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1 Introduction

Let By, By stand for Banach space and@ttand for an open subset®f. We consideU (z,p) :={uc By : [u—-Z|| < p}
and letU (z,p) denoting the closure & (z,p).
Many phenomena in several interdisciplinary areas can peeszed as

F(x)=0 (1.1)

using Mathematical Modelindl]-[15], such thaf : Q — B, denotes a continuous operator. We recall that the solution
of (1.1) is soughtin closed form, but only in particular cases itfaiaable. Thus, it explains why most solution methods
for such type of equations are usually iterative. We rededt there is a plethora of iterative methods for solvihdl
These methods can be classified in two classes.

Explicit Methods [5,6,10,13,14]: Newton’s method

Xn+1 =X — F' (%) 'F (%n). (1.2)
Secant method: L
Xn+1 = Xn — Xn—1,%n; F]" " F (Xn) , (1.3)

where[-,-;F] is a divided difference of order one ¢ x Q [6,13 14].
Newton-like method:
Xn+1 =% — Eq F (n), (1.4)

whereE, = E (F) (x,) andE : Q — £ (B4, B,) the space of bounded linear operators firinto By. In [6], [10], [13],
[14] and the references there in the reader can see other éxpditiods.
Implicit Methods[5,8,10,14):
F (%) +An(Xn11—%1) =0 (1.5)

Xni1 =X — Ay 'F (%), (1.6)
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whereAn = A(Xnt+1,%1) = A(F) (Xnt1,%0) andA: Q x Q — £ (By,By).

We recall that there exists plenty on local as well as segadl@convergence results for explicit method$-[7],
[9]-[14]. On the other hand, a little attention was devoted for tlseaech on the convergence of implicit methods. The
researchers, usually investigate the fixed point problem

P, (X) =X, (1.7)
where
P, (X) =x+F (2) + A(X,2) (X— 2) (1.8)
or
P (X) =z—A(x,2) *F (2) (1.9)

for methods {.5) and (1.6), wherez € Q is provided. IfP denotes a contraction operator mapping a closed set ielf its
then due to the contraction mapping principl€]] [13], [14], P, admits a fixed poink; which can be obtained utilizing
the method of successive substitutions or Picard’s methddiefined for each fixed by
Yk+1.n = P, (Yk,n) » Yon=Xn, Xnp1 = lim yyp. (1.10)
k—+-00

Below we discuss the analogous explicit methods

F (Xn) +A(Xn; Xn) (Xns1—Xn) =0 (1.11)
X141 = X0 — A, %) " (Xn) (1.12)
F (%) +A(Xn,Xn-1) (Xn41—%n) =0 (1.13)
and
Xn+1 = %o — A(Xn, Xn—l)_1 F (Xn). (1.14)

In our manuscript in Section 2, we investigate the semitlocavergence of the method.g) and (.6), respectively.
Section 3 deals with the semi-local convergence of the nastifin11), (1.12), (1.13 and (.14, respectively. Several
applications to Abstract Fractional Calculus are preskmeSection 4 on a certain Banach space valued function such
that all the integrals are of Bochner-typ@.[

2 Semi-L ocal Convergence for Implicit M ethods

The following semi-local convergence analysis of methhé)(is centered on the conditiof(sl ):
(h1) F:Q C By — Byiscontinuous ané(F) (x,y) € .Z (B1,B,) for each(x,y) € Q x Q.

(hp) There exist > 0 andQ C By such thatA(F) (x,y) "t € .Z (B,, B1) for each(x,y) € Qo x Qo and
[AE) eyt <17

SetQ; = QN Q.
(h3) There exist real numbers, a,, a3 satisfying

0<aoy<a; and O<a3z<1
in such a way that for eachy € Q1
[F(X)—F ) —AF)Xy) x=y)[ <
ax
(5 k=l +azlly — ol +as) [x—yi|.
(hs) For eachx € Qg there existy € Qg fulfilling

y=x—AYx) F(x).
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(hs) Forxp € Qo andx; € Qp satisfying(hs) there exists) > 0 fulfilling
|AF) (0. 30)F 00| < .

(he) h:=ain < 3(1—as)®.
and
(h7) U (Xo,t*) C Qo, where

1-a3—+/(1-ag)?>—2h
1,—1(,3'7, a;=0.

Thus, utilizing both the previous notation and conditigHg we prove below the semi-local convergence resuf)(

Theorem 1.Assume that the conditiori$l) are fulfilled. Then, sequende,} generated by method () starting at
X € Q is well defined in Uxo,t*), remains in U(xo,t*) for each n=0,1,2, ... and converges to a solutiori ¥ U (xo,t*)
of equation K x) = 0. Moreover, provided that ¢) holds with A(F)(z,y) replacing A(F)(x,y) for eachezQ , if a3 # 0,
the equation Fx) = 0 possess a unique solutioh x U, such that

G- JUot)N, ifh=1(1-as)?
U (x0,t)N Qo, ifh < 1 (1—a3)?

_ 2
and, ifa;, = 0, the solution X is unique inU (xo, 1%03) where t* = 1=93FV (1=a3)"=2h W

ProofCasea # 0. Letg be scalar function of® by g(t) = %tz — (1—a3)t+ n and majorizing sequendé, } by
to=0, ty=t_1+9(tk_1) foreachk=12,.... (2.2)

From (he) we conclude thag) admits two positive roots® andt™, t* < t*™*, andty <tx,1. As a result, the sequendg }
converges to*.
(a) Utilizing the mathematical induction dq it can be proved that

(X1 — Xl < tpa — e (2.2)
Therefore, 2.2) holds fork = 0 by (hs) and @.1), due to thee fact thdiix; — Xo|| < =t1 —tp. Assume that for K m<k
[1Xm = Xm-1| <tm—tm_1. (2.3)
Then, we gef|x« — Xo|| <tk —to =tk <t* andA(x,Xk_1) is invertible by(hy). We can write by methodL(6)
Xier1 — X = —A (F (%) — F (K1) — A1 (X — Xe-1)) - (2.4)
From 2.3, (h2), (h3), (hs), (2.1 and @.4), we get in turn that
s =%l = IACE (6| = [[ACH (F (5 = F (%-1) = A1 04— %))

< IAHIIF (%) = F (Xce1) — A1 (% — Xieo1) || <

1, (01
14 (7 (% — Y]] + a2 X1 — X0 +0!3) X — X1 < (2.5)

ax
> (t—tk1)®+ 02 (t—tk 1)tk 1+ 03 (tk — 1) =
a]_ 2
> (te —t—1) "+ a2 (t —ty—q) teea + o3 (tk —tee1) — (tk —tk—1) + 9 (tk—1) =
g(t) — (01— 02) (tk —tk-1) k-1 <

9 (t) = tie1 — b, (2.6)
which finish the induction forZ.2).
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Thus, we have for ank
(X1 — Xl <ty —t 2.7)

and
[ % —Xo|| <t <t*. (2.8)

From both 2.7) and @.8) we conclude tha{xc} denotes a complete sequence in a Banach sBa@nd as such it
converges to some € U (Xp,t*) (due to the fact thadtl (xp,t*) denotes a closed set). By considering> 4o, utilizing
(h1) and(hy), we getl ‘1klim IIF ()|l = 0, thusF (x*) = 0.
—+00
Letx** e U fulfilling F (x*) = 0. The next step is to prove by induction that
[IX™ — || <t* —1tx foreachk=0,1,2,.... (2.9)

We conclude that the estima 9) is valid fork = 0 according to the definition of* andU. Assume thalix™* — x || <
t* —tx. Thus, as in2.5), we conclude that

X = X al| = [[X = X+ ACTF (%) = ACF (X | =

1At (A (X" =) +F () = F (x*))] <
IACHTITF () = F () — A (X = x| <

az
(S 10" =l + a2 % — o+ a3) [ =] <

a * *
(?1 (t* —t) + aoty + 03) t"—ty) =

ay

5 (t)? — oatit”™ + 02 (" —t) t+ a3 (t" — ) =

a
N+ (1—ag)t" + 7%3 — antt™ 4 ot — aot? + ast” — arsty

=t e, (2.10)
which completes the induction fo2 (). Thus,k lim x, = x**. But we showed thaLt limg = X*, sox*™ = x*.
— 00 —>+00

Casea; = 0. Then, we have bghz) thata, = 0 and estimate(.5) gives

X1 — Xl < agl|xc—Xe_a]| < ... < af X2 —Xol| < akn (2.11)

and
(X1 = Xol| < [ X — Xl | + [ X — X[ + - + [[X1 — Xo|

1— a?lerl n
. 2.12
~ 1-a3 n< 1-a3 ( )
Then, it follows from @.11) and @.12) that
1-a!
s =3l < T2 a5, (2.13)

so sequencéx} is complete and* is a solution ofF (x) = 0. Next, the uniqueness part emerges fr@1Q for a; =
a =0, since
%" =1l < a3 X x| < @ x x| < @k

2.14
s (2.14)

which implies that limx, = x**.
k—>+-c0
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Remark1) Condition(hy) can be incorporated ifhs) as
(h;) There exist real numbets;, o>, 03 satisfying 0< @, < @1 and 0< 03 < 1 such that for eack y € Q

Ay HF ()~ F () - Aly) (x=y)] | <

(Ta/2) 1=yl + Tz ly— xoll + 3) x|

As a result,(h3) will replace (hz) and (hg) in Theoreml for a1 = @1, @2 = a2, 03 = az andQp = Q. Moreover,
notice thatr; < a1, @, < o; anda; < as, which has a role in the sufficient convergence critefiwy), error bounds and
the precision of* andt**. The conditionhz) is of Mysowksii-type [LQ].

(2) Suppose that there exlgt> 0, a; > 0 andL € .# (By,B;) with L™! € . (By,By) such thaf|L~2|| < o

|A(F) (x,y) —L|| < a4 foreachx,y € Q

and
as:=lgtas < 1.

As a result, due to the Banach lemma on invertible operatersave ], [8], [10], [13], [14] and
I AR 00— Ll < s = a5 < 1

|71
0
1-as’

thatA(F) (x,y) " € 2 (Bp,By). Setl 1 =
conditions(H).

(3) Definitely, (L.5) converges under the conditioftd), due to the fact thatl(6) implies (L.5).

(4) LetR > 0 and defineRy = sup{t € [0,R) : U (xo,Ro) C D}. SetQy = U (o, Ro). Condition(hz) can be extended,
if the additional termay ||[x— Xo|| is inserted inside the parenthesis at the right hand sidedorea, > 0. Then, the
conclusions of Theorerhare valid in this more general settingaif = ayRy + a3 replacesxs in conditions(hg) and(hy).

(5) Regarding the solvability of equatioris§) (or (1.5), we wanted to leave conditiqih,) as uncluttered as possible
in conditions(H).

then the conditiorihy) is implied, therefore it can be dropped from the

Below, we prove the solvability of method.§) utilizing a stronger version of the contraction mappinmeiple and
based on the conditior{€) :

(c1) = (hy).
(c2) There existy € [0,1), y1 € [0,+), Yo € [0,1), Xo € Q such that for eack,y,ze Q
Hl +A(X,Z) —A(y,Z)” < Y0,
[A(X2) =AY, 2| < yal[x—yll

IF (2) +A(X0,2) (X0 —2)|| < { |¥"2F||(X)<()Oi|zl\fol;oxroxi;«zé z

(cs)
Yo+ Vil + Y2 <1 fory, #0,
Yo+ Vi|%ll <1 fory =0,
1—(yo+ 2
IF (o) < 2210 V1V1”X°|)) for i #0,
Vo<1l foryy=0
and .
(c4) U (x,r) C Q, where
IF (o)l 1-(w+vlxl)
<r< for 0,
1-(w+vlxl) = Vi e
IF (o)l
< =
T <r fory =0,
r<w fOfZZXO, y17é0
1
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Theorem 2.Assume that the conditiori€) are satisfied. Then, for each=n0,1,2, ... equation (.5 is unique solvable.
Moreover, if A1 € . (By,B1), then equation.6) is also uniquely solvable for each=n0,1,2, ...

ProofThe proof is based on the contraction mapping principle X ¢t U (xo,r). Then, using 1.8) we have in turn by
(c2) that
[P(x) =P (W) = [[(1 +A(x,2) = A(Y,2)) (x—y) = (A(x,2) = A(Y,2)) Z|
< M+AXZ =AY IX=YlI+[|AX2) =AY, 2) |||

< Yolx= Yl + v (llz—Xoll + %oll) [x =Yl

< ¢ (lIx=xol) [[x =l (2.15)
" (t+[xof]) forz#
_ Yo+ w(t+|X) forz#xo
¢(t)_{V0+V1IIXo| for z=Xo. (2.16)

Wee observe that (t) € [0,1) fort € [0,r] by the choice of in (c4). In addition we have
1Pz (%) = Xol| < [Pz (%) = Pz(%0) || + [Pz (%0) — ol - (2.17)
If z=xpin (2.17), then we get bycs), (c4) and @.15 that

[P (%) = Xof| < ¢ ([[x—Xol]) X = Xol| + [IF (xo)]|

< +nlxlhr+([F (o)l <r. (2.18)
The existence of; € U (xo,r) solving (1.5 for n= 0 is now obtained by the contraction mapping princip®1§ and

(2.18.
In addition, ifz # Xg, the last condition irics), (C3),(C4) and @.17) give instead ofZ.18 that

[[P2(X) = Xol| < & ([[x—Xoll) [X—Xoll + V2 [|IX—Xol|

<(Ww+nlxl+yr<r (2.19)

From .19, (2.19 and the contraction mapping principle, we prove the unispigability of (1.5 and the existence
of a unique sequencix,} for eachn = 0,1,2,... We conclude that, the equatioh.) is also uniquely solvable by the
preceding proof and the conditiéq ! € .# (B,,B;).

Remark(a) The gamma conditions can be weakeney afe replaced by functions(t), i =0,1,2, 3. Then,y will appear
asy ([|x—Xo||) andy (r) in the conditiongC).

(b) Section 2 has an interest independent of Section 4. Henyvéve results especially of Theorelhtan apply in
Abstract Fractional Calculus as suggested in Section 4.nfexample crucial conditioths) is satisfied in 4.8), if we
choosenr; = a3 = 0 andla; = 5, wherec is defined in 4.8). Similar choices can be given for the rest of the speciasas
of (h3) appearing in Section 4.

3 Semi-L ocal Convergence for Explicit Methods
Theoreml is general enough so it can be utilized to investigate tha-tmral convergence of methods.(1), (1.12,
(1.13 and (.14, respectively. In particular, for the investigation 4f12 (and consequently ofi(11)), we utilized the
conditions(H’) :
(h)) F:Q c By — Byis continuous and (F) (x,x) € £ (By,By) for eachx € Q.
(h,) There exist > 0 andQg C By such thaiA (F) (x, x) "t e £ (B,,B1) and
HA(F)(X,X)’lH <1t

SetQ; = QN Q.
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(h;) There exist real numberg, as, y5 satisfying
0<a,<y; and 0< y3

such that for eack,y €
[F () =F ) =AF)(,y) (x=y)ll <

i
(% Ix=yll+azlly = ol + ) [x I
(h,) For eachx,y € Q; and somgy >0, y5 >0
[AXY) =AY <lva

or
[AXY) =AY <y x=Yl.

Setai = y1 + 5 andas = Yz + Vi, if the second inequation holds ag = 3 andas = y;+ Vs, if the first inequation holds.
Further, suppose € a3 < 1.
(h) There existg € Qo andn > 0 such thai\ (F) (Xo0,%) * € .% (By,B1) and

|AF) G0, %0) *F (0)]| < 1.

(hg) = (he)
and
(h7) = (h7).

Then, we can present the following semi-local convergericaathod (.12 utilizing the conditiongH’) and the
preceding notation.

Proposition 1.Assume that the conditiorisl’) are fulfilled. Then, sequenden} generated by method (12 starting at
Xo € Q is well defined in Uxp,t*), remains in U(xp,t*) for each n=0,1,2, ... and converges to a solutiori x U (xp,t*)

of equation Kx) = 0. Moreover, ifa; # 0, the equation Fx) = 0 posses a unique solutiof in U, where

G- {Uot)N, ifh:%(l—ag)zz
U (X0, t") N Qo, ifh< 3 (1-ag)

and, ifa; = 0, the solution X is unique inU (xo, 1_Laa) where t and t* are given in Theorert.
ProofUse in the proof of Theorerinstead of estimate2(5) the analogous estimate
IF ()1 = [[F (%) = F (Xi-1) = A1, X—1) (% — X—1) || =
II[F () = F (Xi—1) = A Xie—1) (X — Xe-1)] +
(A Xk-1) — A1, %-1)) (% — Xk—1) |
< (B a1l + 02 01—l + 16 =51+
(1A (i, X 1) — A k-1 X 1) || X — X[ <
[ (ﬂ (t—te-1)®+ 002 (t — ti-1) 1+ 01 (t — tk—l)) :

2
where we used again thit, — X_1|| < tc —tc_1, [|X—1 — Xo|| < tk_1 and the conditiorthy) .

RemarkComments similar to Rematk(1)-(3) can be reported but for methdd{1) and methodX.12) instead of method
(1.5 and method1.6), respectively.
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Similarly, for (1.13 and (.14, we use the conditiondi”) :
() = ()
(h) = (h2)
(hj) There exist real numbers;, a2, y; fulfilling
0<ay<0; and 0< 3

such that for eacR,y € Q;
[F(X)—F ) —AF) Xy x=y)[ <

a
(5 Ix=yll+azlly—ol + 1) [x— .
(h) For eachx,y,ze Q1 and somes > 0
IA(ZzY) = Ay X[ <18.

Setas = y3+ d3 and further supposeQ az < 1.
(hZ) There exisx_1 € Q, X € Q andn > 0 such thaA (F) (X0,X_1) "+ € % (By,By) and

|AF) Co.x-2)F 00| < .

(hg) = (he)
and
(h7) = (h7).

As a result, we show the following semi-local convergencmethod (.14) taking into account the conditiorisl”)
and the previous notation.

Proposition 2.Assume that the conditiofisl”) are satisfied. Then, sequenfe } generated by method (14 starting at
Xo € Q is well defined in Uxo,t*), remains in U(xo,t*) for each n=0,1,2, ... and converges to a solution x U (xo,t")
of equation Kx) = 0. Moreover, ifa; # O, the equation Kx) = 0 possess a unique solutiohix U, where

~ {U(xo,t**)ﬂ.Qo, ifh=1(1—as)?

U= :
U (%0, )N Qo, ifh < 1(1—ag)?

and, if o, = 0, the solution X is unique inU (xo, 1—La;.;) where t and t* are given in Theorert.

ProofAs in Propositiorl, utilize in the proof of Theorert instead of estimate2(5) the analogous estimate
[F (4l =
[IF (%) — F (Xi-1) = A(Xi, Xie—1) (% — Xi-1)
+ (A X-1) — A1, Xk-2)) (% — X-1) || <
[F (%) — F (1) — A% Xk—1) (% — %) || +
[1A (X Xi-1) — A k-1 Xk-2) | % = X1 |

a
<I (?l [ — X1/ + 02 [ X1 — X0 +V3) (% — Xie— || + 185X — X1l

ax
<I (7 (t— k1) + 02 (t— ti1) o1 + Q3 (t — tk—l)) :
where we used again thiat, — x_1]] <t —ty_1, [|Xk—1 — Xo|| < tk—1 and(hj).

RemarkSimilar results to RemarR (1)-(3) can be obtained but for methodsX3 and (.14 instead of methodsl(5)
and(.6), respectively.
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4 Applicationsto X-valued Fractional Calculus

In this section we deal with Banach spdeg ||-||) valued functiong of real domairi0,a], a > 0. All integrals here are of
Bochner-type, see [7,12]. Once more, the derivativesare defined similarly to numerical ones, see [15], pp. 8385 a
p. 93.
Below we apply our Newton like numerical methodsdevalued fractional calculus.
Our aim is to solve
g(x)=0. (4.1)

)Letl<v <2, ie.[v]=2(-]ceiling of number)x,y € [0,a], a> 0, andg € C?(]0,a], X).
The leftX-valued Caputo fractional derivatives (see [4]) is writéen

(Diyg) (X) = ﬁ/yx x—t)"Vg’ (t)dt, (4.2)
whenx >y, and L ,
L9 = Frp—yy V-0 Ot (439

wheny > x, wherel™ is the gamma function.
We define also the X-valued fractional linear operator

g (y) + (D) (%) % x>y,
(Ao (9)) (%Y) = 9 ¢ (x) + (Dxxg)(y).y(\f_zrl) y> X (4.4)

0, x=vy.

By X-valued left fractional Caputo Taylor’s formula (see [4] wet that

g(x>—9<y>=g’<y>(x—y>+ﬁlv) /y (x—1)"'DYg(t)dt, forx >y, (4.5)
and 1 y

90) 900 =0 (=0 + 15 | y=0""plgat, forx<y. (4.6)
equivalently, it holds

900 ~909) =4 09 (=)~ 7 [ (=0 DLg )l forx<y. @)
Our aim is to show that

(x—y)?
1903~ 9y) — (Ao (@) (<) (x-y)]| < o 2, (4.8)

foranyx,y € [0,a,0<c< 1.
Whenx =y, (4.8) becomes trivial.
We suppose # y. The following cases can be distinguish:

1) x >y: We report that
19(x) —g(y) — (Ao (9)) (x.y) - (x=y)[| = (4.9)

g (y) (x—y>+% /yx< x— 1) (D%, ) (t) dt—

V-1

H I‘(lv /y (x—1)""(DYg) (t) dt— (DYg) () r(’z‘;f:) (4.10)
7 [ o0 040 e s [ x-0 7 (00) 09| - @11)
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(by [1], p. 426, Theorem 11.43)

g | 007 (0500 - P49) ) <
(by [7) .
v /y (x—1)""1[|(D%9) (t) - (D%g) (x)]|dt =: (&), (4.12)
(assume that
(DY) (1) — (D%0) (9| < Axft—x", (4.13)
foranyt,x,y € [0,a] : x>t >y, whereA; < T (v),i.e.p1 = % <1).
Therefore N .
1 v—1 2—v
()< Fruy [, 0" 00 e (4.14)
X 2 2
_ FA(t)/y (x—t)dt = FA&) (x 2y) _p X 2y) . (4.15)
We have proved that
(x—y)?
19(x) =9 (y) = (Po(9)) (xY) - (x=Y)|| < P15, (4.16)
where 0< p; < 1, andx > V.
2) x < y: We report that
19(x) —g(y) — (Ao (9)) (%) - (x=y)|| = (4.17)

09 -y)~ 7 [ -0 Dhamdt-

-1l
(g’ (%) + (D%g) (y) - L2 ) (x—y)

rv+1)
r [ -vtose e 0% 0 2 | - @18)
| [ w0 otama- @50 ) 2 - (4.19)
o | [ -0 tosawa = [0t ete o -
o [ o0t onaw - prama < (4.20)
1 Y v—1 v v
Fiy ), 0" ID%g) Do) o
(by assumption,
IDY%g(t) — DLyl < Azft—y/*, (4.21)
foranyt,y,x € [0,a] :y >t > X).
y
< r(lv) [ =0 2aatt -yt
_ rA(i) /Xy(y_t)vfl(y_t)“dt (4.22)
Ao [V A (x—y)?
:r(v)/x(_t)dt:r(v) 7
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Assuming alsqo; := % <1(i.e.A2 < T (v)), we found that

1900 90— (Ao (@) 0c)- (x-y) < XX torxcy (4.23)
Conclusion: Choosing) := max(A1,A2) andp := ) < 1, we show that
(x—y)?

19(¥) —g(y) — (A (@) (X ) - (x=y)ll < p , foranyxy e [0,a]. (4.24)
This represents a condition utilized to solve numericglly) = 0.
Letn—1<v<nneN-{1l}ie[v]=n;xye][0,a,a>0,andgcC"([0,a],X).
We define the followingK-valued right Caputo fractional derivatives (see [3]),

Di-9(y) = ,-((;1_)\}) /yX(Z—y)" 19" (2)dz fory<x, (4.25)
and oy
Dy g(x) = I'((;—)v) /X (z—x)"" g (2)dz forx<y. (4.26)

By X-valued right Caputo fractional Taylor’s formula (see [8B have

n—1 (k)
000 -0 = 5 S oy s [ a0 (0} 9) (9 @27)
whenx <y, and
n—1 (k) X
o)~ = 5 L (-0t 5 [ M2y 0L @ (4.28)

whenx>y.
The fractional linear operator is defined as

S (y % (DY 0) () Yy x>,
(Ao(9)) (xy) = zn 14 >!< (x—y)k— (DY g) (¥ U VX>+1)1’ yox (4.29)
X=Y.
Our aim is to show that N
1909~ 9(5) ~ (Ao (@) () - (x— ) < &- XY (4.30)
foranyx,y € [0,a,0<c< 1.
Whenx =y (4.30 becomes trivial.
We suppose that# y. We have the following cases:
1) x >y: We report that
1(@(x) —g(y) — (Aa(9)) (x,Y) - (x=Y)I| = (4.31)
19(y) —9(¥) — (Ao () (x,Y) - (y—=X)I| =
"o (¥ k, 1 V-1 v
(§23-or o )
" g () - v (x=y)"*
<k:1 K (y—x) "t (Dx-9) (W'm) (y—X)H =
1 X -1 (Av v (x— y)v—l _
Fr ), @9 0Le) @zt (B)9) ) gy )| = (4.32)
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[y o g @z 0o w1

I

o[y e @z [y 01 g v -

For | @ (09 @ - 026 1) d4] < (4.33)

% /yx (z—y)""*[|(DX-9) (2 - (DX_9) (y)[| dz

(we suppose that

[(D_9) (2 — (D_9) (V)| < A1lz—y|"", (4.34)
A1 >0, forallx,z,y € [0,a], withx > z>y)
X
< FA(lv) [ @y ey oe (4.35)
— A X R L S TN M (X_y)n
=P, Y
(assume\y < I (v),i.e.py:= % <1)
_ o (x=y)”
A

We have reported, when> y, that

(x=y)"

19(x) =9 (y) = (Po(9) (xy) - (x=Y)I| < pr— (4.36)
2)y > x: We conclude that
19(x) —g(y) — (Ao (9)) (%) - (x=y)|| =
n—1 (k) 1 y . )
<kzlg k!(y) (x=y)+ I'(v)/x (z=x) 1(Dy,g) (z)dz) -
"o (y) 1 v (y—x""*
<k;T(X—y)k '~ (Dy_g) (%) FveD ) (X—y)H = (4.37)
1 Y v=1/Hv v (y_x)v
Hl'(v)/x (z—x)"""(Dy_g) (z)dz— (Dy_g) (X)/_(V—I—l) = (4.38)
|7 [ 0 o @ee 5 [0 09 e -
% /Xy(z—x)vfl((DS_g) (2-(Py-9) (X))dZH < (4.39)
o X0 e) @ - (0 9) ]|
(we suppose that
11(By_9) (2 = (Dy_g) (||| < A2lz—x"", (4.40)
A2 >0, forally,zx € [0,a) withy > z>X)
<2 a0t ax vz 4.41)
A2 y n— A2 (y—x)"
I'(v)/x (z=x""dz= v n
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Suppose now that, < I" (v), that isp; := % <1.
We have reported, for > x, that

19099~ (Ao(@) () - (x—y)] < o2 YL (4.42)
Seth := max(Ay,Az), and
0<pi= % <1 (4.43)
5 Conclusion
We show that
1909 - 909) ~ (Ao(9)) () (-y)l| < 222 toranyxye 0.2 (@.a2)

In the particular case of & v < 2, we conclude that

2
90990~ (Ao (1) (xy)- (x-y)l < p E2 (4.45)

foranyx,ye[0,a,0< p < 1.
Thus, this represents a condition required to solve nuraléyig (x) = 0.
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