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Abstract: In this article, we build an approximate solution to an IseéeeProblem that consist in finding a function whose Caputo
fractional derivative is given. We decompose and projeetdata in appropriate wavelet subspaces and, by a Galefkems; we
calculate the coefficients of the unknown function in thesgrowavelet basis. Based on properties of the operator ahé bhsis, the
scheme is simple, efficient and the errors introduced by ppecximation can be handled and controlled. We illustriageresults with

an example.

Keywords: Fractional calculus, Caputo fractional derivative, wavélansform.

1 Introduction, Motivation and Preliminaries

Fractional calculus is the theory of integrals and denaegtiof arbitrary order. Its theoretical foundations go baxk
the works of mathematicians such as Laplace, Liouville rlespuAbel, Riemann and Heaviside. In particular, opposite
classical differentiation, fractional derivatives do tadte into account local characteristics of the dynamicéloonsiders

the global evolution of the system. 1h,R, 3,4,5, 6] properties and formula for fractional operators are stddin detail. In

the last century a lot of contributions in this field have bdeweloped since fractional operators have been used tdlikesc
dynamics and properties of different materials. Theretexasious applications of this theory in different areashsuc
as diffusion problems, hydraulics, potential theory, contheory, electrochemistry, viscoelasticity and nacht®logy
among others,8,9,10,11,12,13]. Moreover, numerous problems in physics, chemistry argireering are modelled
mathematically by systems of fractional differential eipras [14, 15]. Theoretical results concerning linear and nonlinear
fractional differential equations can be found #6]17,18,19]. Analytical calculus of fractional operators is, in gealer
very difficult and different numerical approximations hdeen proposed. Recently approximate solution to Fradtiona
Differential Equations have also been develof&a0,21,22,23). In [1] useful mathematical results concerning fractional
models are presented. Numerical methods and the apphaativactional calculus for modeling processes can be found
in [24,25,1,3,26,4,27].

Although the use of fractional operators has increasedifgigntly, its mathematical expressions are sometimes
complicate and consequently, finding solutions to equatiovolving these operators can be a difficult task. In thiskwo
we construct an approximate solution to an Inverse Probiemiving the Caputo Fractional Derivative. It consists in
finding a function whose Caputo Fractional Derivative isegivThe Caputo Fractional Derivative introduced by M.
Caputo in 1965 is a fractional integral operator with sigidernel. To calculate de solution we adapt an approximatio
scheme developed 28] for equations associated to integral operators actindgnerrourier Transform. First we express
the equation by means of the Fourier Transform. In that waysthgularity of the kernel can be handled. Afterwards we
project the data into suitable wavelet subspaces. Firallyneans of a Galerkin scheme, we calculate the coefficiénts o
the unknown function in the chosen wavelet basis. The pregosethod is simple. Only the wavelet coefficients of the
data and a matrix derived from some normal equations areededdhe error introduced in the approximation can be
controlled improving the computation of the elements ofitiagrix and considering a more accurate truncated projectio
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of the data into the wavelet subspaces. Properties of this laasl of the operator warranty that the resulting
approximation scheme is efficient and numerically stabteramadditional conditions need to be imposed.

This paper is organized as follows. In the next section wegiethe fractional operator and the Inverse Problem we
are interested in. The wavelet basis and the approximatioernse are introduced in Section 3. In Section 4 a solution to
the Inverse Problem is proposed. A numerical example ipted in Section 5. Finally, we state some conclusions.

2 An Inverse Problem for the Caputo Fractional Derivative

2.1 The fractional derivative

We denote byH((a,b)) the Sobolev spac#&/>?((a,b)) of functionsu : (a,b) — R, such that the derivative’ = D'u
exists in the weak sense and belongkt(a,b)).
The Caputo Fractional Derivative (CFD) of order> 0 of a functionf € H1((a,b)), a < bis defined as

1 t f(7)
) I'(n—a)/a(t—r)“l—“dr n-l1<a<neNl,
DI f(t):= 1)

d"f(t)
dtn

a=neN

wherea € [—oo,t], [1,2].

This fractional operator has interesting properties suchnearity, the possibility of expressing it in terms of the
Riemann-Liouville Derivative, no commutativity and fortador the derivative of the product of functions. For a coeatgl
analysis of the properties of this operator we refei3id].

2.2 The inverse problem

In this work we considea = —c andn = 1. Consequentlyr € (0,1). Higher order derivatives can be treated similarly,
[1,2,29].
The Inverse Problem (IP) we are interested in consist inrigdiiinctionsf with weak derivativef’ € L*(—o,b) N
L?(—o0,b) such that
DIf(t) =g(t) )

whereg € L?(R) is the data an®? f is the CFD of the unknown functioh. Thus, we are looking for an approximate
inverse of the CFD of order of a known functiorg.

In order to findf we apply the approximation scheme proposed in an earliek {28} for solving integral equations
of the type

Af(t):/Rh(t,w)fA(w)ei“’tdwzg(t), teR. 3)

With this aim we rewrite Eq.4Q) using the Fourier Transform (in the distributional sense)
Let k be the casual functiom(t) = t—}, fort > 0 then

Kw)=T1-—a)(iw) (4)

Consequently,

a . 1 t f/(T) . 1 o - ;
D1() = 7y /40 ot 2nr(1—a)/Rf R(w)d* do. )

Note that Eq. %) is an expression of the fractional derivative that invela@ integral operator in terms of the Fourier
Transform of the unknowif, with kernel

1,
h(w) = (i) (6)
that is a radial function, not depending bn
h(t, w) = h(w), h(Aw)=A%(w), A > 0. 7)
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Now Eg. @) is expressed as

/h w)e“ dw = g(t) (8)

and the approximation scheme proposed@ fan be applied. In the following section we describe it tyiéNe refer
to the cited paper for details.

3 The Proposed Solution

3.1 The wavelet basis

We recall that a wavelet is a oscillant function, well lozelil in the time and the frequency domains, $8:31].
For special selection of the mother wavealethe family

{Wi(t) =212 g2t —k); j.ke Z},

is a orthonormal basis of the spaté(R), associated with a hierarchical structure of the spaceMukiresolution
Analysis (MRA). This is a sequence of nested subsp¥gebe scale-subspaces, such that:

1.Vj CVj1

2.5(t) € Vjifand only if s(2t) € Vj 1

3.5(t) € Vo thens(t + 26

4.UjezVj is dense inL“(R) andnjczVj = {0}

5. There exists a functlon called a scaling functjpa Vo, such that the family ¢(t — k),k € Z} is an orthonormal basis
of V.

The wavelet subspad# is the orthogonal complementdf in V4, i. e.,

VR ©)
Vipi=VjeW, jeZ.

The subspace/; = spar{ jx(t),k € Z} contains the detail information needed to go from an appnakion at resolution
j to an approximation at resolutign+- 1. Consequently

=Ppw,.
JeZ
Moreover,
\ = @j<n\Nj
L2(R) =@j>nW;+Vp, foranyne Z.
The MRA is associated to an efficient method to compute theslgacoefficients, the Mallat’s algorithr3(.

The application in mind suggests the selection of the motfaelet. Considering that the operat8) acts on the
Fourier transforms, it seems convenient to implement atjperof the frequency domain in quasi-disjoint scale bands

Ro= J ©Q

j=—0

where the two-side bandg®; = {2/ < |w| < 2/*111} are naturally associated with the wavelet subspeges
We choose a Meyer wavelet, a band-limited functipnhaving smooth Fourier transforgh. In [32] we define the
scale function and the wavelet as:

1 |w| <mT—

~ vp(w) B

o(w) = \/Vf;(w)+v§(2[3 ) n—B<|w <m+p (10)
0 lw| > 1+ B
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with
w—n+E)
exp -k |w— 1+ B| < 2B
Vg(w) = 1_(w—2_’;+5)2 (11)
0 |lw—1+B| > 2B
and _
() =/ 02(0/2) - ¢2(w) (12)

with parameter G 8 < 11/3.
We recall that) € ., the Schwartz Class, and the fam{ljx, k € Z} is an orthonormal basis &P (R) associated to
a MRA, well localized in both, time and frequency domain sigectrum| (2! w)|, is supported on the two-sided band

Q)= {w:2(m- ) < |w| <2 (m+p)} (13)

for some 0< B < 11/3, [32). Figure 1 show the graph ofy and|{i|. See B1] for details about the approximation of
Sovolev, Besov and other functional spaces, using waviel¢te Schwartz Class.

Fig. 1: Mother wavelet for B = r1/4 (above) and || for w > 0 (below)

3.2 The data
We decompose the dagee L?(R) as,g = zj'”;ﬁfnmgj +r where||r||2 < €|g|[2=0,J€Z
gi(t) = > cikik(t) €W,

keZ

andcjk = <g, qJJ-k> are the wavelet coefficients. We denotegpytie truncated projection of the data\,

Gi) = > ckWi®) (14)

kelK;

whereK; C Z, is finite, [Kj| = nj < «, and satisfie§ ;| (9, Wik) |* < &||gj|[* with £ = 0.
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3.3 The approximation scheme

In this subsection we briefly describe the approximatiorestd proposed ir2g] to solve an IP described by an integral
equation of the type3). First we look for the images; of the wavelet basis defined in Subsectbf i.e., APjk = Vik,

vjk(t):/ﬂ h(t, ) P (@) € do. (15)

We consider that for eachmin < j < Jmax, A(Wj) =W,. If this is not the case, we can proceed in a similar way camsid
an appropriate union of wavelet subspaces.
Let
f)=> > b, (16)

JEZKEZ

at each levelmin < j < JmaxWe restrict ourselves t; to obtainﬂ = Ykek, bik Wik (see (4)), and consequently

Aﬂ' (t) = % bjijk(t). (17)
kelK;
We proposé\fj(t) = gj(t), i.e.,
% kaVJk(t) = Z lequlj/kl(t) (18)
kekK; k'eK

i

and calculate the vector of coeﬁiciemq§: {bjk}keKj from the normal equations

by vii, Wim ) = bi (Vi, Yim) = Cim, me K. 19
<|e%j jtvil Lﬂj > I%j j|< il Lpl > ] J ( )

Mib) =}, ke K; (20)

Eq. 19 can be expressed as

where the matriM! € R x R contains the inner products
Min = (Vit, Wim) (21)

andcﬂ( = {Cjk}keKJ is the vector of coeffic.ients of the daga(sge Eq. 14)). Based on the properties of the wavelet basis
and the integral operator, on each leydll! is invertible ando! can be computed.

Finally, for Jmin < j < Jmax e setf} = Fycx, bWk andf = Ef'fjfmn f; is the proposed approximate solution.

Since we work with band limited wavelets, all integrals carchlculated in the frequency domain, that is, in compact
subsets. The scheme is numerically stable and efficient.edoai approximations to compuké! andvj, can be found

in [28].

4 A Solution to the IP for the Caputo Fractional Derivative

In order to apply the approximation scheme propose@@fo calculatef in (2), we consideAf = DY f as in 8) and
follow the steps described above. Note that in this case ¢neek of the integral operator defined in EG) loes not
depend ort.

First we calculate the images of the wavelet basis,

Vi) = DIWylt) = [ h(w)Pi(w)edo, keK;. @2)

In particular, since the kernel defined if) (satisfies 7), we observe that the familyvjk, Jnin < j < Jmax k € Kj}
resembles the wavelet family and dilation and translatforraula can be proved.
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Lemmal. Letut)= / h(w)|@(w)|e'*/2d“t dew, then the family vk, Imin < | < Jmax k€ K|} defined in 22) satisfies
R
the following dilation and translation properties:

Vik(t) = 212Dy (21t k). (23)
Proof. Recall thatiiy (w) = 271/2|(271w)|e "2 '@(1/24) then from @2) we have

(D) =212 [ h(@) B2 )] e 2N
:21<1/2+a)/ h(v)m‘,(v)lefiv(1/2+k)eiv(21't)dv
R

= 2i(1/2+a)y(2it — k).
O

We incorporate these calculations to compute the elemémntsiwix MI. We prove that it is a diagonal dominant matrix
and consequently the vectiot can be easily calculated frora@).

Proposition 1. M! is a diagonal dominant matrix.
Proof. ForA= DY, and taking into accoung@), the elementk/lljm = <vj| , w,—m> results
(i m) =2 [ vt =Dtk @4
R

Forw € Q; we can approximate the kerrteby the following expression

h(w) = a + % ancos(%w)ernsin(%w) + g(w)
n=1

where(an, by) are the coefficients of the expansionhadinde is the error that is small for large. Then

Vik(t) = /Q

We observe that, forx n< N

N .
<ao +3 e cos(%w) + bnsin(%w)> Dj(w) € dow.

i

2cog 5 w)Pi(w) = (e_izﬂ‘.ere.ZﬂJ ) Uik(@) = Pj(kin) (@) + Pjpe—n) (w),
2isin( 5 w) Pk (w) = (—e_l?‘w+e?‘w) Uik(@) = = jern) () + Tjk—n)(@)

then

Finally, we can approximate for&d m<N
<Vijk, Ujm >= 2MYym

and the inner products are nulls in another case.
Consequentiiy! is a diagonal dominant matrix. a

We point out that we do not need to calculgfg only the valuesZ4) are actually needed to complfge

Remarkl. Note thatvk € Kj, supfVjk) C Qj (see (3)). Since, disregarding the overlapy, is nearly a basis of the
set of functions with spectrum i}, the assumptio®{ ;c C W, is justified. Thus, in this case based on the localization
properties of the chosen wavelet basis andijp(w) = 21th(w) Pk (w), we can assume thain < j < Jnax DI (Wj) =W;.

Nevertheless, this assumption can be relaxed consideriiom wf wavelet subspaces, i.87 Yk C (Wj_1 UW; U
VVj+1)-
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Finally, y y
f="5> fi="% > bydd). (25)

Imin< ] <JImax Imin< ] <ImaxkeK

Remark2. Other Fractional Derivatives such as the new Caputo Falfizctional Derivative can also be approximated
using this scheme2[29].

5 Numerical Examples

. . , 1. :
For the integral operatob? as in @) with kernel h(w) = Z_[(lw)“, a = 0.5 we illustrate the accuracy of the

approximation scheme. In Figur@sand3 we show the plot of the functions o andvs o together with the plot of the
waveletyss o andyis o respectively.

N - N IR

Fig. 2. Functionsvsg (above) and 3o (below)

We generate somgy for j =3 andk=0,5,15 (see Figurd). The resemblance with the wavelet basis can be observed.

In Figuresb and6 diagonal dominant matrix are shown.

The whole proposed approximation scheme is implementeleridiiowing example. We choose the datas the
CFD of ordera = 0.5 of the sampled function

f(t) = e **/2(sin(167t) +cos{gm)).

Both plots off andg are displayed in Figuré. Wavelet analysis indicates that the energy of the dasaconcentrated in
the subspaced/_;,Wp, Wz andWj, since levelg = 0,3,4 summarize the 6.9%, 46.1% and 46.3% of it, (see Table
Similarly for f, the energy is concentrated in the subspades Wp andW;, (see Table). In this case, for instance,
A(UT_gWj) C UT_aW,.
Finally, the sum of the reconstruction componep?g_lﬂ + 2?13 ﬂ that is, the approximate solution to the IP, is
displayed in Figur@ along with the projections of the true solutigﬁ?}l fj+ 2?13 fj.
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-0.5 -0.4 -0.3 -0.2 -01 0 0.1 0.2 0.3 0.4 0.5

Fig. 3: Functionsvy g (above) and i o (below)

20 T

20 i i 1 i I
2 -

Fig. 4: Functionsvsg, V35 and vs 15 from right to left respectively
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Fig. 5. Matrix M3 for (above) and itsinver se (below)

Fig. 6: Matrix M* for (above) and itsinverse (below)
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Fig. 7: Functions f (above) and g (below)

Fig.-8 39, fi+59 5f (@bove)vs 39, fj+357 5 f; (below)
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Table 1: Energy distribution of g
| Level] [ Energy [ Frequencies

5 0.0000 [100.5, 201.0]
4 0.4636 [50.2, 100.5 ]
3 0.4613 [25.1,50.2 ]
2 0.0000 [12.5, 25.1]
1 0.0002 [6.28, 12.5]
0 0.0698 [3.14, 6.28]
-1 0.0052 [1.57 3.14]

Table 2: Energy distribution of f
| Level] [ Energy [ Frequencies

5 0.0000 [100.5, 201.0]
4 0.4961 [50.2, 100.5 ]
3 0.0039 [25.1,50.2 ]
2 0.0000 [12.5, 25.1]
1 0.0001 [6.28, 12.5]
0 0.4257 [3.14, 6.28]
-1 0.0740 [1.57 3.14]

6 Conclusion

In this article, we construct an approximate solution toraeise problem that consists in finding a function whose @apu
Fractional Derivative is given. The solution is built by meaf a numerical scheme proposed in an previous work. First
we rewrite the equation considering the Fourier Transfofrthe unknown. Afterwards, for a suitable wavelet basis,
the data is decomposed and projected in wavelet subspadebyaa Galerkin scheme, the coefficients of the unknown
function in the chosen wavelet basis are calculated. Ptiegaf the basis and the fractional integral operator ersabs
to warranty that the scheme is efficient and numericallylstathe errors introduced in the approximation can be hahdle
and controlled. We illustrate the results with an example.

We hope that this scheme can be adapted to solve inverseeprslalssociated to other fractional operators and to
solve fractional differential equations.
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