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Let F be a distribution inD′ and letf be a locally summable function. The neutrix

compositionF (f(x)) of F and f is said to exist and equal to the distribution

h(x) if the neutrix limit of the sequence{Fn(f(x))} is equal toh(x), where

Fn(x) = F (x) ∗ δn(x) for n = 1, 2, . . . and{δn(x)} is a certain regular sequence

converging to the Dirac delta function. In particular, the compositionF (f(x)) is said

to exist and be equal to the distributionh if the sequence{Fn(f(x))} converges toh

in the normal sense.

In this study it was proved that ifF (x) denotes the distributionx−1, then the com-

positionF (sinh x) exists and given byF (sinh x) = coshec x. Some further similar

results are also deduced.
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1 Introduction

In the following, we letD be the space of infinitely differentiable functionsϕ with compact

support and letD[a, b] be the space of infinitely differentiable functions with support

contained in the interval[a, b]. A distribution is a continuous linear functional defined on

D. The set of all distributions defined onD is denoted byD′ and the set of all distributions

defined onD[a, b] is denoted byD′[a, b]. Two distributionsF andG are equal if and only

if 〈F, ϕ〉 = 〈G,ϕ〉 for all ϕ in D.
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If f is a summable function, it defines a distribution, also denoted byf , by defining〈f, ϕ〉,
its value atϕ as

〈f, ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx.

This kind of distributions may be multiplied with real numbers and can be added together,

such that they form a real vector space. Thus certain operations on ordinary functions can

be extended without difficulty to distributions. In general it is not possible to define other

operations such as multiplication, convolution and change of variables for arbitrary distri-

butions except only for particular distributions. For example, in the theory of Schwartz

distributions, no meaning were given forF (f(x)), whereF andf are distributions.

Thus the distributionscosh ecx and cothx are defined bycosh ecx = [ln | tanh(x/2)]′

andcothx = (ln | sinhx|)′, respectively. It follows that ifϕ(x) is an arbitrary function in

D[−1, 1], then

〈coshec x, ϕ(x)〉 =
∫ 1

−1

coshec x[ϕ(x)− ϕ(0)] dx,

〈cothx, ϕ(x)〉 =
∫ 1

−1

cothx[ϕ(x)− ϕ(0)] dx.

Now letρ(x) be a function inD having the following properties:

(i) ρ(x) = 0 for |x| ≥ 1,

(ii) ρ(x) ≥ 0,

(iii) ρ(x) = ρ(−x),

(iv)
∫ 1

−1

ρ(x) dx = 1.

Puttingδn(x) = nρ(nx) for n = 1, 2, . . . , it follows that

lim
n→∞

〈δn(x), ϕ(x)〉 = lim
n→∞

∫ 1/n

−1/n

δn(x)ϕ(x) dx

= lim
n→∞

∫ 1

−1

ρ(t)ϕ(t/n) dt = 〈δ, ϕ〉 = ϕ(0),

for arbitraryϕ in D and so we see that{δn(x)} is a sequence of infinitely differentiable

functions converging to the Dirac delta-functionδ(x). More generally,{δ(r)
n (x)} is a

sequence of infinitely differentiable functions converging toδ(r)(x).

If F is a distribution, it is ther-th derivative, for somer, of a summable functionf on a

bounded interval(a, b). We can therefore define the convolution(F ∗ δn)(x) = Fn(x) by

(F ∗ δn)(x) = 〈F (x− t), δn(t)〉 = 〈f(x− t), δ(r)
n (t)〉 =

∫ 1/n

−1/n

f(x− t)δ(r)
n (t) dt
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on the interval(a, b). It follows that {Fn(x)} is a sequence of infinitely differentiable

functions converging toF (x) on the interval(a, b).

Now letf(x) be an infinitely differentiable function having a single simple root at the point

x = x0. Gel’fand and Shilov defined the distributionδ(f(x)) by the equation

δ(f(x)) =
1

|f ′(x0)|δ(x− x0)

and more generally,

δ(s)(f(x)) =
1

|f ′(x0)|
[

1
f ′(x)

d

dx

]s

δ(x− x0)

for s = 1, 2, . . . , see [9].

Note that some certain divergent integrals can be interpreted as distributions, see [2]

and [13]. Then it is a diffucult task to give a meaning to the expressionF (f(x)), whereF

andf are singular distributions.

In order to give a more general definition for the composition of distributions, the following

definition was given in [3] and was originally called the composition of distributions. Note

that taking the neutrix limit of a functionf(n), is equivalent to taking the usual limit of

Hadamard’s finite part off(n), see [14].

Definition 1. Let F be a distribution inD′ and letf be a locally summable function. We

say that the neutrix compositionF (f(x)) exists and is equal toh on the open interval(a, b)
if

N− lim
n→∞

∫ ∞

−∞
Fn(f(x))ϕ(x)dx = 〈h(x), ϕ(x)〉

for all ϕ in D[a, b], whereFn(x) = F (x) ∗ δn(x) for n = 1, 2, . . . andN is the neutrix,

see [1], having domainN ′ the positive integers and rangeN ′′ the real numbers, with

negligible functions which are finite linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the usual sense asn tends to infinity. In par-

ticular, we say that the compositionF (f(x)) exists and is equal toh on the open interval

(a, b) if

lim
n→∞

∫ ∞

−∞
Fn(f(x))ϕ(x)dx = 〈h(x), ϕ(x)〉

for all ϕ in D[a, b].
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The following theorems were proved in [3] and [4] respectively.

Theorem 1.The neutrix compositionδ(s)(sgnx|x|λ) exists and

δ(s)(sgnx|x|λ) = 0

for s = 0, 1, 2, . . . and(s + 1)λ = 1, 3, . . . and

δ(s)(sgn x|x|λ) =
(−1)(s+1)(λ+1)s!
λ[(s + 1)λ− 1]!

δ((s+1)λ−1)(x)

for s = 0, 1, 2, . . . and(s + 1)λ = 2, 4, . . . .

Theorem 2.The neutrix composition(xµ
+)λ
− exists and

(xµ
+)λ
− =

(−1)λµπ cos ec(πλ)
2µ(−λµ− 1)!

δ(−λµ−1)(x)

for µ > 0, λ 6= −1,−2, . . . andλµ = −1,−2, . . . .

Main Results

We now prove the following theorem.

Theorem 3. If F (x) denotes the distributionx−1, then the compositionF (sinhx) exists

and

F (sinh x) = coshec x. (1.1)

Proof: Putting

Fn(x) = x−1 ∗ δn(x) =
∫ 1/n

−1/n

ln |x− t|δ′n(t) dt,

we have

Fn(sinh x) =
∫ 1/n

−1/n

ln | sinhx− t|δ′n(t) dt.

We note that ∫ 1

−1

Fn(sinh x) dx = 0, (1.2)

sinceFn(sinh x) is an odd function and

∫ 1

−1

x

∫ 1/n

−1/n

ln | sinhx− t|δ′n(t) dt dx = 2
∫ 1

0

x

∫ 1/n

−1/n

ln | sinhx− t|δ′n(t) dt dx, (1.3)
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sinceFn(sinh x) is odd. We have

∫ 1

0

x

∫ 1/n

−1/n

ln | sinhx− t|δ′n(t) dt dx =
∫ 1

−1

δ′n(t)
∫ sinh−1 n−1

0

x ln | sinhx− t| dx dt

+
∫ 1

−1

δ′n(t)
∫ 1

sinh−1 n−1
x ln | sinhx− t| dx dt

=
∫ 1

−1

ρ′(v)
∫ 1

0

(1 + u2/n2)−1/2 sinh−1(u/n) ln |(u− v)/n| du dv

+
∫ 1

−1

ρ′(v)
∫ n

1

(1 + u2/n2)−1/2 sinh−1(u/n) ln |(u− v)/n| du dv

= J1 + J2,

where we have made the substitutionsu = n sinhx andv = nt. Now

sinh−1(u/n) = O(n−1)

and it follows that for any continuous functionψ(x),

lim
n→∞

∫ 1

−1

δ′n(t)
∫ sinh−1 n−1

0

xψ(x) ln | sinhx− t| dx dt = 0. (1.4)

Similarly

lim
n→∞

∫ 1

−1

δ′n(t)
∫ 0

− sinh−1 n−1
xψ(x) ln | sinhx− t| dx dt = 0. (1.5)

Now if sinh−1 n−1 < η < 1, then

∫ η

sinh−1 n−1
x

∣∣∣∣∣
∫ 1/n

−1/n

ln(sinh x− t)δ′n(t) dt

∣∣∣∣∣ dx

=
∫ η

sinh−1 n−1/2
x2

∣∣∣∣
∫ 1

−1

n ln
(
1− v

n sinh x

)
ρ′(v) dv

∣∣∣∣
= O(η) + O(n−1).

It follows that

lim
n→∞

∫ η

sinh−1 n−1
xψ(x)

∣∣∣∣∣
∫ 1/n

−1/n

ln(sinhx− t)δ′n(t)

∣∣∣∣∣ dx = O(η). (1.6)

Similarly

lim
n→∞

∫ − sinh−1 n−1

−η

xψ(x)

∣∣∣∣∣
∫ 1/n

−1/n

ln(sinh x− t)δ′n(t)

∣∣∣∣∣ dx = O(η). (1.7)
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Now let ϕ(x) be an arbitrary function inD[−1, 1]. Then by using Taylor’s Theorem we

have

ϕ(x) = ϕ(0) + xϕ′(ξx),

where0 < ξ < 1. Then

〈Fn(sinhx), ϕ(x)〉 = ϕ(0)
∫ 1

−1

Fn(sinh x) dx +
∫ 1/n

−1/n

xFn(sinh x)ϕ′(ξx) dx

+
∫ η

1/n

xFn(sinh x)ϕ′(ξx) dx +
∫ −1/n

−η

xFn(sinh x)ϕ′(ξx) dx

+
∫ 1

η

xFn(sinh x)ϕ′(ξx) dx +
∫ −η

−1

xFn(sinh x)ϕ′(ξx) dx.

Using equations (1.2) to (1.7) it follows that

lim
n→∞

〈Fn(sinh x), ϕ(x)〉 =
∫ 1

η

xF (sinh x)ϕ′(ξx) dx +
∫ −η

−1

xF (sinh x)ϕ′(ξx) dx

+O(η)

=
∫ 1

η

x coshec xϕ′(ξx) dx +
∫ −η

−1

x coshec xϕ′(ξx) dx

+O(η),

sincesinhx is an infinitely differentiable function on the intervals[η, 1] and[−1, η] and so

F (sinhx) = coshec x on these intervals. Sinceη can be made arbitrarily small, it follows

that

lim
n→∞

〈Fn(sinh x), ϕ(x)〉 =
∫ 1

−1

x coshec xϕ′(ξx) dx

=
∫ 1

−1

coshec x[ϕ(x)− ϕ(0)] dx = 〈coshec x, ϕ(x)〉

and equation (1.1) follows on the interval[−1, 1]. SinceF (sinh x) = coshec−1 x on any

closed intervals not containing the origin, it follows that equation (1.1) holds on the real

line, completing the proof of the theorem.

Theorem 4. If F (x) denotes the distributionx−1, then the compositionF (tanhx) exists

and

F (tanhx) = coth x.
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The proof of this theorem is similar to the proof of Theorem 3 and is left as an exercise for

the reader.

Theorem 5.The neutrix compositionδ(s)(sinh−1 x+) exists and

δ(s)(sinh−1 x+) =
s∑

k=0

k∑

i=0

(−1)s+i+k

(
k

i

)
(k − 2i + 1)s + (k − 2i− 1)s

2kk!
δ(k)(x), (1.8)

for s = 0, 1, 2, . . . .

Proof: To prove equation (1.8), we first of all evaluate

∫ 1

−1

xkδ(s)
n (sinh−1 x+) dx.

We have
∫ 1

−1

xkδ(s)
n (sinh−1 x+) dx = ns+1

∫ 1

−1

xkρ(s)(sinh−1 x+) dx

= ns+1

∫ 1

0

xkρ(s)(sinh−1 x+) dx

+ns+1

∫ 0

−1

xkρ(s)(sinh−1 x+) dx = I1 + I2. (1.9)

It is obvious that

N− lim
n→∞

I2 = N− lim
n→∞

∫ 0

−1

xkδ(s)
n (sinh−1 x+) dx = 0. (1.10)

Making the substitutiont = n sinh−1 x, we have for large enoughn

I1 = ns

∫ 1

0

sinhk(t/n) cosh(t/n)ρ(s)(t) dt

=
ns

2k+1

∫ 1

0

exp[(k + 1)t/n][1− exp(−2t/n)]k[1 + exp(−2t/n)]ρ(s) dt

=
ns

2k+1

k∑

i=0

(
k

i

)
(−1)i

∫ 1

0

{exp[(k − 2i + 1)t/n) + exp[(k − 2i− 1)t/n)}ρ(s)(t) dt,

where

ns

∫ 1

0

{exp[(k − 2i + 1)t/n) + exp[(k − 2i− 1)t/n)}ρ(s)(t) dt =

=
∞∑

p=0

∫ 1

0

(k − 2i + 1)p + (k − 2i− 1)p

p!np−s
tp ρ(s)(t) dt.
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It follows that

N− lim
n→∞

ns

∫ 1

0

{exp[(k − 2i + 1)t/n) + exp[(k − 2i− 1)t/n)}ρ(s)(t) dt =

=
∫ 1

0

(k − 2i + 1)s + (k − 2i− 1)s

s!
tp ρ(s)(t) dt

=
(−1)s[(k − 2i + 1)s + (k − 2i− 1)s]

2
and so

N− lim
n→∞

ns+1

∫ 1

0

xkρ(s)(n sinh−1 x+) dx =

=
1

2k+2

k∑

i=0

(
k

i

)
(−1)s+i[(k − 2i + 1)s + (k − 2i− 1)s], (1.11)

for k = 0, 1, 2, . . . .

Whenk = s + 1, we have

|I1| =
∫ 1

0

∣∣∣xs+1δ(s)
n (sinh−1 x+)

∣∣∣ dx = ns+1

∫ 1

0

∣∣∣xs+1ρ(s)(n sinh−1 x+)
∣∣∣ dx

≤ ns exp(s + 2)
2s+2

∫ 1

0

∣∣∣[1− exp(−2t/n)]s+1ρ(s)(t)
∣∣∣ dt

=
ns exp(s + 2)

2s+2

∫ 1

0

[2t/n + O(n−2)]s+1
∣∣∣ρ(s)(t)

∣∣∣ dt

≤ n−1 exp(s + 2)
∫ 1

0

[1 + O(n−1)]
∣∣∣ρ(s)(t)

∣∣∣ dt

= O(n−1). (1.12)

Thus ifψ(x) is an arbitrary continuous function, then

lim
n→∞

∫ 1

0

xs+1δ(s)
n (sinh−1 x+)ψ(x) dx = 0. (1.13)

We also have
∫ 0

−1

δ(s)
n (sinh−1 x+)ψ(x) dx = ns+1

∫ 0

−1

ρ(s)(0)ψ(x) dx

and it follows that ∫ 0

−1

δ(s)
n (sinh−1 x+)ψ(x) dx = 0. (1.14)

Now similarly we letϕ(x) be an arbitrary function inD[−1, 1]. Then by Taylor’s Theorem

we have

ϕ(x) =
s∑

k=0

ϕ(k)(0)
k!

xk +
xs+1

(s + 1)!
ϕ(s+1)(ξx),
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where0 < ξ < 1. On using equations (1.9) to (1.14), it follows that

N − lim
n→∞

〈δ(s)
n (sinh−1 x+), ϕ(x)〉 = N− lim

n→∞

s∑

k=0

ϕ(k)(0)
k!

∫ 1

0

xkδ(s)
n (sinh−1 x+) dx

+ N− lim
n→∞

s∑

k=0

ϕ(k)(0)
k!

∫ 0

−1

xkδ(s)
n (sinh−1 x) dx

+ lim
n→∞

1
(s + 1)!

∫ 1

0

xs+1δ(s)
n (sinh−1 x+)ϕ(s+1)(ξz) dx

+ lim
n→∞

1
(s + 1)!

∫ 0

−1

xs+1δ(s)
n (sinh−1 x+)ϕ(s+1)(ξz) dx

=
s∑

k=0

k∑

i=0

(
k

i

)
(−1)s+i+k (k − 2i + 1)s + (k − 2i− 1)s

2k+2k!
〈δ(k)(x), ϕ(x)〉.

This proves equation (1.8) on the interval(−1, 1). Now it is clear that

δ(s)(sinh−1 x+) = 0 for x > 0 and so equation (1.8) holds forx > −1. Further now

suppose thatϕ(x) is an arbitrary function inD(a, b), wherea < b < 0. Then

∫ b

a

δ(s)
n (sinh−1 x+)ϕ(x) dx = ns+1

∫ b

a

ρ(s)(0)ϕ(x) dx

and so

N− lim
n→∞

∫ b

a

δ(s)
n (sinh−1 x+)ϕ(x) dx = 0.

It follows thatδ(s)(sinh−1 x+) = 0 on the interval(a, b). Sincea andb are arbitrary, we

see that equation (1.8) holds on the real line. This completes the proof of the theorem.

Corollary 5.1 The neutrix compositionδ(s)(sinh−1 |x|) exists and

δ(s)(sinh−1 |x|) =
s∑

k=0

k∑

i=0

(−1)s+i+k[(−1)s+i+k + (−1)s+i]
(

k

i

)

× (k − 2i + 1)s + (k − 2i− 1)s

2k+2k!
δ(k)(x), (1.15)

for s = 0, 1, 2, . . . .

Proof: To prove equation (1.15), we note that
∫ 1

−1

xkδ(s)
n (sinh−1 |x| dx = ns+1

∫ 1

−1

xkρ(s)
n (sinh−1 |x|) dx

= ns+1[1 + (−1)k]
∫ 1

0

xkρ(s)
n (sinh−1 |x|) dx
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and equation (21) now follows. For further results on the neutrix products and convolutions

of distributions, see [12], [13], [14], [16], and [17].
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