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1 Introduction

LetB1,B2 stand for Banach space and letΩ stand for an open subset ofB1. We considerU (z,ρ) := {u∈ B1 : ‖u− z‖< ρ}
and letU (z,ρ) denoting the closure ofU (z,ρ).

Many phenomena in several interdisciplinary areas can be expressed as

F (x) = 0 (1.1)

using Mathematical Modeling [1]-[15], such thatF : Ω → B2 denotes a continuous operator. We recall that the solutionx∗

of (1.1) is sought in closed form, but only in particular cases it is attainable. Thus, it explains why most solution methods
for such type of equations are usually iterative. We recall that there is a plethora of iterative methods for solving (1.1).
These methods can be classified in two classes.

Explicit Methods [5,6,10,13,14]: Newton’s method

xn+1 = xn−F ′ (xn)
−1F (xn) . (1.2)

Secant method:
xn+1 = xn− [xn−1,xn;F ]−1F (xn) , (1.3)

where[·, ·;F ] is a divided difference of order one onΩ ×Ω [6,13,14].
Newton-like method:

xn+1 = xn−E−1
n F (xn) , (1.4)

whereEn = E (F) (xn) andE : Ω → L (B1,B2) the space of bounded linear operators fromB1 into B2. In [6], [10], [13],
[14] and the references there in the reader can see other explicit methods.

Implicit Methods [5,8,10,14]:
F (xn)+An(xn+1− xn) = 0 (1.5)

xn+1 = xn−A−1
n F (xn) , (1.6)
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whereAn = A(xn+1,xn) = A(F) (xn+1,xn) andA : Ω ×Ω → L (B1,B2) .
We recall that there exists plenty on local as well as semi-local convergence results for explicit methods [1]-[7],

[9]-[14]. On the other hand, a little attention was devoted for the research on the convergence of implicit methods. The
researchers, usually investigate the fixed point problem

Pz(x) = x, (1.7)

where
Pz(x) = x+F (z)+A(x,z) (x− z) (1.8)

or
Pz(x) = z−A(x,z)−1F (z) (1.9)

for methods (1.5) and (1.6), wherez∈ Ω is provided. IfP denotes a contraction operator mapping a closed set into itself,
then due to the contraction mapping principle [10], [13], [14], Pz admits a fixed pointx∗z which can be obtained utilizing
the method of successive substitutions or Picard’s method [14] defined for each fixedn by

yk+1,n = Pxn

(
yk,n
)
, y0,n = xn, xn+1 = lim

k→+∞
yk,n. (1.10)

Below we discuss the analogous explicit methods

F (xn)+A(xn,xn)(xn+1− xn) = 0 (1.11)

xn+1 = xn−A(xn,xn)
−1F (xn) (1.12)

F (xn)+A(xn,xn−1) (xn+1− xn) = 0 (1.13)

and
xn+1 = xn−A(xn,xn−1)

−1F (xn) . (1.14)

In our manuscript in Section 2, we investigate the semi-local convergence of the method (1.5) and (1.6), respectively.
Section 3 deals with the semi-local convergence of the methods (1.11), (1.12), (1.13) and (1.14), respectively. Several
applications to Abstract Fractional Calculus are presented in Section 4 on a certain Banach space valued function such
that all the integrals are of Bochner-type [7].

2 Semi-Local Convergence for Implicit Methods

The following semi-local convergence analysis of method (1.6) is centered on the conditions(H):
(h1) F : Ω ⊂ B1 → B2 is continuous andA(F)(x,y) ∈ L (B1,B2) for each(x,y) ∈ Ω ×Ω .

(h2) There existl > 0 andΩ0 ⊂ B1 such thatA(F)(x,y)−1 ∈ L (B2,B1) for each(x,y) ∈ Ω0×Ω0 and
∥∥∥A(F) (x,y)−1

∥∥∥≤ l−1.

SetΩ1 = Ω ∩Ω0.
(h3) There exist real numbersα1,α2,α3 satisfying

0≤ α2 ≤ α1 and 0≤ α3 < 1

in such a way that for eachx,y∈ Ω1

‖F (x)−F (y)−A(F)(x,y) (x− y)‖ ≤

l
(α1

2
‖x− y‖+α2‖y− x0‖+α3

)
‖x− y‖ .

(h4) For eachx∈ Ω0 there existsy∈ Ω0 fulfilling

y= x−A(y,x)−1F (x) .
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(h5) Forx0 ∈ Ω0 andx1 ∈ Ω0 satisfying(h4) there existsη ≥ 0 fulfilling
∥∥∥A(F)(x1,x0)

−1F (x0)
∥∥∥≤ η .

(h6) h := α1η ≤ 1
2 (1−α3)

2 .
and
(h7) U (x0, t∗)⊂ Ω0, where

t∗ =

{
1−α3−

√
(1−α3)

2−2h
α1

, α1 6= 0
1

1−α3
η , α1 = 0.

Thus, utilizing both the previous notation and conditions(H) we prove below the semi-local convergence result (1.6).

Theorem 1.Assume that the conditions(H) are fulfilled. Then, sequence{xn} generated by method (1.6) starting at
x0 ∈ Ω is well defined in U(x0, t∗), remains in U(x0, t∗) for each n= 0,1,2, ... and converges to a solution x∗ ∈U (x0, t∗)
of equation F(x) = 0. Moreover, provided that (h3) holds with A(F)(z,y) replacing A(F)(x,y) for each z∈ Ω1 , if α1 6= 0,
the equation F(x) = 0 possess a unique solution x∗ in Ũ, such that

Ũ =

{
U (x0, t∗)∩Ω0, if h = 1

2 (1−α3)
2

U (x0, t∗∗)∩Ω0, if h < 1
2 (1−α3)

2

and, ifα1 = 0, the solution x∗ is unique inU
(

x0,
η

1−α3

)
, where t∗∗ = 1−α3+

√
(1−α3)

2−2h
α1

.

Proof.Caseα1 6= 0. Letg be scalar function onR by g(t) = α1
2 t2− (1−α3) t +η and majorizing sequence{tn} by

t0 = 0, tk = tk−1+g(tk−1) for eachk= 1,2, ... . (2.1)

From(h6) we conclude thatg admits two positive rootst∗ andt∗∗, t∗ ≤ t∗∗, andtk ≤ tk+1. As a result, the sequence{tk}
converges tot∗.

(a) Utilizing the mathematical induction onk, it can be proved that

‖xk+1− xk‖ ≤ tk+1− tk. (2.2)

Therefore, (2.2) holds fork= 0 by(h5) and (2.1), due to thee fact that‖x1− x0‖ ≤ η = t1− t0. Assume that for 1≤ m≤ k

‖xm− xm−1‖ ≤ tm− tm−1. (2.3)

Then, we get‖xk− x0‖ ≤ tk− t0 = tk ≤ t∗ andA(xk,xk−1) is invertible by(h2). We can write by method (1.6)

xk+1− xk =−A−1
k (F (xk)−F (xk−1)−Ak−1(xk− xk−1)) . (2.4)

From (2.3), (h2), (h3), (h4), (2.1) and (2.4), we get in turn that

‖xk+1− xk‖=
∥∥A−1

k F (xk)
∥∥=

∥∥A−1
k (F (xk)−F (xk−1)−Ak−1(xk− xk−1))

∥∥

≤
∥∥A−1

k

∥∥‖F (xk)−F (xk−1)−Ak−1(xk− xk−1)‖ ≤

l−1l
(α1

2
‖xk− xk−1‖+α2‖xk−1− x0‖+α3

)
‖xk− xk−1‖ ≤ (2.5)

α1

2
(tk− tk−1)

2+α2 (tk− tk−1)tk−1+α3(tk− tk−1) =

α1

2
(tk− tk−1)

2+α2 (tk− tk−1) tk−1+α3 (tk− tk−1)− (tk− tk−1)+g(tk−1) =

g(tk)− (α1−α2)(tk− tk−1) tk−1 ≤

g(tk) = tk+1− tk, (2.6)

which finish the induction for (2.2).
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Thus, we have for anyk
‖xk+1− xk‖ ≤ tk+1− tk (2.7)

and
‖xk− x0‖ ≤ tk ≤ t∗. (2.8)

From both (2.7) and (2.8) we conclude that{xk} denotes a complete sequence in a Banach spaceB1 and as such it
converges to somex∗ ∈U (x0, t∗) (due to the fact thatU (x0, t∗) denotes a closed set). By consideringk → +∞, utilizing
(h1) and(h2), we getl−1 lim

k→+∞
‖F (xk)‖= 0, thusF (x∗) = 0.

Let x∗∗ ∈ Ũ fulfilling F (x∗∗) = 0. The next step is to prove by induction that

‖x∗∗− xk‖ ≤ t∗− tk for eachk= 0,1,2, ... . (2.9)

We conclude that the estimate (2.9) is valid fork= 0 according to the definition ofx∗∗ andŨ . Assume that‖x∗∗− xk‖≤
t∗− tk. Thus, as in (2.5), we conclude that

‖x∗∗− xk+1‖=
∥∥x∗∗− xk+A−1

k F (xk)−A−1
k F (x∗∗)

∥∥=
∥∥A−1

k (Ak (x
∗∗− xk)+F (xk)−F (x∗∗))

∥∥≤
∥∥A−1

k

∥∥‖F (x∗∗)−F (xk)−Ak (x
∗∗− xk)‖ ≤

(α1

2
‖x∗∗− xk‖+α2‖xk− x0‖+α3

)
‖x∗∗− xk‖ ≤

(α1

2
(t∗− tk)+α2tk+α3

)
(t∗− tk) =

α1

2
(t∗)2+

α1

2
(tk)

2−α1tkt
∗+α2 (t

∗− tk)tk+α3 (t
∗− tk) =

−η +(1−α3)t
∗+

α1

2
t2
k −α1tkt

∗+α2tkt
∗−α2t

2
k +α3t

∗−α3tk

= t∗− tk+1, (2.10)

which completes the induction for (2.9). Thus, lim
k→+∞

xk = x∗∗. But we showed that lim
k→+∞

xk = x∗, sox∗∗ = x∗.

Caseα1 = 0. Then, we have by(h3) thatα2 = 0 and estimate (2.5) gives

‖xk+1− xk‖ ≤ α3‖xk− xk−1‖ ≤ ...≤ αk
3 ‖x1− x0‖ ≤ αk

3η (2.11)

and
‖xk+1− x0‖ ≤ ‖xk+1− xk‖+ ‖xk− xk−1‖+ ...+ ‖x1− x0‖

≤ 1−αk+1
3

1−α3
η <

η
1−α3

. (2.12)

Then, it follows from (2.11) and (2.12) that

‖xk+i − xk‖ ≤
1−α i

3

1−α3
αk

3η , (2.13)

so sequence{xk} is complete andx∗ is a solution ofF (x) = 0. Next, the uniqueness part emerges from (2.10) for α1 =
α2 = 0, since

‖x∗∗− xk+1‖ ≤ α3‖x∗∗− xk‖ ≤ αk+1
3 ‖x∗∗− x0‖ ≤ αk+1

3
η

1−α3
, (2.14)

which implies that lim
k→+∞

xk = x∗∗.
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Remark.(1) Condition(h2) can be incorporated in(h3) as
(h′3) There exist real numbersα1,α2,α3 satisfying 0≤ α2 ≤ α1 and 0≤ α3 < 1 such that for eachx,y∈ Ω

∥∥∥A(x,y)−1 [F (x)−F (y)−A(x,y)(x− y)]
∥∥∥≤

(
(α1/2)‖x− y‖+α2‖y− x0‖+α3

)
‖x− y‖ .

As a result,(h′3) will replace(h2) and(h3) in Theorem1 for α1 = α1, α2 = α2, α3 = α3 andΩ0 = Ω . Moreover,
notice thatα1 ≤ α1, α2 ≤ α1 andα3 ≤ α3, which has a role in the sufficient convergence criterion(h6), error bounds and
the precision oft∗ andt∗∗. The condition(h3) is of Mysowksii-type [10].

(2) Suppose that there existl0 > 0, α4 > 0 andL ∈ L (B1,B2) with L−1 ∈ L (B2,B1) such that
∥∥L−1

∥∥≤ l−1
0

‖A(F)(x,y)−L‖ ≤ α4 for eachx,y∈ Ω

and
α5 := l−1

0 α4 < 1.

As a result, due to the Banach lemma on invertible operators we have [6], [8], [10], [13], [14] and
∥∥L−1

∥∥‖A(F)(x,y)−L‖ ≤ l−1
0 α4 = α5 < 1

thatA(F)(x,y)−1 ∈ L (B2,B1). Setl−1 =
l−1
0

1−α5
, then the condition(h2) is implied, therefore it can be dropped from the

conditions(H).
(3) Definitely, (1.5) converges under the conditions(H), due to the fact that (1.6) implies (1.5).
(4) LetR> 0 and defineR0 = sup{t ∈ [0,R) : U (x0,R0)⊆ D}. SetΩ0 =U (x0,R0). Condition(h3) can be extended,

if the additional terma2‖x− x0‖ is inserted inside the parenthesis at the right hand side forsomea2 ≥ 0. Then, the
conclusions of Theorem1 are valid in this more general setting, ifa3 = a2R0+α3 replacesα3 in conditions(h6) and(h7).

(5) Regarding the solvability of equations (1.6) (or (1.5)), we wanted to leave condition(h4) as uncluttered as possible
in conditions(H).

Below, we prove the solvability of method (1.5) utilizing a stronger version of the contraction mapping principle and
based on the conditions(C) :

(c1) = (h1) .
(c2) There existγ0 ∈ [0,1), γ1 ∈ [0,+∞), γ2 ∈ [0,1), x0 ∈ Ω such that for eachx,y,z∈ Ω

‖I +A(x,z)−A(y,z)‖ ≤ γ0,

‖A(x,z)−A(y,z)‖ ≤ γ1||x− y||

‖F (z)+A(x0,z) (x0− z)‖ ≤
{

γ2‖x0− z‖ for x0 6= z
‖F (x0)‖ for x0 = z

(c3)
γ0+ γ1‖x0‖+ γ2 ≤ 1 for γ2 6= 0,

γ0+ γ1‖x0‖< 1 for γ2 = 0,

‖F (x0)‖ ≤
(1− (γ0+ γ1‖x0‖))2

γ1
for γ1 6= 0,

γ0 < 1 for γ1 = 0

and
(c4) U (x0, r)⊆ Ω , where

‖F (x0)‖
1− (γ0+ γ1‖x0‖)

≤ r <
1− (γ0+ γ1‖x0‖)

γ1
for γ1 6= 0,

‖F (x0)‖
1− γ0

≤ r for γ1 = 0,

r <
1− (γ0+ γ1‖x0‖)

γ1
for z= x0, γ1 6= 0.
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Theorem 2.Assume that the conditions(C) are satisfied. Then, for each n= 0,1,2, ... equation (1.5) is unique solvable.
Moreover, if A−1

n ∈ L (B2,B1), then equation (1.6) is also uniquely solvable for each n= 0,1,2, ...

Proof.The proof is based on the contraction mapping principle. Letx,y∈U (x0, r). Then, using (1.8) we have in turn by
(c2) that

‖Pz(x)−Pz(y)‖= ‖(I +A(x,z)−A(y,z)) (x− y)− (A(x,z)−A(y,z))z‖
≤ ‖I +A(x,z)−A(y,z)‖‖x− y‖+ ‖A(x,z)−A(y,z)‖‖z‖

≤ γ0‖x− y‖+ γ1(‖z− x0‖+ ‖x0‖)‖x− y‖

≤ ϕ (‖x− x0‖)‖x− y‖ , (2.15)

where

ϕ (t) =

{
γ0+ γ1(t + ‖x0‖) for z 6= x0
γ0+ γ1‖x0‖ for z= x0.

(2.16)

Wee observe thatϕ (t) ∈ [0,1) for t ∈ [0, r] by the choice ofr in (c4). In addition we have

‖Pz(x)− x0‖ ≤ ‖Pz(x)−Pz(x0)‖+ ‖Pz(x0)− x0‖ . (2.17)

If z= x0 in (2.17), then we get by(c3) ,(c4) and (2.15) that
∥∥Px0 (x)− x0

∥∥≤ ϕ (‖x− x0‖)‖x− x0‖+ ‖F (x0)‖

≤ (γ0+ γ1‖x0‖) r + ‖F (x0)‖ ≤ r. (2.18)

The existence ofx1 ∈ U (x0, r) solving (1.5) for n= 0 is now obtained by the contraction mapping principle, (2.15) and
(2.18).

In addition, ifz 6= x0, the last condition in(c3), (c3) ,(c4) and (2.17) give instead of (2.18) that

‖Pz(x)− x0‖ ≤ ϕ (‖x− x0‖)‖x− x0‖+ γ2‖x− x0‖

≤ (γ0+ γ1‖x0‖+ γ2) r ≤ r. (2.19)

From (2.15), (2.19) and the contraction mapping principle, we prove the uniquesolvability of (1.5) and the existence
of a unique sequence{xn} for eachn = 0,1,2, ... We conclude that, the equation (1.6) is also uniquely solvable by the
preceding proof and the conditionA−1

n ∈ L (B2,B1).

Remark.(a) The gamma conditions can be weakened, ifγi are replaced by functionsγi (t), i = 0,1,2,3. Then,γi will appear
asγi (‖x− x0‖) andγi (r) in the conditions(C) .

(b) Section 2 has an interest independent of Section 4. However, the results especially of Theorem1 can apply in
Abstract Fractional Calculus as suggested in Section 4. As an example crucial condition(h3) is satisfied in (4.8), if we
chooseα2 = α3 = 0 andlα1 =

c
2, wherec is defined in (4.8). Similar choices can be given for the rest of the special cases

of (h3) appearing in Section 4.

3 Semi-Local Convergence for Explicit Methods

Theorem1 is general enough so it can be utilized to investigate the semi-local convergence of methods (1.11), (1.12),
(1.13) and (1.14), respectively. In particular, for the investigation of (1.12) (and consequently of (1.11)), we utilized the
conditions(H ′) :

(h′1) F : Ω ⊂ B1 → B2 is continuous andA(F)(x,x) ∈ L (B1,B2) for eachx∈ Ω .

(h′2) There existl > 0 andΩ0 ⊂ B1 such thatA(F)(x,x)−1 ∈ L (B2,B1) and

∥∥∥A(F) (x,x)−1
∥∥∥≤ l−1.

SetΩ1 = Ω ∩Ω0.

c© 2018 NSP
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(h′3) There exist real numbersγ1,α2,γ3 satisfying

0≤ α2 ≤ γ1 and 0≤ γ3

such that for eachx,y∈ Ω1

‖F (x)−F (y)−A(F)(y,y)(x− y)‖ ≤

l
( γ1

2
‖x− y‖+α2‖y− x0‖+ γ3

)
‖x− y‖ .

(h′4) For eachx,y∈ Ω1 and someγ4 ≥ 0, γ5 ≥ 0

‖A(x,y)−A(y,y)‖ ≤ lγ4

or
‖A(x,y)−A(y,y)‖ ≤ lγ5‖x− y‖ .

Setα1 = γ1+ γ5 andα3 = γ3+ γ4, if the second inequation holds orα1 = γ1 andα3 = γ3+ γ4, if the first inequation holds.
Further, suppose 0≤ α3 < 1.

(h′5) There existx0 ∈ Ω0 andη ≥ 0 such thatA(F)(x0,x0)
−1 ∈ L (B2,B1) and

∥∥∥A(F)(x0,x0)
−1F (x0)

∥∥∥≤ η .

(h′6) = (h6)
and
(h′7) = (h7).
Then, we can present the following semi-local convergence of method (1.12) utilizing the conditions(H ′) and the

preceding notation.

Proposition 1.Assume that the conditions(H ′) are fulfilled. Then, sequence{xn} generated by method (1.12) starting at
x0 ∈ Ω is well defined in U(x0, t∗), remains in U(x0, t∗) for each n= 0,1,2, ... and converges to a solution x∗ ∈U (x0, t∗)
of equation F(x) = 0. Moreover, ifα1 6= 0, the equation F(x) = 0 posses a unique solution x∗ in Ũ, where

Ũ =

{
U (x0, t∗)∩Ω0, if h = 1

2 (1−α3)
2

U (x0, t∗∗)∩Ω0, if h < 1
2 (1−α3)

2

and, ifα1 = 0, the solution x∗ is unique inU
(

x0,
η

1−α3

)
, where t∗ and t∗∗ are given in Theorem1.

Proof.Use in the proof of Theorem1 instead of estimate (2.5) the analogous estimate

‖F (xk)‖= ‖F (xk)−F (xk−1)−A(xk−1,xk−1) (xk− xk−1)‖=

‖[F (xk)−F (xk−1)−A(xk,xk−1)(xk− xk−1)]+

(A(xk,xk−1)−A(xk−1,xk−1))(xk− xk−1)‖

≤ l
( γ1

2
‖xk− xk−1‖+α2‖xk−1− x0‖+ γ3

)
‖xk− xk−1‖+

‖A(xk,xk−1)−A(xk−1,xk−1)‖‖xk− xk−1‖ ≤

l
(α1

2
(tk− tk−1)

2+α2(tk− tk−1)tk−1+α3 (tk− tk−1)
)
,

where we used again that‖xk− xk−1‖ ≤ tk− tk−1, ‖xk−1− x0‖ ≤ tk−1 and the condition(h′4) .

Remark.Comments similar to Remark2 (1)-(3) can be reported but for method (1.11) and method (1.12) instead of method
(1.5) and method (1.6), respectively.
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Similarly, for (1.13) and (1.14), we use the conditions(H ′′) :
(h′′1) = (h1)
(h′′2) = (h2)
(h′′3) There exist real numbersα1,α2,γ3 fulfilling

0≤ α2 ≤ α1 and 0≤ γ3

such that for eachx,y∈ Ω1

‖F (x)−F (y)−A(F)(x,y) (x− y)‖ ≤

l
(α1

2
‖x− y‖+α2‖y− x0‖+ γ3

)
‖x− y‖ .

(h′′4) For eachx,y,z∈ Ω1 and someγ3 ≥ 0

‖A(z,y)−A(y,x)‖ ≤ lδ3.

Setα3 = γ3+ δ3 and further suppose 0≤ α3 < 1.
(h′′5) There existx−1 ∈ Ω , x0 ∈ Ω andη ≥ 0 such thatA(F)(x0,x−1)

−1 ∈ L (B2,B1) and

∥∥∥A(F)(x0,x−1)
−1F (x0)

∥∥∥≤ η .

(h′′6) = (h6)
and
(h′′7) = (h7).
As a result, we show the following semi-local convergence ofmethod (1.14) taking into account the conditions(H ′′)

and the previous notation.

Proposition 2.Assume that the conditions(H ′′) are satisfied. Then, sequence{xn} generated by method (1.14) starting at
x0 ∈ Ω is well defined in U(x0, t∗), remains in U(x0, t∗) for each n= 0,1,2, ... and converges to a solution x∗ ∈U (x0, t∗)
of equation F(x) = 0. Moreover, ifα1 6= 0, the equation F(x) = 0 possess a unique solution x∗ in Ũ, where

Ũ =

{
U (x0, t∗∗)∩Ω0, if h = 1

2 (1−α3)
2

U (x0, t∗∗)∩Ω0, if h < 1
2 (1−α3)

2

and, ifα1 = 0, the solution x∗ is unique inU
(

x0,
η

1−α3

)
, where t∗ and t∗∗ are given in Theorem1.

Proof.As in Proposition1, utilize in the proof of Theorem1 instead of estimate (2.5) the analogous estimate

‖F (xk)‖=

‖F (xk)−F (xk−1)−A(xk,xk−1)(xk− xk−1)

+(A(xk,xk−1)−A(xk−1,xk−2))(xk− xk−1)‖ ≤

‖F (xk)−F (xk−1)−A(xk,xk−1)(xk− xk−1)‖+

‖A(xk,xk−1)−A(xk−1,xk−2)‖‖xk− xk−1‖

≤ l
(α1

2
‖xk− xk−1‖+α2‖xk−1− x0‖+ γ3

)
‖xk− xk−1‖+ lδ3‖xk− xk−1‖

≤ l
(α1

2
(tk− tk−1)

2+α2 (tk− tk−1)tk−1+α3(tk− tk−1)
)
,

where we used again that‖xk− xk−1‖ ≤ tk− tk−1, ‖xk−1− x0‖ ≤ tk−1 and(h′′4) .

Remark.Similar results to Remark2 (1)-(3) can be obtained but for methods (1.13) and (1.14) instead of methods (1.5)
and(1.6), respectively.
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4 Applications to X-valued Fractional Calculus

In this section we deal with Banach space(X,‖·‖) valued functionsg of real domain[0,a], a> 0. All integrals here are of
Bochner-type, see [7,12]. Once more, the derivatives ofg are defined similarly to numerical ones, see [15], pp. 83-86 and
p. 93.

Below we apply our Newton like numerical methods toX-valued fractional calculus.
Our aim is to solve

g(x) = 0. (4.1)

I) Let 1< ν < 2, i.e.⌈ν⌉= 2 (⌈·⌉ ceiling of number);x,y∈ [0,a], a> 0, andg∈C2 ([0,a] ,X).
The leftX-valued Caputo fractional derivatives (see [4]) is writtenas

(
Dν
∗yg
)
(x) :=

1
Γ (2−ν)

∫ x

y
(x− t)1−ν g′′ (t)dt, (4.2)

whenx≥ y, and

(Dν
∗xg)(y) :=

1
Γ (2−ν)

∫ y

x
(y− t)1−ν g′′ (t)dt, (4.3)

wheny≥ x, whereΓ is the gamma function.
We define also the X-valued fractional linear operator

(A0 (g)) (x,y) :=





g′ (y)+
(
Dν
∗yg
)
(x) · (x−y)ν−1

Γ (ν+1) , x> y,

g′ (x)+ (Dν
∗xg)(y) · (y−x)ν−1

Γ (ν+1) , y> x,
0, x= y.

(4.4)

By X-valued left fractional Caputo Taylor’s formula (see [4]) we get that

g(x)−g(y) = g′ (y)(x− y)+
1

Γ (ν)

∫ x

y
(x− t)ν−1Dν

∗yg(t)dt, for x> y, (4.5)

and

g(y)−g(x) = g′ (x)(y− x)+
1

Γ (ν)

∫ y

x
(y− t)ν−1Dν

∗xg(t)dt, for x< y, (4.6)

equivalently, it holds

g(x)−g(y) = g′ (x)(x− y)− 1
Γ (ν)

∫ y

x
(y− t)ν−1Dν

∗xg(t)dt, for x< y. (4.7)

Our aim is to show that

‖g(x)−g(y)− (A0 (g))(x,y) · (x− y)‖ ≤ c · (x− y)2

2
, (4.8)

for anyx,y∈ [0,a], 0< c< 1.
Whenx= y, (4.8) becomes trivial.
We supposex 6= y. The following cases can be distinguish:
1) x> y : We report that

‖g(x)−g(y)− (A0 (g))(x,y) · (x− y)‖= (4.9)
∥∥∥∥g′ (y)(x− y)+

1
Γ (ν)

∫ x

y
(x− t)ν−1(Dν

∗yg
)
(t)dt−

(
g′ (y)+

(
Dν
∗yg
)
(x) · (x− y)ν−1

Γ (ν +1)

)
(x− y)

∥∥∥∥∥=

∥∥∥∥
1

Γ (ν)

∫ x

y
(x− t)ν−1(Dν

∗yg
)
(t)dt−

(
Dν
∗yg
)
(x)

(x− y)ν

Γ (ν +1)

∥∥∥∥= (4.10)

∥∥∥∥
1

Γ (ν)

∫ x

y
(x− t)ν−1(Dν

∗yg
)
(t)dt− 1

Γ (ν)

∫ x

y
(x− t)ν−1(Dν

∗yg
)
(x)dt

∥∥∥∥= (4.11)
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(by [1], p. 426, Theorem 11.43)

1
Γ (ν)

∥∥∥∥
∫ x

y
(x− t)ν−1((Dν

∗yg
)
(t)−

(
Dν
∗yg
)
(x)
)

dt

∥∥∥∥≤

(by [7])
1

Γ (ν)

∫ x

y
(x− t)ν−1∥∥(Dν

∗yg
)
(t)−

(
Dν
∗yg
)
(x)
∥∥dt =: (ξ ) , (4.12)

(assume that ∥∥(Dν
∗yg
)
(t)−

(
Dν
∗yg
)
(x)
∥∥≤ λ1 |t − x|2−ν , (4.13)

for anyt,x,y∈ [0,a] : x≥ t ≥ y, whereλ1 < Γ (ν), i.e.ρ1 := λ1
Γ (ν) < 1).

Therefore

(ξ )≤ λ1

Γ (ν)

∫ x

y
(x− t)ν−1 (x− t)2−ν dt (4.14)

=
λ1

Γ (ν)

∫ x

y
(x− t)dt =

λ1

Γ (ν)
(x− y)2

2
= ρ1

(x− y)2

2
. (4.15)

We have proved that

‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖ ≤ ρ1
(x− y)2

2
, (4.16)

where 0< ρ1 < 1, andx> y.
2) x< y : We report that

‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖= (4.17)
∥∥∥∥g′ (x)(x− y)− 1

Γ (ν)

∫ y

x
(y− t)ν−1Dν

∗xg(t)dt−
(

g′ (x)+ (Dν
∗xg)(y) ·

(y− x)ν−1

Γ (ν +1)

)
(x− y)

∥∥∥∥∥=

∥∥∥∥−
1

Γ (ν)

∫ y

x
(y− t)ν−1Dν

∗xg(t)dt+(Dν
∗xg)(y)

(y− x)ν

Γ (ν +1)

∥∥∥∥= (4.18)

∥∥∥∥
1

Γ (ν)

∫ y

x
(y− t)ν−1Dν

∗xg(t)dt− (Dν
∗xg)(y)

(y− x)ν

Γ (ν +1)

∥∥∥∥= (4.19)

1
Γ (ν)

∥∥∥∥
∫ y

x
(y− t)ν−1Dν

∗xg(t)dt− 1
Γ (ν)

∫ y

x
(y− t)ν−1 (Dν

∗xg)(y)dt

∥∥∥∥=

1
Γ (ν)

∥∥∥∥
∫ y

x
(y− t)ν−1 (Dν

∗xg(t)−Dν
∗xg(y))dt

∥∥∥∥≤ (4.20)

1
Γ (ν)

∫ y

x
(y− t)ν−1‖Dν

∗xg(t)−Dν
∗xg(y)‖dt

(by assumption,
‖Dν

∗xg(t)−Dν
∗xg(y)‖ ≤ λ2 |t − y|2−ν , (4.21)

for anyt,y,x∈ [0,a] : y≥ t ≥ x).

≤ 1
Γ (ν)

∫ y

x
(y− t)ν−1 λ2 |t − y|2−ν dt

=
λ2

Γ (ν)

∫ y

x
(y− t)ν−1 (y− t)2−ν dt (4.22)

=
λ2

Γ (ν)

∫ y

x
(y− t)dt =

λ2

Γ (ν)
(x− y)2

2
.
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Assuming alsoρ2 := λ2
Γ (ν) < 1 (i.e.λ2 < Γ (ν)), we found that

‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖ ≤ ρ2
(x− y)2

2
, for x< y. (4.23)

Conclusion: Choosingλ := max(λ1,λ2) andρ := λ
Γ (ν) < 1, we show that

‖g(x)−g(y)− (A0(g)) (x,y) · (x− y)‖ ≤ ρ
(x− y)2

2
, for anyx,y∈ [0,a] . (4.24)

This represents a condition utilized to solve numericallyg(x) = 0.
II) Let n−1< ν < n, n∈ N−{1}, i.e.⌈ν⌉= n; x,y∈ [0,a], a> 0, andg∈Cn ([0,a] ,X).
We define the followingX-valued right Caputo fractional derivatives (see [3]),

Dν
x−g(y) =

(−1)n

Γ (n−ν)

∫ x

y
(z− y)n−ν−1g(n) (z)dz, for y≤ x, (4.25)

and

Dν
y−g(x) =

(−1)n

Γ (n−ν)

∫ y

x
(z− x)n−ν−1g(n) (z)dz, for x≤ y. (4.26)

By X-valued right Caputo fractional Taylor’s formula (see [3])we have

g(x)−g(y) =
n−1

∑
k=1

g(k) (y)
k!

(x− y)k+
1

Γ (ν)

∫ y

x
(z− x)ν−1(Dν

y−g
)
(z)dz, (4.27)

whenx≤ y, and

g(y)−g(x) =
n−1

∑
k=1

g(k) (x)
k!

(y− x)k+
1

Γ (ν)

∫ x

y
(z− y)ν−1(Dν

x−g
)
(z)dz, (4.28)

whenx≥ y.
The fractional linear operator is defined as

(A0 (g))(x,y) :=






∑n−1
k=1

g(k)(x)
k! (y− x)k−

(
Dν

x−g
)
(y) · (x−y)ν−1

Γ (ν+1) , x> y,

∑n−1
k=1

g(k)(y)
k! (x− y)k−

(
Dν

y−g
)
(x) · (y−x)ν−1

Γ (ν+1) , y> x,
0, x= y.

(4.29)

Our aim is to show that

‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖ ≤ c · |x− y|n
n

, (4.30)

for anyx,y∈ [0,a], 0< c< 1.
Whenx= y (4.30) becomes trivial.
We suppose thatx 6= y. We have the following cases:
1) x> y : We report that

‖(g(x)−g(y))− (A0 (g))(x,y) · (x− y)‖= (4.31)

‖(g(y)−g(x))− (A0 (g))(x,y) · (y− x)‖=
∥∥∥∥∥

(
n−1

∑
k=1

g(k) (x)
k!

(y− x)k+
1

Γ (ν)

∫ x

y
(z− y)ν−1(Dν

x−g
)
(z)dz

)
−

(
n−1

∑
k=1

g(k) (x)
k!

(y− x)k−1−
(
Dν

x−g
)
(y) · (x− y)ν−1

Γ (ν +1)

)
(y− x)

∥∥∥∥∥=

∥∥∥∥∥
1

Γ (ν)

∫ x

y
(z− y)ν−1(Dν

x−g
)
(z)dz+

(
Dν

x−g
)
(y)

(x− y)ν−1

Γ (ν +1)
(y− x)

∥∥∥∥∥= (4.32)
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∥∥∥∥
1

Γ (ν)

∫ x

y
(z− y)ν−1(Dν

x−g
)
(z)dz−

(
Dν

x−g
)
(y)

(x− y)ν

Γ (ν +1)

∥∥∥∥=

1
Γ (ν)

∥∥∥∥
∫ x

y
(z− y)ν−1(Dν

x−g
)
(z)dz−

∫ x

y
(z− y)ν−1(Dν

x−g
)
(y)dz

∥∥∥∥=

1
Γ (ν)

∥∥∥∥
∫ x

y
(z− y)ν−1((Dν

x−g
)
(z)−

(
Dν

x−g
)
(y)
)

dz

∥∥∥∥≤ (4.33)

1
Γ (ν)

∫ x

y
(z− y)ν−1∥∥(Dν

x−g
)
(z)−

(
Dν

x−g
)
(y)
∥∥dz

(we suppose that ∥∥(Dν
x−g
)
(z)−

(
Dν

x−g
)
(y)
∥∥≤ λ1 |z− y|n−ν , (4.34)

λ1 > 0, for all x,z,y∈ [0,a], with x≥ z≥ y)

≤ λ1

Γ (ν)

∫ x

y
(z− y)ν−1 (z− y)n−ν dz= (4.35)

=
λ1

Γ (ν)

∫ x

y
(z− y)n−1dz=

λ1

Γ (ν)
(x− y)n

n

(assumeλ1 < Γ (ν), i.e.ρ1 := λ1
Γ (ν) < 1)

= ρ1
(x− y)n

n
.

We have reported, whenx> y, that

‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖ ≤ ρ1
(x− y)n

n
. (4.36)

2) y> x : We conclude that
‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖=

∥∥∥∥∥

(
n−1

∑
k=1

g(k) (y)
k!

(x− y)k+
1

Γ (ν)

∫ y

x
(z− x)ν−1(Dν

y−g
)
(z)dz

)
−

(
n−1

∑
k=1

g(k) (y)
k!

(x− y)k−1−
(
Dν

y−g
)
(x) · (y− x)ν−1

Γ (ν +1)

)
(x− y)

∥∥∥∥∥= (4.37)

∥∥∥∥
1

Γ (ν)

∫ y

x
(z− x)ν−1(Dν

y−g
)
(z)dz−

(
Dν

y−g
)
(x)

(y− x)ν

Γ (ν +1)

∥∥∥∥= (4.38)

∥∥∥∥
1

Γ (ν)

∫ y

x
(z− x)ν−1(Dν

y−g
)
(z)dz− 1

Γ (ν)

∫ y

x
(z− x)ν−1(Dν

y−g
)
(x)dz

∥∥∥∥=

1
Γ (ν)

∥∥∥∥
∫ y

x
(z− x)ν−1((Dν

y−g
)
(z)−

(
Dν

y−g
)
(x)
)

dz

∥∥∥∥≤ (4.39)

1
Γ (ν)

∫ y

x
(z− x)ν−1∥∥(Dν

y−g
)
(z)−

(
Dν

y−g
)
(x)
∥∥dz

(we suppose that ∥∥∣∣(Dν
y−g
)
(z)−

(
Dν

y−g
)
(x)
∣∣∥∥≤ λ2 |z− x|n−ν , (4.40)

λ2 > 0, for all y,z,x∈ [0,a] with y≥ z≥ x)

≤ λ2

Γ (ν)

∫ y

x
(z− x)ν−1 (z− x)n−ν dz= (4.41)

λ2

Γ (ν)

∫ y

x
(z− x)n−1dz=

λ2

Γ (ν)
(y− x)n

n
.
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Suppose now thatλ2 < Γ (ν), that isρ2 := λ2
Γ (ν) < 1.

We have reported, fory> x, that

‖g(x)−g(y)− (A0 (g)) (x,y) · (x− y)‖ ≤ ρ2
(y− x)n

n
. (4.42)

Setλ := max(λ1,λ2) , and

0< ρ :=
λ

Γ (ν)
< 1. (4.43)

5 Conclusion

We show that

‖g(x)−g(y)− (A0 (g))(x,y) · (x− y)‖ ≤ ρ
|x− y|n

n
, for anyx,y∈ [0,a] . (4.44)

In the particular case of 1< ν < 2, we conclude that

‖g(x)−g(y)− (A0 ( f )) (x,y) · (x− y)‖ ≤ ρ
(x− y)2

2
, (4.45)

for anyx,y∈ [0,a], 0< ρ < 1.
Thus, this represents a condition required to solve numerically g(x) = 0.
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