 0.8420 0.8715 0.8865
6 2 10 (3.60,7.49) 0.8009 0.8181 0.8355 0.8530 0.8724 0.9331 0.9690
7 4 10 (4.34,7.49) 0.6436 0.6697 0.6970 0.7251 0.7539 0.8656 0.9345
8 4 10 (4.34,7.49) 0.5198 0.5530 0.5888 0.6270 0.6675 0.8396 0.9577
9 3 9 (4.12,7.17) 0.9170 0.6363 0.3990 0.4917 0.5589 0.5629 0.5629
10 4 11 (4.34,7.60) 0.2605 0.2881 0.3199 0.3566 0.3990 0.6363 0.9172
11 4 13 (4.34,8.24) 0.4968 0.5479 0.6028 0.6608 0.7206 0.9333 0.9987
12 4 15 (4.34,8.69) 0.5224 0.5796 0.6401 0.7024 0.7649 0.9614 0.9999
13 4 15 (4.34,8.69) 0.5224 0.5796 0.6401 0.7024 0.7649 0.9614 0.9999
14 4 15 (4.34,8.69) 0.3169 0.3704 0.4317 0.5009 0.5772 0.8958 0.9999
15 4 15 (4.34,8.69) 0.1216 0.1527 0.1920 0.2417 0.3038 0.7000 0.9991

Table 3:Values ofP
(

X∗
i:16:20≤ Yr:15 ≤ X∗

j:16:20

)
for some choices ofi, j;r andα.

r i j (X∗
i ,X

∗
j ) P

(
X∗

i:16:20≤ Yr:15 ≤ X∗
j:16:20

)

α = 1.3 1.2 1.1 1 0.9 0.5 0.1
1 6 9 (5.94,7.17) 0.0272 0.0118 0.0132 0.0165 0.0219 0.1172 0.3619
2 5 9 (5.04,7.17) 0.0803 0.1045 0.1206 0.1414 0.1699 0.3800 0.6182
3 5 9 (5.04,7.17) 0.2206 0.2391 0.2598 0.2847 0.3148 0.4781 0.6330
4 5 9 (5.04,7.17) 0.3665 0.3849 0.4053 0.4280 0.4528 0.5631 0.6479
5 5 11 (5.04,7.60) 0.5808 0.5950 0.6095 0.6242 0.6389 0.6896 0.7031
6 5 10 (5.04,7.49) 0.6006 0.6196 0.6386 0.6574 0.6756 0.7300 0.7120
7 5 13 (5.04,8.24) 0.8289 0.8387 0.8470 0.8535 0.8578 0.8453 0.7490
8 5 15 (5.04,8.69) 0.9297 0.9326 0.9342 0.9342 0.9324 0.9010 0.7721
9 6 12 (5.94,8.23) 0.6105 0.6449 0.6792 0.7124 0.7434 0.8012 0.5860
10 5 15 (5.04,8.69) 0.9003 0.9196 0.9364 0.9503 0.9609 0.9641 0.8211
11 6 14 (5.94,8.25) 0.6587 0.7048 0.7508 0.7952 0.8364 0.9226 0.6640
12 8 15 (7.09,8.69) 0.6835 0.7275 0.7695 0.8077 0.8396 0.8311 0.2977
13 9 16 (7.17,12.05) 0.7646 0.8018 0.8356 0.8644 0.8860 0.8266 0.1924
14 8 15 (7.09,8.69) 0.3163 0.3694 0.4302 0.4985 0.5735 0.8620 0.4497
15 7 15 (6.68,8.69) 0.1216 0.1526 0.1920 0.2416 0.3036 0.6974 0.7739

6 Conclusions

In many statistics surveys, the observed data often do not fitto known distribution. To improve the inferences about the
population and for reducing moral and material costs of sampling, it may be resorted to predict another sample based on
this observed data, which was drawn from unknown distribution. The prediction of unobserved statistics arises naturally in
several real life situations. In this paper for more modification, some various exact non-parametric prediction intervals for
the future generalized order statistics under normal operating conditions, based on accelerated generalized order statistics
were observed in simple step stress accelerated life testing due to the tampered failure rate model are constructed. As it
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was expected, the coverage probabilities are increasing with: decreasing the lower bounds, or increasing the upper bounds,
or decreasing the accelerated factorα (for high reliability of the stress-change timet due to the upper prediction interval).
The values may be distributed as a skewed bell for differentα for specific reliability oft.

The proposed procedure can be extended to construct the prediction coefficient due to multiple step stress the
tampered failure rate model. The generality of our work enabled us to compare the values the prediction coefficients in
normal operating conditions with the stress cases and choose the best choice corresponding the practical work.

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that
improved this paper.
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