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Abstract: Prediction of generalized order sample can be done with abbounds having suitable confidence. However, given
independent samples from the same absolutely continuatsbdtion, the prediction based on some accelerated Isouad be
achieved. In this regard, this paper deals some varioust exacparametric prediction intervals for the future gatieed order
statistics under normal operating conditions based ossdregeneralized order variables were observed in stegs stceelerated life
test: The tampered failure rate model. The progressive -Tyaght-censoring order sample of failure time data the¢gented by
Xiong [1] are used in numerical computations to illustrate the psepgprocedures.

Keywords: Tampered failure rate model; Step-stress acceleratioggi®ion intervals; Generalized order statistics; Twopke
prediction.

1 Introduction

Our problem here basically are constructed from three aiwatistical procedures: Non-parametric predictionhoef
generalized order statisti¢gOSs) and the accelerated life tg#LT). Firstly, the prediction of future events is one of the
most important problems in statistics. In absence of primviledge, it may be resorted to the non-parametric prexficti
method to avoid many statistical procedures errors, sudelastion of nearest suitable parent distribution, resjoes
and estimation etc.. Non-parametric predictive internasiaithe observed ordered data without any information gheut
sampling distributionF other than being continuous. Such these intervals cornelpg coverage probabilities are
known exactly and do not depend Bn

Next, the concept afOSs had introduced by Kamps2] and then developed by Kamps and Cram8}. The use of such
concept has been steadily growing through the years becawbeconcept includes important well-known models of
ordered random variables that have been treated separagtistical literature.

Moreover,ALT experiments are conducted at stress levels higher thanahasa stress levels. Stress can be applied
in different ways such that constant stress and step stressnstant stresaLT, each unit is subjected to an accelerated
stress level and this level remains unchanged during thimgegeriod, so the test might delay for a long time if the
considered stress is relatively weak. The step stress sidrenmed to reduce the testing time. In this procedure, tlesst
subjected to each test unit is not constant, but is changiagtepwise manner and goes up like stairs.

Under the normal operating conditions, many contexts d@set the non-parametric prediction problem using special
assumptions4]-[ 14]. None of these papers can be useful wherein the observedargisuffered higher stress level than
normal. For this purpose, this paper develops non-paramptediction intervals for futuregOSs under normal
conditions based on some accelerated generalized ordedbdlat observed iIALT. We have to get specific model of
ALT be compatible with the non-parametric prediction methdter&for, the tampered failure rat€FR) model due to
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Bhattacharrya and Soejoetq] is devoted.

TFRmodel is also called, tampered hazard model and propottiazard model. This model consider some products
are undergone a step strédsT . They suffer a stresS; from beginning time to a prescribed tiheThose that survive at
will face a stronger stres$ (> S;) such that, the stress reflected in the hazard rate functetrf.(k) andF (x) be thepd f
and the survival function of the product lifetinxeunder the stresS;. Given the failure rate at the initial stress, the change

in the stress effect is assumed to multiply the failure ratefionh(x) = % by unknown positive factoar to current

failure rate over the remaining life that is related to timeetipointt. The accelerated survival functi®f (x) = F(x | S)
relates withF (x) = F(x | S;) such it depends only on the product distribution and thefast®r under the stress, and
it claims nothing from the product life or it's distributiamder the stresS,.

Let h*(x) denote the failure rate function of the step-stress lifetith. The proposed FR model is

h(x), x<t,
h*(x) = 1)
ah(x), x>t.

From the relatiorF (x) = e~ /6h)% the survival function and the pdf correspondingTts R model are respectively
expressed as

F(x), x<t,
F'(x) = — )
F(t) [%} . x>t
f(x), x<t,

F 00 = ®3)

Fx]l @
a[m} f(x), x>t

The rest of this paper proceeds as follows: In Section 2, sorakéminaries are given. In Section 3, we derive non-
parametric prediction intervals for future singl®Ss samples under normal operating conditions, based on soessst
generalized order data that suffered the tampered faifuecacceleration model. In Section 4, outer and inner ptiedic
intervals for futureggOSsintervals are derived. Section 5, includes numerical caatpns. Finally, conclusions are given
in Section 6.

2 Preliminaries

Suppose thegOSs {X1 nmk < Xznmk < --- < Xnnmk} be observed sample of sizec N having an absolutely
continuous cdf and pdff that developed by Kamps and Cram&] {inder assumptioR # y;,i,j =1,2,...,n—1 and
i # j. The survival function ok; ,, x is expressed as

EXi}n,rTn,|< (X) =cCi_1 Zl a‘;/\(,i)

(1-F())", (4)

wherene N, m= (my,...,my_1) € R,_1 andk > 1, be given constants such thatforatt1<n—1,yy =k+n—i+M; >0,
whereM; = 3"t m; andai(r) = }_y ;4 jopl<r<n
Also, the joint pdf of any twa@OSs, sayX; n mk andXsn mk such that I r < s<n, is expressed as

Lo (FONR L f(u)f(v)
fx o (UV) =¢j 1 a%)(_—) au(i) (Fu)¥ | === (5)
i | L:Zm v OFw) | 220FO Farw
such that < v, a'”)(s) = M5ora ﬁ andai(s) =a%(s). v1<i<n,

Next, assume(Y1 - mr ke, Yonr i ks - - - » Yoo e ke D€ futuregOSs sample of sizen* from the same population

under assumptiog” # yj, i,j = 1,2,...,n" — 1 andi # j. Likewise, each of the coefficients of X-sample will carry an
asterisk with(*) when it refers tor-sample. We aim basically to make inference about this sampl
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Lemma 1. The survival function, the pdf of th&" acceleratedjOS X' mk for x >t and the joint distribution function

of it and jt accelerate@OSsX] Nk andX: for u,v >t due toTFR model in terms of and f, respectively, can
expressed as.

j,n,mk

Fx: () =c1 a"(r)f<1"’)yv(t)f“"”(x), ©6)
Y =
i
) = 0G-1 3 (i HF T OF ™ (), %
j
fﬂfjn,mk(u’v) _ azcj_lA_ziHaA zla“ 1 a)yu t)Fa(VusAFl(u)an\ 7l(v)f(u)f(v). (8)

3 Prediction of individual gOS

This Section interested in obtaining two-sided non-patamerediction intervals for a futurg - ke under normal
conditions based on song®Ss, which was observed under some kind of stress of the ((X;mmk, I'nmk) Where i and
jare integers such thatdi < j <n.

Such that, the purposed coverage probabm@g nmk < Yoneme ke < X mk) = 1— ¢, which does not depend on the
particular continuousF. Then we call (X; nmk,x*

in mk) a (1 - ¢£)100% prediction interval forY n: g . The
corresponding confidence coefficient for the predlctloenml is exact and do not depend on the sampling distribution

The following lemma give accelerated upper bounds for thp@sed prediction intervals.

Lemma 2. Under the preliminaries assumptions, thierw, X 1), 1 <i <n, is accelerated upper prediction interval for
the futureY, o- & k¢, With the coverage probability is given by

* _ e Gaaav(i) &G () = o
P(Xi,n,m,k>Yr,n*,m*,k*) —Vzl v /\zl vy [F(t)] . (9)

Proof. Under the assumption th&¥; - 5 1,1 <1 < n*} are continuous r.v.'s, we can write

P (X:n,m,k > Yr,n*,ﬁf*,k*) = /_ Z P (Xi:kn,rﬁk > y) B, e v e (Y)Y (10)

Upon substituting ) and fy, . ... (y) = dF, . .. .. (¥), then solving the integratiorL() using the transformation
F(y) =y, the proof completed.

The corresponding normal upper prediction intervado, X; , k), 1 < i < n, which was discussed separately 112
can be expressed by settiog=1 in (9) as

ci-1av(i) i ¢y (r) (11)

i
P(Xinmk > Yen mrk ) = '
(Xi,n,mk r,n* ek ) VZ]_ Y Pt ] + V,\k

The coverage probability of the eveXit, mk < Y e e i < XJ ke which mean the lower bound was observed in

normal operating conditions and the upper bound is suffetebs hlgher than normal, can be set by subtractidy (
from (9), as

* r * * J Cj— aV(j) Il (1-a) i Gi-18 (I)
P i n.m an*~ * X ~ = r L F W_ 7“ . 12
(X < Vs < Xme) = 3 €1-180) (Vélyvmyvmﬂ O Ly ) @

The following theorem discuss the augmented coverage pilitiess when the two bounds are suffered high stress.
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Theorem 1. Under the preliminaries assumptions, tr(ean‘m‘k,xj*nmk), 1<i< j<n,isstressed two sided prediction
interval for the futureY, « 5 -, With the coverage probability is given by

Lol (i) & oejau(i) < e 1 1
P . <Y * AR ok <X* P = E J A E r—19H E a* r F t ( a)yﬂ ( o )
(x’n’m’k_ e = J’n’m’k) =S /) =1 =N = o0 [FO) an+VYe aYutVYe

Proof. Under the assumption thxpfnmk ande’nmk are continuous r.v.'s, we can write

(Xlnmk<y<xjnmk // f)gJ -, (U;v)dudv. (13)

Using ) and the transformatiors(*) = *, equation {3) can take the form
<Y< Xnmk) = )| (Fy),F 14
XInmk Y=Xjnmk) = Ci-1 z a)\ Zall /\Jl( v),F(y)). (14)
A=i+1

Wherelf”u(x, y), is given by

! y
I)(\’,[J(va) :/ ua(yﬂ7VA>*1du/ vay)\,ldv

X

1 (1—xa0u=9%)\ yan
_?< Yu— Y )m' (19)

Such thaty; p- g k+ is continuous r.v., we can write

P (Xi:kn,mk < Yr,n*,ﬁ‘r“,k* < Xj*,n,rﬁ,k) = /_’Do P (Xifn,m,k < y < Xj*,n,rﬁ,k) fYan*,r“n*,k* (y)dy- (16)

By using @4) with (15), F(x) = * in (16) and simplifying, the proof completed.

4 Outer and inner prediction of gOSsintervals

To describe the outer and inner prediction problem gengmaipposeY,,Ys)) is an interval of the unobserved Y-sample
and letX be theth random variable from observed X-sequence. We are inteféstebtaining at least 14Q — €)%
prediction intervals for it of the form(X;,X;). The interval (X,X;) called, outer prediction intervals if
P(X <Y <Ys<Xj) > 1—¢ and inner prediction intervals ip (Y < X < Xj <Ys) > 1— €. Such that the interested
coverage probabilities that in focuss are exact and fre@efparent distribution. This chapter discusses this proble
with the consideration, the two samples @&@Ss, independent and X-sample are suffered the tampered daiate
acceleration model.

Theorem 2. Under the preliminaries assumptions, the coverage priityadfithe event
Xinmk < Yo me ke < Yeneme ke < X, can take the form

P (Xi’fmm,k < Yene v je < Yone v je < X, :k)

i ) Dy i i
g ol g s ¢ Z - a>v( LR ) (17)
=R R /) =1 Ye=nmo L r+1‘5”’)\+y\3k MtYe OtV

Proof. Using (L4) with (15), we can write

i Ay i
P(Xnmk SX<Y < Xjnmic) =61 i 20 > ) 1y - (1-F W) F™M ). (8)

YR /S0 /"I /)
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By assuming thaY; n« ny k- @andYs = e i @re continuous r.v.’s, we can write

P (X < Yo arie <Yarie <Xnmi) = [ [P (Knmk SX<Y < Xinme) Mg Y)Y (19)

Substituting 18) and fy (y) in (19), then usind= (x) = *, equation {9) take the form

r,s,n*, m* k*

P (Xffn,mk <Yone e e < Yone e ke < Xj’inmk)
r

j a()(j) Loay() - B s 1

o A U (=)W .« *(r) * @ u=) ) yo—w-1

=cji1 Y F(t) 1y a (S)Ea(s)/ 1—xa0u=9)) x
. A=i+1 |2} =1 Yu—W [ } * 1v:r+1 Y w=1 © 0 ( )

« { / Xyawcldy} dx. (20)
0

By solving the integration in20) and simplifying, the proof completed.

Theorem 3. Under the preliminaries assumptions, the coverage prbtyadifithe event
* *
Ve e ke < Xi,nmk < Xank < Yen v k> Can take the form

P (Yr’n*m,k* < Xk < X nmk < Ys,n*m’k*)

=Cj_1 i ag‘l)(J) IZ Ll(i)cé*l i a";(f)(s)i ag,(r) [E(t)](l—a)yu

A=+ =1 Yu=W vHF & WY+ Yo

X(i(i_ - >_ a ) (21)
an \% an v/ vty

Proof. Under the assumption thxﬁnmk zalndxj-mmk are continuous r.v.'s, we can write

(x<X,nmk<XJnmk<y //f‘ -, (U v)dudv. (22)

Substituting 8) in (22) then usingF (x) = x, equation 22) can be written as

P (X< X < Xk <¥) =it Z &) Zau FO)] " 9L (FO0.F ). (23)
A=i+1

Where\]f‘u(x,y), is given by

X X
I (xy) :/y {/V u“(V“‘y“‘ldu}vavA—ldv

ay; V) aYu _ oY
= 1 (xa(Vu ¥a) (X oy > XMy u) . (24)
az(yu—ya) Ya Yu

Now, the coverage probability of the evefih« m: i < X nmk < X

Inmk < Ysne ke, €aN be derived from

P (Ynn*ﬁ‘f“,k* < Xifnmk < innmk < Ys,n*ﬁ*rﬂk*)
= [ P Xk < X ) e (63 (25)

Substituting 23) with (24) and B, v s (y)
the form o

P(an* e ke S X1 nmk < XJ n,mk <YS,”*-,I7T“-,|<*)

in (25), then using the transformatidn(x) = *, equation 25) can take

i a _ 1 . s . i
o 3 A0 Y 2O F TR S w09 S a0 e (26)
A5 =T 7\ v=rrl =1
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ic
Ca=13
a=1.2
- =11
— =1
—_—— a=0.9
—_——a=0.5
— a=0.1
g L+ il . ) . I I F
L 02 0.4 0.6 ] 1.0
Fig. 1: Plot the relation betwee(x) andF " (x), ¥x andt = 0.
Wherle’“ V.o IS given by
1 rx _ XOIY;\_yO’V/\ anu_yO’Vu A _
1= /o /0 (XO’(Vu 0 < _ ) e )Xm K- 1y%~Tdydx
1
_ (i (1 B ) ___a ) | xemiiax (27)
ay \¥%  am+v/ waw+y)/ o

By using £6) and @7) after completing the integration then simplifying, th@pf of Theorem 3. completed.

5 Numerical Results

This paper develops non-parametric prediction inten@lg®Ss under normal operating conditions based on some
gOSs observations that subjected in step strAs3 due toTFR model. For high reliable products or material under
normal operating conditions in industrial experimentd tn@ tested often requires long periods. It may be resoaed t
accelerate the lifetime testing whereas the units are stdgjéo higher stress levels than normal, which results hroatsr
lifetime. This lifetime can be accelerated by using verynhiyels of: temperature, load, force, voltage, vibratita, on
the lifetime of a product. In this section, to illustrate fhéerential procedures developed in the preceding sestioe
calculate some prediction coefficients for some choiceésjof, s,a and by usind=(t) = Xf]"_‘; €[0,1].

The acceleration factor will typically depend on the natofréhe product, the test methof,andS; (0 < a < 1 for
slowing down,a = 1 give the normal case arad > 1 for the acceleration) and possibly alsotout it is plausible to
assume that it does not dependoilso, becaus&; is the single accelerated stress, we can leawathout specifying a
regression structure on the stress variable. Based onieq@); Figure 1 plots the relation between the norfét) and

the tampered failure rate model of the acceler&e), vx for different values ofr = 1.3,1.2,1.1,1,0.9,0.5 and 01.

Let us consider the failure time data in Table 1, which presgby Xiong [L]. The data in use represents progressive
Type-Il right-censoring order statistics sample of size [@@-specified number of observed lifetimes 16, low testsstr
S = 0.5, high test stresS, = 1.5 and the time of stress-chantge 5. It consider as a special case of a pastgOSs (by
settingyy =20—i+1,forl<i<4andy=16—i+1for4<i<16).

Table 1:

Stress level Xi-16:20

S 2.01 360 412 434

S 5.04 594 668 709 717 749

7.60 823 824 825 869 1205
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Based on the observeRCOs data that given in Table 1, suppose that, we interest in gtiadi a future complete
ordinary order sampleOSs of size 15 as special case of the futifre- gOSs (by settingy;” = 15—r + 1). For different

values ofa, which discussed in Table 1, tme(xi;le;zog Y15 < Xj*:16:20) due to equationl(2) are presented in Table 2
and P ()(i’f16:20§ Y15 < Xj*:le;zo) due to equation 1(3) are presented in Table 3. The prediction coefficients are

constructed under assumption that F(t) = 205

Table 2:Values oP (Xi;le;zog Y15 < Xj*zlﬁzzo) for some choices df j;r anda.

riop 08X P (Xi:16:20§ Y15 < Xj*:16:20)
a=13 12 11 1 09 05 01
1 1 7 (201668 05688 05662 05655 05645 05629 05289 03760
2 1 8 (201,7.09 08090 08089 08087 08082 08073 07939 Q7360
3 1 9 (201717 0.9037 09052 09066 09078 09089 09100 08971
4 1 9 (201,717) 08458 08502 08545 08587 08628 08741 08673
5 3 10 (412749 08062 08153 08244 08334 08420 08715 08865
6 2 10 (3.60,7.49) 0.8009 08181 08355 08530 08724 09331 09690
7 4 10 (434749 06436 06697 06970 Q7251 07539 08656 09345
8 4 10 (434,749 05198 05530 05888 06270 06675 08396 09577
9 3 9 (412717 09170 06363 03990 04917 05589 05629 05629
10 4 11 (4.34,760) 02605 02881 03199 03566 03990 06363 09172
11 4 13 (4.34,824) 04968 05479 06028 06608 07206 09333 09987
12 4 15 (434,869 05224 05796 06401 Q7024 07649 09614 09999
13 4 15 (434,869 05224 05796 06401 Q7024 07649 09614 09999
14 4 15 (434869 03169 03704 04317 05009 05772 08958 09999
15 4 15 (434,869 01216 01527 01920 02417 03038 07000 09991
Table 3:Values oP (XiT16:20§ Y15 < Xjﬁlﬁzzo) for some choices df j;r anda.
roi g O8LX) P (Xf:klezzo < Y5 < Xj*:16:20)
a=13 12 11 1 09 05 01

1 6 9 (594717) 00272 00118 00132 00165 00219 01172 03619
2 5 9 (504717) 00803 01045 01206 01414 01699 03800 06182
3 5 9 (5047170 02206 02391 02598 02847 03148 04781 06330
4 5 9 (504717) 03665 03849 04053 04280 04528 05631 06479
5 5 11 (5047600 05808 05950 06095 06242 06389 06896 07031
6 5 10 (504,749 06006 06196 06386 06574 06756 Q7300 07120
7 5 13 (5.04824) 08289 08387 08470 08535 08578 08453 07490
8 5 15 (504,869 09297 (09326 09342 09342 09324 09010 07721
9 6 12 (594823 06105 06449 06792 07124 07434 08012 05860
10 5 15 (504,8.69) 09003 09196 09364 09503 09609 09641 08211
11 6 14 (594,825 0.6587 07048 07508 07952 08364 09226 06640
12 8 15 (7.09,869) 0.6835 Q7275 07695 08077 08396 08311 02977
13 9 16 (7.17,1205 0.7646 08018 08356 08644 08860 08266 01924
14 8 15 (7.09,869) 03163 03694 04302 04985 05735 08620 04497
15 7 15 (6.68869) 01216 01526 01920 02416 03036 06974 07739

6 Conclusions

In many statistics surveys, the observed data often do rtotiitown distribution. To improve the inferences about the
population and for reducing moral and material costs of deagpit may be resorted to predict another sample based on
this observed data, which was drawn from unknown distrdwutl he prediction of unobserved statistics arises ndyiral
several real life situations. In this paper for more modifara some various exact non-parametric prediction iratksrfor
the future generalized order statistics under normal dgiperaonditions, based on accelerated generalized oraléstats
were observed in simple step stress accelerated life ¢gedtia to the tampered failure rate model are constructedt As i
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was expected, the coverage probabilities are increasithg décreasing the lower bounds, or increasing the upperdmu
or decreasing the accelerated faatoffor high reliability of the stress-change tirhdue to the upper prediction interval).
The values may be distributed as a skewed bell for diffegefutr specific reliability oft.

The proposed procedure can be extended to construct thectmadcoefficient due to multiple step stress the
tampered failure rate model. The generality of our work égthiis to compare the values the prediction coefficients in
normal operating conditions with the stress cases and eltbeshest choice corresponding the practical work.

The authors are grateful to the anonymous referee for awdarkécking of the details and for helpful comments that
improved this paper.
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