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Abstract: Starting from the Cattaneo constitutive relation with exguatial kernel applied to mass diffusion the derivation ofesv
form the diffusion equation with a relaxation term expresttgough the Caputo-Fabrizio time-fractional operateriicative) has been
developed. The developed equation reduces to the fratBmtson equation for large relaxation times correspontbrigw fractional
order of the Caputo-Fabrizio derivative. The approach rsges large time effects resulting in the classical Dodsgumagon with
exponentially decaying in time diffusivity and the shonhé relaxation process modeled by Caputo-Fabrizio timeifnaal derivative.
The solution developed allows seeing a new physical backgraf the Caputo-Fabrizio time-fractional operator (detive) and
to demonstrate a new interpretation of the Dodson equaticorporating fading memory effects. Moreover a new modéh o
memories corresponding to large and short time relatietefthas been conceived. Defining the diffusion processnadeas then the
fractional order of the Caputo-Fabrizio time fractionatidative can be determined in a straightforward manner asation of the
Deborah number calculated as a ratio of the relaxation tintlke characteristic diffusion time of the process.

Keywords: Dodson equation, new derivation, two-memory model, Cajatiorizio time-fractional derivative, Deborah number.

1 Introduction

1.1 Dodson Diffusion Equation: Physical Background andgral Derivation

The Dodson diffusion equatiorl) was derived as result of diffusion of species in minera|g][in an analysis of the
cooling history in geochronological systems where theugitin coefficient depends on temperature in accordance with
the Arrhenius equatior?f , namely

IC(x,t) 9°C(x,t)
ot P 5e @
D= Dwxp(—%) . (2)

In general, the solid diffusion process are thermally atéid B,4]. The diffusion coefficient represents the diffusion
process at infinitely high temperatures. R) the absolute temperatureTs, R is the universal gas constant aBds the
activation energy of the diffusion process. In accordand2ddson ] due to the very strong dependence of the diffusion
coefficient, the transitional temperature range can beaggédo be reasonably short. Moreover, Dodson used thehfaict t
over a limited range of temperature the cooling history iodonological systems can be conveniently be approximate
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by a linear increase in timd.]2,3,4,5,6]. The exponential decrease in diffusion coefficient is @ntionally described in
terms of time constant which is the time taken it ) to reduce by a factor &£ Then, following Dodsonq] we have

D= Doexp(—RiTo - ;) =D(0)e T, 3)

whereDg andTy are the values of the diffusion coefficient and the tempeeadtt = 0 . From the definitionJ), which
actually is a definition of, that is
d /E 1 —RT?
( >:_: , (4)

dr \ pT EdT
dt \ RT T ESt

Avoiding the long and cumbersome expressions of the Dodmoalysis [, 2] and related studies[4,5, 6, 7] the diffusion
model (1) was expressed as

= dc(x,t)

S =D0)eT — 7=, (5)
or equivalently
IC(x,t) gt 9%c(xt)
o =D(0)e 0z (6)

1.2 Dodson Diffusion Equation: Original Solution Approach

The original Dodson approach (reffl{f Appendix A) is to solve ) in its dimensionless form

2
9 (C - D(0) e*90— < , (7)
06 \ Gy a2 ox2 \ Cy
with initial concentratiorCy and dimensionless tim@ = t/7, and a length scale of the area where the diffusion takes

place. Dodson used a new varialle- (1— ertl %) whereA depends on the geometry of the system, and denoting
M = 1D(0)/a? transformedT) to

aq 9%
Z2_—M Z 1

96~ ° o ®
with a second change of variablesggs= 1 — e 278 and initial conditionsy = 0 att = 0 . Then, Dodson used a common
approach in solving diffusion equation with a time-deperidmefficient (see the book of Crang][by introducing a
variableu by a integral transform, namely= fé D(z)dz[8], which allowed to reduceg) to

dq d%q U\AT
e st () ®
In this context, for® = 0 we getu = 0, but atd — o, and consequently— M . The solution of 9) was developed
on basis of the result o®] (see page 104, eq.3). We will avoid the repeating of the @amstdime expressions of this
solution, due the practical inconvenience of the result (86) as example) to use in the post-solution analysis as well as,
because this solution is out of the scope of the presentearfor a plane sheet it is, for instance

_ oy qycodi-L/2m ( FAT+1)
4= Zi;( Y i—-1/2)m <1 [(i— 1/2)27T2M])‘T> : (10)

To complete this section, in chapter 7 of the book of Crajkthe fist example (example 7.1, page. 104) is the case
of the Dodson equation, briefly mentioned that the transéasfrvariables used by Dodson leads® (
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1.3 Dodson Diffusion Equation: Integral-Balance Solution

Here the finite penetration depth concéft) is assumed and corresponding to finite flux sp&dThe finite diffusion
speed is the basic concept of the method of Goodr@ril,12,13] which, in fact is a simple mass balance over the
diffusion layer with a deptld (with boundary condition€(9d,t) = dC(d,t)/dx = 0), namely

5 2 5
/ dc oY) 4 _/ o) Y gy, E/ coxtydx= b1 2% bty —Dee B B =1/, (11)
0 ox dt Jo ox
The last version of {1) comes from application of the Leibniz rule. The diffusiayér depthd(t) should be
determined through the solution. Assuming an approximedéle as a function ok/d we may apply the boundary
conditions at the frond [10,11,12,13].
The transformation = 1—e P! leads tadC/dt = (dC/du) (du/dt) (BeP*) which allows expressing in the form

dC(x,t) Do d%C(x,u(t))

du B o (12)
Then the integral-balance equatidi®[11,12,13,14] is
d (o Do aC(0,u(t))
a/0 Clx u(t))dx= —2 = (13)

The approximate profile is assumed as a parabolic@yfe u(t)) = Cs(1—x/0)" [12,13], where the exponent is
unspecified. For the sake simplicity of the present analysisassume the Dirichlet proble@{= 1). Thus, replacement
of C(x,t) by Cy in (13) yields [15]

1 do

_p.n 2_ Do
n+1a_D0 = 0°= —-u[2n(n+1)]. (14)

o B
Now, turning to the original variable, the depth of the dsffon layerd(t) is

5= \/%\/(1 ) [2n(n+ 1)]. (15)

The ratio(Do/B) has a dimension dfr?]. However, the functior{1 — e P!) is dimensionless and it is growing in time
saturating rapidly to 1 when/8' — 0 becomes negligible, i.e— oo. In this moment the diffusion layer depth attains
it maximumé = /Do/ 8 = const, because the diffusion process stops. At this moment, vpetsanalysis of the integer
-order model of Dodson and will focus the attention on amaytieto derive this equation from an alternative point of view
using basic constitutive equations relating the mass flilk@éonemory integral of the concentration gradient. Theltgesu
just commented will allow us to define properly the relaxaijdamping function).

1.4 Some Critical Remarks

The Dodson equation excludes the case when relaxationggalees not exist. Precisely,if= 0(3 — «) , then the
diffusion coefficient should attain its maximum valDg , but in the formDoex(—1/t) = Doex—pBt) for T — 0 we
haveD(t) — 0, so there is no diffusion at the beginning when the conatitere the extremely favorable for the diffusion
process to take place. The problem just raised will be contedefarther in this work when the fractional version of the
Dodson equation will be developed.

1.5 Aim

The present article focuses on a principle problem reggittii@ derivation of the Dodson equatid) étarting from basic
constitutive equation in contrast to the approach usederotiginal work [L], where the exponential function and the
relaxation time to the diffusion coefficient are addetihocto the diffusion equation. The first and the most important
issue in the following analysis is the problem that the mad&odson is truly parabolic equation with infinite unphyaic
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speed of the flux and no relaxation is taken into account.lséke of clarity, do not misunderstand this standpoirtit wit
the fact that original Dodsons equation defines the reldiina . The second problem at issue is to develop a new form
of the Dodson equation in terms of time-fractional deriwadi of Caputo-Fabrizio type, which are more general than the
original one and its development is based on basic congétatjuations; and reducing to the integer order model when
the relaxation of the flux is not taken into account. The stiedylts in two models:

Single-memory model. This is a model with a single relaxation time which can belgaterived from the flux
constitutive equation of Cattane@d]. The model simply demonstrates how the original Dodsona@qn could be
developed starting from a basic flux-gradient relationsinig applying the mass balance law.

Two-memories model. This is a model based on a definition of a new composite rétaxdunction accounting
simultaneouslyong-timeandshort-timerelaxation processes.

The article is organized as follows. Section 2 provides tkeessary mathematical background regarding the
Cattaneo constitutive equation (section 2.1.) and how enbdse its is possible to derive the Caputo-Fabrizio
time-fractional derivative. The basic properties of th@@a-Fabrizio time-fractional derivative are presentedection
2.2. Section 3 presents the derivations of the two models mé&mory which are generalization of the Dodson equation.
Especially section 3.3. demonstrates how the fractiondéroshould be related to the Deborah number. Section 4
summarizes the results, compares them to the diffusiontiequaf Caputo and Fabrizio (se®&4)) and previously
developed models with different constitutive equationsuaibhe flux relaxation.

2 Preliminaries

2.1 The Cattaneo Constitutive Diffusion Equation and thécOmes

Diffusion phenomena of mass, are generally described assegoence of the mass conservation law by the relationship
oc_ 9]
ot ox

The assumption that the mass flj(x,t) is proportional to the concentration gradig(®,t) = —DodC(x,t)/dx in fact is

a definition of the diffusivityDg. Then, applying16) we get the ordinary diffusion equation (the Fick lawyy),

(16)

oc_ o
ot a2’

The principle drawback of the moddl7) is the infinite speed of propagation of the flux which is ungibgl.

A relaxation function related to a finite speed of diffusitieét conduction) in solids was conceived by Cattaid€p [

as a generalization of the Fourier law by a linear superjposif the heat flux and its time derivative related to its drigt
[17,18]. Hence, the flux obeys the constitutive equatid] jnvolving a memory integral.

17)

t
(%) = — / R(x,t)0C(x,t — s)ds (18)
Setting the lower terminal of the memory integral 8 at zero we get a more convenient, from engineering point,vie
expression of the constitutive equation, namely

j(x,t) = _/0t R(x,t)0C(xt — s)ds (19)

If R(x,t) is assumed as the Dirac defia(s) function such thafj dp(s)ds= 1 this immediately leads to the classical
Fick (Fourier) equationi(7) sincethere is no damping effect in the flux propagatilowever, for a homogeneous medium
R(x,t) depends only the time and can be represented by a stretgpedeantial kernel16] where the relaxation time is
finite, i.er = const Then, the mass balanckq] results in the Cattaneo equatiod$]

aC(xt) 0 Do /1 t—s\ dC(x,t)
= "5 <_T/o exp(—T> v ds). (20)

Fort — 0 the limit of the Cattaneo equatio2Q) reduces to the Fick law. If a first order approximation, witspect to
T [19] is developedZ1) we get a first order differential equatio?d)

. __acxt) | . di(xt)
J(X,t—l—T)— DO ac 7J(X7t+T)NJ(X7t)+T ax )

(21)
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1. dj(xt) _ DodC(xt)
rJ(X’t)+ ot T odx (22)
The integration 0fZ2) leads to 20), which can be presented in two equivalent forms
dC(x,t) Do [t t—s\ 9%C(x,9)
o T /Oexp( T > ox? ds (23)
IC(x,t) t 9°C(x,9) 1
o = BDo [ exp—B(t—s) "5 72 ds p = 7. (24)

At this end, we have to stress the attention on the memorgrale in 3)and @4) in order to relate them to
time-fractional derivatives with non-singular kernelsegisely the time-fractional Caputo-Fabrizio (operattejivative
presented next.

2.2 Time-Fractional (Operator) Derivative of Caputo-Faho
Caputo and Fabrizid®?0] suggested a time-fractional (operator) derivative witteaponential kernel defined as

a_ M(a) alt—g)\dft) 1 [ a(t—s)\ df(t)
FDf = 1_o{/oexp<— . ) g ds= 1_O{/Oexp(— - )Tds (25)

With the operatorZ5) if we have constantf(t) = C = const) then as in the classical Caputo derivati2é][we have
ceDf f(t) = 0. In [3] an alternative definition of time-fractional (operatoerivative @5) was suggested, namely

c¥Df = ﬁ/; (F(t) = Tap(9)) exp(—%) dst > 0. (26)

The Laplace transform @fDf f (t) with ag = 0 given with p variable is R0]

_ pLrlf)—f(O)]

LT [CFDtaf(t)] p+a(1_p)

(27)

Both the applications and the properties of the CaputoiEabtime-fractional operator25 are intensively
investigated and for about two years afte@d,22] numerous articles have been published, among them: npaisgss
damped systemg§], fractional electric circuit23,24], the Keller-Segel modelp], groundwater flow 26], mechanics
and heat transfer of non-Newtonian fluid&7], long wave equations2B] pure mathematical studie29,30,31] and
provoking new computational technique82[33], and innovations in creation of fractional derivatives ttwi
Mittag-Leffler kernels 34,35].

In most of the articles published in the last 2 years af#;32], the common approach ist just simple change
(replacement) of the integer-order time-derivative in éxésting models by a time-fractional counterpd28, 25,26, 28,
33. This is a formalistic fractionalization since the appearance of time-fractional derivath®uld come from
constitutive laws related to real physical processes widtaxations In cases of time-fractional derivatives of
Riemann-Liouville or Caputo type the formalistic fractaization is assumed as a rule in purely mathematical agticl
and this approach was seriously criticized BV][ (Chapter 7). Now, turning on the Caputo-Fabrizio timesfianal
derivative, it was demonstrated i8§] that starting from the Cattaneo constitutive equati@f] [and using Jeffrey’s
kernel B9 the Caputo-Fabrizio time-fractional derivative appeaasurally in the transient heat conduction (diffusion)
equation, but this does not affect the integer-order tinméevdiéve. The same approach was used to develop a model with
space-memory in the steady state heat conducdéh [The analysis and the consequent derivation of the difusi
equations in this article are not based on the formalistictionalization approach and begin from constitutive éiqua
related to the flux relaxation.
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3 Towards the Dodson Equation with Non-Singular Memory

3.1 A Model with a Single Memory

Now, we define the Cattaneo equation as a diffusional fluxtiatige equation. For the sake of simplicity, let us comsid
a virgin medium subjected to a mass loac at 0 , that is the following initial and boundary conditions ¢gilace

C(x,0) =C(0,0) = C(o,t) = Cx(x,0) = Cxx(x,0) = 0,C(0,t) = 0. (28)
Now we focus on eq24) and denotéd= (x,t) = 9°C(x,t)/dx? for the sake of simplicity in calculations. Then, from

(28) we haveF (x,0) = 9°C(x,0) /dx* =
Integrating by parts of the diffusion term of e@4f we get (in details)

B/ e PIIF (x 9)ds= e P S>F(xt)r_t+ﬁ/e PEIIF(x 1) —F(x9)]ds (29)

Finally ,
B/Ot e B-9F (x s)ds= (1— e*’“) F(xt) 4—[3/0t e P9 [F(xt) —F(x,9)]ds (30)

It noteworthy that if the lower termlnal of the memory intabjis — o, as in the original Cattaneo concept (seedqthen

the first termin 12) is [e B (x, t)} <o = 0 and the exponential terms &Q) will be lost. Hence, one again, it is more
realistic to use the second form of the Cattaneo constégiyuation presented by e@3] or eq.@4). In terms of the
original variableC(x,t) we may present30) as

B/ Bt-s) d C X S)d s— (1_e—E(t)) M "‘B/Ot g B(t=9) <ﬁZC(x,t) B aZC(x,S)> ds (32)

ox2 ox? ox?

The second term in the right-hand side ®f)matches the definition of the Caputo-Fabrizio fractioreahdhtive presented
by eq.e6). As it was demonstrated ir38] that this term can be considered agra-Caputo(non-normalized) derivative

denoted a@thﬁ with a lower terminal at 0. In terms @(x,t) we may express two equivalent formsF@Dtﬁ , following

[20] , namely
9°C(x,t) o P9 9°C(x,t)  9%C(x,9)
pcDy’ ( X2 ) B/ ( e o ) ds (32)
9°C(x,t) pe-s d [ 9%°C(x,9)
pcDf’ ( Ox2 ) B/ dt( Ox2 )ds (33)

Since the rate constafite (0, ) controls the exponential kernel, tha@Dt can be arranged in the form defined 2p)
with a fractional orderr . From this concept it follows that far € [0,1] = 1/ € [0, »]. Consequently, the following
relationships are valid?0,22]

1 1l-a ol o — 1 a B
R B v v/ R By iy (34)
From the definitionZ5) [20,22] we get
« (9%C(c)\  N(o) 9%C(x,t)\ , M(a) [t pesd [9°C(x,9)
derDx ( X2 )‘ o pth< 0x2 )_B(l—a)/oe a( X2 )ds (35)

or equivalently

« (9%C(ct)\  N(o) %C(x)\  a M(a) [t -pa-9d [9°C(x,9)
CFDI( 0x? >_ o PCDt( 0x? >_1—a(1—a)/oe a( %2 >ds (39)

with ((1—a)/a)N(o) = M(a)/(1 —a) and 0 = 1/B; N(o) and M(a) are normalizing functions2p,22].

Consequently, we get
9°C(c,t) M(a) [t pes d [d°C(x,)
a bl . - ]
crDy ( X2 )‘ (1—a)/oe dt( X2 )ds (37)
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By help of the definition26) (see the normalizing functiom/(1— a)? ), consideringM(a) = 1 as in fL,2] and mainly
using the results3(l) and 36) we may write the diffusion term o) in the form

t _ dC(X S) _ dZC(X t) 1 t a4 o d dZC(X S)
Bt—s) T2 4o _e Bt - T\ —o)—— —at=9) 2 [ T =\
B/O e ENa ds Do (1 e ) ( e + Do(l a) 1 /t el i e ds (38)

Finally, the new form of equatior2@) is

IC(x,t) g\ 9°C(xt) o [(9°C(x,t)
= _Do(l—e )T-I—Do(l—a)CFDt 2 ) (39)

Fort = 0 when practically no relaxation exists ~ 0= 3 — o) we getDo(1 — e Pt) ~ Do and the diffusion coefficient
has a maximal valuBg . Further,Do(1— e A!) can be re-arranged @ye P! (l;%m). However, if Bt << 1 we may
approximate the exponential term as a seriesft + ((Bt)?/2) + O((Bt)3). Using only the first two terms we have
e Pt ~ 1— Bt and consequently the terév:f—gft) approximates agt/(1+ pBt) =~ O(1) . Hence, with the assumption
Bt=t/1 << 1we get

dC(x,t) 5 0°C(x,1) 9°C(x,t)
ot ~ Dge Bt - +Do(1—0o)ck Dta 2 ) (40)

The first term in the right-hand side &f@ matches the diffusion term of the Dodson equation.dFer 1, formally we get
the Dodson equatior®). However, this statement should be regarded in view ofdbtthat wher8 — « we havea — 1
andt — 0 . Therefore, from the results developed to this point thd€do equation is an approximation corresponding
to situations wheiBt =t/ << 1 anda — 1 . Decreasing i, that physically means increasing in the damping effect
to the mass flux propagation, the weight of the last tern38) increases, but the approximation which allowed to obtain
(40) is not valid yet.

3.2 A Model with Two Memories

3.2.1 Conjecture

Here we conceive a diffusional flux equatipn= fé Ra(t, To, Ts) ‘705’;’5) dswith a composite memory kernel presented by

the following constitutive relationship

Ra(t) = e Polt=9 (1 _ e—Es<t—S)) — g Polt=9) _ g~ (BotBs)(t=9) (41)

Ra(t) is a product of darge-time exponential kernet- €5 and ashort-time fading functior(l — e*Bs(t*S>).

The constitutive equatioM() suggests thaty >> 15 and consequently we hay® << fs. Thus 3y corresponds
to large-time relaxation processes, whilgaccounts the short time relaxation mechanism. Moreovergctnstitutive
relation 8 = By + Bs means that the large-time and short-time relaxations ositnultaneously and overlap. Hence,
B=1/1=1/10+1/1sand therefore = 1975/ (70 + Ts). When the time-scale of the diffusion process is order ofmitade
of 15, taking into account thats << 1o, the approximation iim;_,;,T = s andf ~ f3s, that isf3 = o + s ~ s when
only short-time relaxation has to be accounted for. Altéwedy, when the time-scale of the process is comparabfg to

thenlim;_,7,T = 7o and 3 = fBo. In other words, for short times the ter@— e‘Bs(“5>) dominates since Po(t-5) has

little effect due to the fact thgly << fBs. For large times we havgl — e*Bs(t*S>) — 1 and onlye Po(t=9) remains as a
memory function.

3.2.2 Approximation of the Memory Integral

Now, following the conjecture, the approximation of the neeynintegral with the composite damping function is

t t t
(50+Bs)/ (e—ﬁo(t—s) _ e—(Bo+Es)(t—S)) F(x,s)ds~ 30/ e—Bo(t—s)F(X7 s)ds— Bs/ e‘BS(t—S)F(x, s)ds (42)
0 0 0
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whereF (x,t) = d°C(x,t)/dx?

Therefore, we have two distinguished memory integralstheuy we will repeat the technique of integration by parts
in the right-hand side of4Q) as it was done to the single-memory model, but now, to eaahangintegral separately.
Now, recall that from the conjectuf® >> 3o and consequently the factor of the first term in the rightehside of 41)
can be approximated asPot ~ e Pt — e Pt pecause Pot >> e P, After these final adjustments and approximations
the new time-fractional equation with two memories, angkig the huge expressions (that could be easily performed
by the readers) we get

oC

E - DO [P(Xatva) _Q(Xatva)] . (43)
Where the diffusion term in4@3) has two components

g\ 92C(x,t) 9°C(x,t)
P(x,t,a) = (l—e B‘) 7 +(1—aoceD® {T} (44)

_ar\ 9°C(x,t) . [9%C(x.t)

Hence, the complete form o) is
0C(x,t) _ —Bot ag 02C(Xat) — Bt Qs 02C(X7t)

= =Do [(1-& ™) +(1- ao)ce D }W—Do{(l—e ) +(1-ag)eD; }T' (46)

For Bt << B¢t and certainly, whergt << 1 the first term in 46) reduces tdoe Pt as it was demonstrated with
(40).

When the short time relaxation (damping effect) is neglictieat is whemas = 1, we get the model with a single
memory. Besides, when the relaxations in the mass flux arergiynneglected, that is whemy = as = 1 , we obtain
the classical integer-order Dodson equati@®nwith fading diffusion coefficient. This does not contradire fact that the
termePot remains and this point will be especially discussed whenahees of the fractional orders have to be specified.

The negative sign of the short-time memory term simply mélaaisshort-time relations effects, if they exist, accetera
the total diffusion process. To be exact, let see the coctitruof the two-memory relaxation kernel and its logicagor.
The short time relaxation is modeled by the diminishing fiorc

(t-9)

1-e & =1-¢e B, (47)

In fact, this is the fading time-dependent function of thegteation deptid(t) (see eq.15) and the related comments).
The function ¢7) appears in the non-linear transform= ;e Ptdt = (1 e P') /B used by Dodson]] (see also the
book of Crank 8]). It rapidly grows from zero to unity foft ~ 10 (see Fig. 1).

The expanded expressionR{(t) can be approximated as (see éd)(

Ra(t) = e Polt=9) _ g~ (BotBs)(t=9)  g=Polt=5) _ gBsll=9) (48)

Hence, we have a counter-current action of the relaxationdtg, which means that the short-time kernel reduces the
damping effect of the effect of large-time kernel, thus ém@ing the diffusion process; the same as it was commented
about eq.41).

3.3 Fractional Order: How to Define It?

The definition of the fractional ordew if of primary importance since the models developed sho@dftactically
implemented or at least to be used in numerical simulatibiesice, the reasonable question is: How to calculate the
fractional ordera if the process parameter such@g and the length scale are known? We will start the answer with
the single-memory model as an instructive example.

The definition of the stretched exponengal[—f3(t — s)] shows directly that the dimensions@fs [1/s] . However,
while the fractional order is dimensionless, the rate const@io) = a/(1— a) has a dimensions di/s|, or more
precisely the ratiql — o)/a has a dimension of time. Now, the question is how this conéiaild be avoided? To
overcome the problem we define a time scale that can be definie bnitial conditions of the diffusion process. With
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Fig. 1: Short time relaxation kernel 1—e Bt as a function of the rate constant3 and the timet .

Do and the length scale (we use the same notation as Dods}) pf the area where the diffusion takes place the
characteristic diffusion time i) = a?/Dg and consequently the timecan be scaled ds=t/tp = Dot /a?. In fact the
dimensionless timg/tp is the Fourier numbefo = Dot /a? defined through the initial diffusivit{do. Now we turn on the
stretched exponential which can be rescaled as

expi— ot 9] = exp| - | —expl - (2 ) -5, (49)

Hence, from the definition of the fractional ordmy we have

[o(s) [15) 1
=—=—=Ptp=0a0=

== = 50
1—ag To oDe ( )

1+tp/T0’

or equivalently

B 1 B 1 1 -

n 1+ (ToDo/aZ) o 1+ (Do/Ban) n 1+9De
The ratioto/tp = ToDo/a® =o Deis the Deborah number for the macroscopic (large-timeyisiéin relaxation process

defined by analogy with the non-Fickian diffusion in comp$gstems 41,42] . Hence, with known values &, 1y, and

o 1 (51)
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Do we will be able to defingDe, and then to calculateg . When relaxation does not exist, that is fgr= 0 we have
oDe=0andag=1.

Similarly, for the short-time relaxation function with kwa 175 = 1/3s we may calculate the short-time Deborah
numbersDe= 7s/tp and consequentlgs = 1/(1+sDe).

The plots in Fig.2 demonstrate the functional relationghig a(De). It is obvious that the lovely value a@f = 0.5,
commonly used in numerical simulations, correspond®de- 1, that is when the relaxation time equals the characteristi
diffusional time of the systems, i.e. when= a%/Dy. The relationships50) and 61) are quite informative from physical
point of view and may be constructive in interpretationdaf phenomena behind the model. In addition, similar apfroac
relating the process parameters to the fractional ordease of steady-state heat diffusion (with a spatial memory of
Caputo-Fabrizio type) was developed 44].

Further, we may present the short-time memory kernel asaifumof the fractional ordesr and the Fourier number.
This new presentation indicates that for— 1 and short times, i.e. low Fourier nNUMb&§short times = 1 — e Pslt=s) —

1—el-a/(-a)Fo rapidly grows to 1 (see Fig.3a). The decrease in the value lihders the increase &ysnort times at
very short times. With increase o the damping effect oft is stronger forr < 0.5 (see Fig.3b and Fig.3c).

1.0
0.9
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06 |

2.0
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04 |
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03 |

0.2 }

08 hetmopem o e o e

2 3 4 5 6 7 8 9 10
Deborah humber, De (-)

=]
1
e e

Fig. 2: Functional relationship a = a(De) defining the fraction order as a function of the Deborah numbe.

3.4 Complete Fractional Expressions of the Dodson Equatidim Memory

At this point we focus the attention on the single time-reigxterm of integer order, that is the decaying diffusion
coefficientDoe Pt . Following the technology applied to the exponential memarnel we may present the diffusion
coefficient as (taking into account the relationship@)

t
Doexp(—fot) = Doexp| —Poto | — | | = Doexp| — o Fo|. (52)
[15) 1-ap
From the relations 1 ( 1
D 0o To — 0o
Poto oDe 19 1— ao’ [15) [0(s) ’ (53)

it follows directly that if no relaxation exists, that is fog = 0 we getag = 1 and consequentl) = Dg. However,
considers this comment with caution when interpret the jgsybehind the model because it affects the diffusion
coefficient of the original Dodsons equation, especiallyewtit is expressed through the fractional orderas it s
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Fig. 3: Short time relaxation kernel 1—exp(— 125 Fo) as a function of the fractional order a and the Fourier number Fo

demonstrated next. Now, we may express two extended Dodpaatiens 89) and @6) in complete fractional forms,

namely
Single-memory Model
dC(x,t) % o\ (9%C(x.t) 9°C(x,t)
ot (1_e i ) ( @) TDoll—0)erD® (=5 ). (&4)
Two-memory Model
OC(x.t _ % p 0%C(x,t _as .1 9%C(x.t
ét ) =Do Kl—e o O) +(1- UO)CFDtaO] % —Do [(1—e 1—0!5':0) + (1— as)ce DY } % (55)

When memory effects do not exist, i.e. fog = as = 1 both models reduce to an ordinary diffusion equation with a
diffusion coefficientDg

dC(x,t) 9°C(x,t)
- 56

ot 0o (56)
If the assumptioiiot << 1 is applicable, then the reduction of the single-memory@h(®D) to (40) is a valid operation.
This simply means that farg — 1, as well as foos — 1 we get

dC(x,t) 9%C(x,t)
ot ox2 ®7)

%D()eiﬁot
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The reference sourceg, R, 3,4,5,6,7] for systems where the Dodson equation was conceived as almaaal that
the order of magnitude ddg is 1(Tzomz/s Moreover Dodson commented thtae relaxation timer can be million of
years(Sic!) [1]. This makes3 = 1/1 extremely small value allowing the approximatifigt << 1 to be accepted as a
reasonable step. Now, usingZ we may expressh(/) as

9C(xt) 92C(x.t) % Fo
o ~Dyg <75X2 ,Dg =Dge T °. (58)
Regarding equatiorb{), if we forget for a while about the idea to use memory intégtanay be considered as a
version of the integer-order Dodson equatithk{ut now controlled by a single parametek [0,1] = 8 € [0, ], which
can be defined in a way demonstrated above. The variatiddg (Do = ex r(—%Fo) with o andFo are shown in Fig.4.

Do (o, Fo) (-)
Do (o, Fo) (-)

a)

Fig. 4: Dimensionless exponential diffusion coefficient ddodson as a function of the fractional ordera and the Fourier number
Fo.

4 Comments of the Results and Some Ideas Beyond

4.1 What Really We Derived Starting from the Constitutivediign of Cattaneo? A Comparative
Analysis.

Now, we have to stress the attention on the single-kernebhprésented in two equivalent form24§ and 64). Actually,
we derived in straightforward manner the complete diffastguation (Fourier or Fick) presented through the Caputo-
Fabrizio time-fractional operator (derivative). Howevtrere are three alternative forms of the diffusion equmatio
terms of the Caputo-Fabrizio operator which at®ngly dependent on the kernel in the initially assumemstitutive
equationsWe will comment them in order to demonstrate how the diffieiritial approaches are resulting in different
forms of expressions as well as to project the results ofstidy on the area of existing ones in the literature.

In the second article of Caputo and FabriZ@][ just a year ago, the associate fractional integral to grevdtive £5)
was defined as (section 7 &f]])

ol 9 f(t) = %/Ot f(s)exp(—lea(t —s)) ds a €[0,1]. (59)
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It is noteworthy that the fractional factor ( the temporaieraonstant depending am) in the exponential kernel
(1—a)/a is reciprocal to the factor used in the kernel of the denneadi/ (1 — a) (25). Fora = 0 this definition provides
directly the functionf (t) as well as it follows that

d, 4 1 l-a 4
GO0 = 2t - == (17 (1) (60)
Caputo and Fabrizio suggested the following constitutiygagion for the flux (in terms used her@P]
. JdC(x,t) 1 [toC(x,s) l1-a
_ a gny N Yl A9 Y
i(t) = —Do <0| £(t) [ o D Doa/o > Texp(—="(t-9) ) ds (61)
Applying the rule 60) to the constitutive equatio®{) we get (eq.(33) in22])
d. . DodC(xt) 1-a
al(t)——FT—Tf(t)- (62)

Equation 62) coincides with the Cattaneo-Maxwell equati@3)

a d. o Do
ma](t)——l(t)—l_a- (63)
ac(xt)

This equation reduces (far = 0) to the Fourier (Fick) lawj(t) = —Do=5> .

Recall, that if the constitutive equation is defined 23 (or (24) ) the same result can be derived tor= 1, which is
in agreement with the definition of the fractional derivat{25). In accordance with the definitio2%) for a = 1 there is
no time delay, i.e. by definiton=0=f — 0= a — 1.

Now, applying the mass balance equatih)(ve obtain an alternative form of the diffusion equati@g][ namely

l/t Mexp(—l?Ta(t—s)) ds} . (64)

dC(x,t) b dZC(x,t)+1—a
alo o0x

ot % o a

For a = 1 we get the diffusion equation without delay.

The specific feature o) is thatthe last term is expressed through the associate fractioriegral (61)) instead
the Caputo-Fabrizio time-fractional derivatiyas it is in the developed here diffusion model. It easy takhkat in 4)
the fractional ordeu is related to the Deborah number by the relatidi) {n a manner demonstrated in section 3.3.

It is quite clear that, despite the task to derive the difingquation in terms @fgDf , the final form of the equation
is strongly dependent on the constitutive equation regatie flux and the gradient. In this context, exploring theaidé
heat waves39], when the relaxation kernel is of Jeffrey tyRer = kidp(s) + (ko/T)expy(—st/) , wheredp is Dirac delta
function [19,39] (the case of transient heat conduction was at issue, so@sepe the original notations) the constitutive
relation about the flux is

axt) = _klaT(X,t) ke /‘t o-5°) dT(X,t)dS (65)

Jx T Jx

In (65) k; andk, arethe effective thermal conductivit;dthe elastic thermal conductivityespectively. In this case
the Fourier law 16) leads to the Jeffrey type integro-differential equatiog] [

aT(xt) _ 0°T(xt)  a [t (J—Ts)ﬁT(X,t)
T o +7Lme Ox ds (66)

Herea; = ki /pCp anday = ka/ pCp, arethe effective thermal diffusivigndthe elastic thermal diffusivityespectively;
p is the density while&C, is the heat capacity of the medium.

This equation can be expressed in termggdd{ by the relationt = (1— a)/a and the analysis performed i8]
resulted in

T(xt) _ 92T(xt) 2°T (x,t)
o AT tTRl-a—Fa—

Hence, the models expressed in termggd?, i.e. (39) and equally §4) and 67), are equivalent tod4) where the
relaxation of the flux is represented by the fractional irebg @ .

t>0. (67)
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Actually, this work demonstrated the derivation of an altdive form of the diffusion equation in terms of Caputo-
Fabrizio time-fractional derivative. For very big relaxat timest (that is whern3 << 1 correspondingtar — 0 ) reduces
to the fractional version (se89) and fora = 1 to the original integer-order version of the Dodson eque).

At the end of this point, the formulated two-memory model istep beyond the outcome of the task focusing the
derivation of the Dodson equation from basic constituteationship about the flux relation. This model constitiges
two-kernel composite memory function physically based o dssumption that local disturbances causing short-time
transients affect the gross relaxation process. This mmdieices simply to the single-kernel memory model when the
short-time memory is neglected and further to the originadi€bn equation expressed through a fractionalized daffusi
coefficient.

4.2 The Task is Completed and What are the Main Outcomes?

Therefore, we derived fractional diffusion equation wipenentially decaying in time diffusivity in terms of the @#o-
Fabrizio time-fractional derivatives straightforwardifarting from the constitutive equation of Cattaneo. Meszpwe
demonstrated that the original equation of Dodson is aqadati case of the single-memory fractional model.

The developed functional relationship= o (De) allows calculating the fractional ordes,fact that is essentially
missing in the existing publications involving time-fiaokl Caputo-Fabrizio derivativesas well as in the models
discussed in preceding section. Moreover, the expresdidneooriginal model of Dodson, with diffusion coefficient
expressed through the fractional orderand the Fourier number (see &) is a step ahead in modeling with this
equation, which demonstrates a little progress since e ¢if it invention.

The formulated two-memory model is a step beyond the outamintiee task focusing the derivation of the Dodson
equation from basic constitutive relationship about th& flelaxation. This model constitutes a two-kernel comgosit
memory function physically based on the assumption thailldisturbances causing short-time transients affect the
gross relaxation process. This model reduces simply toitiggeskernel memory model when the short-time memory is
neglected and further to the original Dodson equation esga@ through a fractionalized diffusion coefficient. To the
point where the extended versions of the Dodson equatiortiaedractional equation with Caputo-Fabrizio derivatv
was derived the task of this article is completed. Soluteittser analytical or numerical as well as tests to real palsi
situations draw new projects and related ideas beyond theatoof this article.

4.3 The Formalistic Fractionalization of the Dodson Eqoatand what is the Outcome

Finally we have to stress the attention that if we replaceatly the time-dependent derivative it) Py cgD we getvia
a formalistic fractionalizatiorthe following equation

gt 9°C(x,t)
ax2
However, in this case we have no real physically based resasoexpres{3 through the fractional ordem sincea

constitutive relation about the flux relaxation is missikde may suggest only, without a proof, as a conjecture, 8&t (
may be derived mechanistically if the mass balance equiiexpressed as

CF DtaC(X,t) =Doe" (68)

a dj
crDIC(x 1) = ———. (69)
This is a fractional replica ofi) if the diffusion coefficient is constituteald hocasDge P . However, in this case
, as in the classical Fick (Fourier) equation, the fjlushould be related to the gradient with a memory integral wliee
kernel is the Dirac delta function, which physically coulicis the use of the relaxation tinteas a process parameter;
because immediately we get a model with unrelated relaxg@wameters, i.ex andt. However, the analysis of e§4)
and the principle differences with respect to the model, (58) and 69) are beyond the scope of the present work.

5 Conclusion

The present article demonstrated a new derivation of theg@rtorder Dodsons equation starting from the Cattaneo
constitutive relation with exponential kernel. This apgeb resulted in a fractional order diffusion equation with
exponential diffusivity expressed through the fractiom@era and the Fourier number. This models simply reduces to
the original Dodson equation.
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A principle result developed in this work is the developmeina straightforward relation of the fractional order and
the Deborah number calculated as a ratio of the relaxatioa td the characteristic diffusion time of the process.

A new model with two memories corresponding to large andtdiroe relation effects was conceived. It reduces to
the single-memory model when the short-time relaxatioasiaglected.

Therefore the initial task to derive the Dodson equation imew way resulted in generalized fractional diffusion
models. We hope this will be a good contribution to the areamthey could be implemented as well as challenging tasks
for the modelers interested in applications of the Caputbrizio time-fractional derivative.
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