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Abstract: In this paper, the point at issue of this paper is to delige@int and interval estimations for the parameters of
Weibull-exponential distribution (WED) using progresdiv Type-ll censored (PRO-II-C) sample under constantsstigartially
accelerated life tests (CSPALT) model. The maximum likedith, Bayes and parametric bootstrap methods are used ifoiaésg the
unknown parameters and acceleration factor. Markov chant® Carlo (MCMC) and Lindley’s approximation are used to the
Bayes estimators. Finally, an example presented to iitesthe results.
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1 Introduction

Accelerated life test ALT and partial accelerated life f@AL T are used to obtain failure data in a short time. The most
types of stresses used to accelerate the life test are apisstass, step-stress and progressive-stress. The gsaimption

in ALT is that the relationship between life and stress meskibown or can be assumed so that the data obtained from
accelerated conditions can be extrapolated to normal usditemns. If such a relationship is unknown or cannot be
assumed, one cannot apply the ALT approach. So, PALT ara afted in such cases. In CSPALT each unit run either
normal use condition or accelerated (stress) use conditidn until the test is terminated. These conditions arerofte
referred to as stresses which may be in the form of tempergitessure, vibrations, and so on.

The CSPALT studied by many authors, Abdel-Hamldl fliscussed CSPALT for Burr type-XIl distribution with
progressive type-ll censoring, EL-Sagheb} $tudied CSPALT under progressive type-ll censoring, &tava and
Mittal [14]optimized CSPALT for the truncated logistic distributiomder time constraint and Abushal and Soliman
[2]estimated the Pareto parameters under progressive degsiata for CSPALT.

Also, Several authors preferred to use Lindley’s approximnebeside classical methods to get the Bayes estimators.
Metiri [8] showed Bayes estimates of Lindley distribution underxitess function, informative and non informative
priors, Preda et ab] applied Bayes estimators of modified-Weibull distributigpparameters using Lindley’s
approximation, Singh et all[] evaluated Bayes estimator of inverse gaussian paramatelesr general entropy loss
function using Lindley's approximation, Singh et al] computed Bayes estimator of generalized-exponential
parameters under linex loss function using Lindley’s agpnation, Soliman et all3lestimated under progressive
first-failure censored sampling with binomial removals tsjng classical and Bayesian methods and Singh etld]. |
estimated the parameter of Marshall-Olkin exponentidtithistion under type-I hybrid censoring scheme.

This paper focused on point and interval estimations foptirameters of WED under PRO-II-C by used non-Bayesian
and Bayesian methods. Finally, this paper organized asaisliSec. 2 the assumptions and description of WED are shown.
Sec. 3 devoted to study the maximum likelihood estimatidwisEs) used to evaluate point and interval estimation for
the unknown parameters under consideration, asymptaiinae-covariance matrix and parametric bootstrap condiele
intervals. Sec. 4 Bayesian estimation computed by usinig BI&EMC and Lindley’s approximation methods. Sec. 5 an
illustrative example is developed to explain the theogdtiesults. Eventually conclusion is inserted in Sec. 6.
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2 Assumptionsand M odel Description

2.1 Basic assumptions

1.nidentical units are put on the life test .

2.The lifetimes of the units have independent and ideryi¢&ED.

3.The lifetime of units tested under normal condition falloWED with probability density function (PDF), cumulative
distribution function (CDF), survival function (SF) andz@ad rate function (HRF) are given, respectively, by

fi(t;a,y,B) = ayB (1—e‘V‘)B*le"‘“e“”(eyt‘”[i t>0:a,y,8 >0, (1)
Fita,y,B)=1-e9@ V"t~ 0:a,y.8>0, 2)
Si(t,a,y,B)=e @Vt~ 0a,y.p>0, (3)

hi (t,a,y,B) = ayBe’! (1—e‘V‘)B_1,t > 0;a,y,8 >0, (4)

wherea andy are the scale parameters ghibs the shape parameter.

4.The HRF of units tested under accelerated condition ergfwhy(t) = Ahy(t), whereA > 1 is an acceleration factor.
Therefore, the HRF, SF,CDF and PDF under accelerated éomdiitht > O; a,y,8 > 0 andA > 1, are given,
respectively, by

h(t,a,y,B,A) = ayBAePle-ale"-1" " )
- [ha(u)dy

— u)au o

StayBA)=e o —d-aref (1)) (6)
v\ B
F2(t,a,y,B,)\) _ 1_e[7c{)\eVﬁt(1fe Vt) ]7 (7)
_ _w\B

fo(t,a,y,B,A) = ayBAePt (1—e 1)P 1 d-are (1) 8)

2.2 Modé description

According to CSPALTh units are divided into two groups; units for group 1 (normal condition) ang = n— n; for
group 2 (accelerated condition). Pro-1I-C is applied abfes$: In groupj, j = 1,2, at the time of thé" failure, a random
number of the surviving unitg;; ,i = 1,2,...,m; — 1, are randomly removed from the test. Finally, at the time efrtfﬁ‘
mj—1
failure, the remaining surviving uni®m, = nj —m; — Y R;i are removed from the test and the test is terminated.
i=1

Suppose theR;i and(m; < n;) are prefixed. Then the observed progressive censored @ata ar

R

R R
iTmny <t <. <t

t <, =12 9)

3 Methods of Estimation

This section contains different estimation methods tarest unknown parameters of WED and acceleration factor by
using the MLEs method and two parametric bootstrap methpmisentile bootstrap and bootstrap-t.
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3.1 Maximum likelihood estimation

Let, tJlJm n <tJ2mJ n << t”{]J im;.n;» 07 ] = 1,2 denote two Pro-1I-C samples from two populations whose €&

PDFs are as given in (1), (2) and (7), (8) Wiy = Rj1,Rj2,...,Rjm;, i =1,2,--- ,m. The likelihood function based on
the Pro-11-C is given by

(a,y,B,Alt) = I_LAll_lfJ (ti, My, 1) (S (ti, my, )]
o 1\ B—1 yBty oa (i —1)P a(eri )P\
O rl(ayﬁ (1_e thl) eYB lig a(e ) > . <e a(e ) )
1=
Mo . L\ B-1 VBig (1o \P VB (1B R2
X GVB)\eVﬁtZI (1_e7w2|) e—a)\e 2'(1—6 2') e—a/\e 2|(1—e ZI) , (10)
N

mj—1

whereA; = nj(nj — 1-Rj)(n, —2-Rj, = Rj,)--- (nj —m; — 2 Rji).
The log-likelihood functiort(a, y,3,A) =logL (a,y, B, /\) W|thout normalized constant is given by

((a,y,B,A) = (m+nmp)(loga +logy+logB) + mylogA +yB (itﬁ + Eﬁ)

+(B—1) <§Iog(1 —e i)+ zlog(l— e Va )) : (11)

Calculating the first order partial derivatives of log-lik@od function with respect tar, y, 3 andA, respectively, and
equating each to zero, we get

m m
m+m Zl(eytli . 1)[3 (Ry+1)—A ZeVBtZi (1_ e My )’3 (R2i+1) =0, (12)
a Z =

m1+mz <nzhl +Zt2'>_aBZt ey eytl._ B- 1(R1i+1)

Wi m Wi

"y LZL e ) Z s ]_‘”B 3 Lere (1-e ") ' (Ra+1)=0, (13)

My + My o

+V<mlt.+mzt.>—a (thli—1)B(Iog(eV‘1i—1))(R.+1)
AMPARPRS D) :

m m
—aA Zeyﬁtzi (1—e ") (log (1—e"2))(Ry+1) — aA yzltZieVﬁtzi (1—e )P (Ry+1)
= £

+ <§1Iog —e i)+ zilog —e ) ) =0, (14)

m o Z 1\ B
T—azley 2 (l-—e )" (Ry+1)=0. (15)

and

The solutions of likelihood equations (12), (13), (14) ab#)(can not be obtained in a closed form. So they can be solved
numerically by using Newton—Raphson iteration method.
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3.1.1 Asymptotic variance—covariance matrix

The asymptotic Fisher information matiidof maximum likelihood estimates is thexd4 symmetric matrix of negative
second order partial derivatives of the log-likelihooddtion with respect tar, y, B andA. Letys =a, Yo=Yy, Y=
andy, = A, then

L ) .
= 0,]=1,2,3,4 (16)
(W’ialﬂj a.y.8.1)

Therefore, the asymptotic variance-covariance matrixteawritten as follows

. var(@&) Cov(ay) Cov(é3) Cov(aA)
Vzll:( 9% ) _ | Cov(ya) var(y) Cov(yB) Cov(yA) | 17)
oPow; ) | appr) |Cov(Ba) Cov(By) var(B) Cov(BA)
(Ad

) Cov(Ay) Cov(AB) var(A)
Thus, the(1— {) 100% approximate confidence intervals (ACIs) for the patanse, y, 3 andA, are obtained as
(6u.80) = G2 Var(@). (. u) = P23 /var ().

JA A r A - = (18)
(BL,BU):Biz% var (), (/\L,/\U):/\iz% var(A),

wherez, is the value of the standard normal distribution leaving rama)f% to the right andvar (&), var (y), var([?), and
2

var (5\) are the elements on the main diagonal of the variance-@vegimatrix.

3.2 Parametric bootstrap methods

The second method used to estimate unknown parameters ofi8\iBB parametric bootstrap methods. This subsection
present two parametric bootstrap methods, percentilesbaptmethod ( Bog) see Efron4] and bootstrap-t method (
Boot) see Hall B]. The following algorithm is followed to obtain PRO-1I-C btstrap samples from WED under CSPALT
for both parametric bootstrap methods:

1.Determine the values of andm; (1<m; <n;j), j=1,2
2.Generate two independentrandom samigjesf sizem;, j = 1,2 from Uniform (0,1) distributioiUj1, U2, ....,Ujm; ).

3.Determine the values of censoRg, i =1,...,m; andj=1,2.
m

]
4.Setvji = J, ,whereW“ = 1/( S i+1Rjk)’i =1,..m; andj=12
mj
5.Then, setXji = 1— |‘| Vji i =1,..,m; is the required PRO-II-C samples generated from Uniformi)(0,
k=mj—i+1
distribution

6.Finally, settjj = F~*(X;;) whereF ~*(.) is the inverse CDF of WED under CSPALT. Théfm, n; < tzmn; < ... <
tmj;mj,nj) represent the two PRO-1I-C samples from WED under CSPALT.

7.Based on two PRO-II-C samples, obtain the MLEs of pararaétey, ﬁ andA.
8.Repeat Steps 1Htimes to get the bootstrap estimates, y*, B* andA *.

9.Arrange alla*’s . y*'s, B*'s andA*'s in ascending order to obtain the bootstrap sanépﬂél],tllz[z},..., Lﬂ;[B]) k=
1,23 4andd; = a*, & =7, @5 = B*, §; = A*
3.2.1 Boop confidence intervals

Let @(2) = P(§;¢ < z) be the CDF of{; . Define LZJ;Bootp = @1(2) for givenz The approximate percentile bootstrap
100(1 — ¢)% confidence interval (BogtCl) of {); is given by

[ lZ];Bootp(%) ’ lZ];Bootp(l_ %) : (19)
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3.2.2 Boot confidence intervals

Consider the orderstatistiéé‘[l] < 6;‘[2] < .. < 6;‘[5] .k=1,2,3,4 where

_ VB - g
Var (Lﬁ:m)

q:[” Y j :1727"'787 (20)

where (i = @, @k =, 7, (I = B and §i = A while Var ((l/lf“]) is obtained using the inverse of the Fisher information

matrix as done before in (17). Lé{ (z2) = P (6k* < z) ,k=1,2,3,4 be the CDF oB;. Defined; = W~1(z) for a givenz,
define

* 1 * —
kaoott = I+ ﬁ\/var (‘l’k)w ! (2). (21)
Thus, the approximate bootstrap-t 106- {)% confidence interval (BopCl) of §j; is given by
oo (5) + B, 1-5) |- (22)

4 Bayesian Estimation
In this section, two Bayesian estimation methods (MCMC aimdiley’s approximation) are discussed to obtain Bayes
estimators for unknown parameters of WED. The steps of Baygsocess are:

1.Specify prior distribution for the unknown parametersy, 3 andA which are independent and follow the gamma
prior distributions, as follows:

n(a)Jatle @ a>0 mn(y)Oyele?2 y>0,
(23)
n(B)0BBLe s B>0 mA)OAM e ) > 1

whereay, ap, as, a4, b1, by, bz andb, are the hyper parameters and they are non negative.
2.The joint prior of the parameters y, 8 andA can be written as
m(a,y,B,A) 0 a1yl gl yau-1g-abi—yp=pbs=Abs o > 0 v~ 0 B>0A>1 (24)

3.Combine the distributions into the joint posterior dimition of a, y, B andA, denoted byrt*(a,y, 3,A[t) can be
written as

L(a,y,B,A) xm(a,y,B,A)
7-[* a7 b 7)\ L - [oe] 00 00 [oe]
@V BAL) = o e o L (@.y.B.A) < (@ .. A) dadydBaX
_ K—10m1+mz+a1—1ym1+mz+a2—1Bm1+mz+a371)\ Mp+ay—1g—aby—yby—pbs—Aby

m R

X |j ((1—6ytli)ﬁ_leyﬁtlie—a(eytli—1)B) _ (e—a(evtli—l)“>

A i 1\B-1g-arela (1-e ai )P APl (1 wai)P\ 2
s [ s E

=
whereK 1 is the normalizing constant, equal to

00 00 00 00
K-1 :/ / / / (1L a5 —1 g -5 L) M-+~ gy~ Ybp—Bbs Ay
1 0 0 0

X Fll ((1— e )P lghu e—a(evtli_l)ﬂ> ' <e_a(eytli_1)5)

mp Ry
% rl (eyﬁtzi (1_ e—ytzi)B—le—aAeszi (1—eV‘2i)ﬁ> (e—a/\eVBtzi (1—evt2i)ﬁ) 2 . (26)

Ryj
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4 Evaluate the posterior mean for any function of the patarse, y, f andA ,sayh(a,y,3,A) which is the Bayes
estimate under squared error loss function, i.e.

- j]’_w j(;oj()ooj()ooh(aayvﬁv/\) X L(aayvﬁv/\) X n(aay7B7/\)dadydBd/\
h(a,y,B,A) = _— 27
@ ypA) IZ 15 I3 5 La,v:B.)) x 1i(a.y.B. ) dadydBdA @0
Therefore, this integrals given by (27) cannot be obtaimedlosed form, so propose to use MCMC method and
Lindley’s approximation method to obtain Bayes estimatorder squared error loss function.

4.1 MCMC method

The MCMC method is one of the best technique for obtainindBidnges estimates. Suppose Gibbs sampler and Metropolis
-Hastings algorithm can be used to generate samples frofiultheonditional posterior distributions and then compute
the Bayes estimates. For applying the Gibbs algorithm,uliednditional posterior densities of, y, 8 andA are given

by

m m
T[ik(a|y’ B’)\ ,t) |:| am1+l'ﬂ2+alfle70{b1 I_!‘eia(eytli 71)B(1+R1i> rlefc{)\eyﬂtZi (:|_767y12i)ﬂ(:lsl*Rzi)7 (28)
i= i=

m
B (yla, B,A,1) O ymimeaelgvee fl(l_ewu)ﬁlevﬁtn e-a(ehi-1) (1+Ry)

mp
% rlevﬁtzi (1- efvtzi)B‘le—a)\ el (1—efyt2i)ﬁ(1+Rzi)7 (29)

m
1% (Bla,y,A.t) O pmtme+as—1eBbs |—1l(1_ e*Wli)E_leVﬁtli e—a(eytli—l)ﬁ(l'f‘Rli)

mp
% r!eVBtzi (1— e—vtzi)ﬁfle*“)‘eymzi (1*‘9#‘2)[;(1“?207 (30)

G (Ala,y,B.t) DA™ 8 Te b |"‘12!e‘“em‘2i (1-e%2i)P (14Ra) (31)

|
The algorithm of Gibbs sampling as suggested by Tieraé}if as follows:
1.Start with an(a((’) =a, Y9 =y O =BandA© = }\)

2.Setk=1
3.Generater ¥ from

m m
gamma distributio{ml +mp+ag, by + Z (eMi — 1)” (1+Ry) + ZA el (1 e*V‘Zi)ﬁ (14 Ry)
i= i=

4.Generata (¥ from

mp
gamma distributio{mg +ag,bs+ Zae"ﬁt?i (1- e‘V‘Zi)ﬁ (1+Ry)
i=

5.Using the Metropolis-Hastings method, genegéteand % from normal distribution as follows

N(* Y, var (y)) andN(B*Y, var (B))

6.Repeat Steps 3 times. forallk=1,2,3,...,N
7.0btain the Bayes MCMC point estimatesmfy, 8 andA as

__1 N Kk _ 1 N k
Oyeve = N—-M 2k=M+1a( )’ Yueme = N—M Ek:MJer( )’

BMCMC = ﬁ ZE=M+1B(k)7 )\MCMC = ﬁ ZE=M+1)‘(k)'

whereM is the burn-in period.
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8.Compute 1041 — )% credible interval (CRI) ofy as

(i) > (o (a-9)) ]
Whereq"l =aq, QUZ =Y, qJ3 = B andq"4 = )\7 | = 1727374'

4.2 Lindley’s approximation method

Consider Lindley’s approximation method for obtaining Begyes estimator aofr, y, 8 andA, which approaches the ratio
of the integrals in the posterior expectation to a simplifian. According to Lindley’s approximation irv] and if nis
sufficiently large, then the posterior expectation in (2at) be written as follows:

j (a,y,B,A) (aa yvﬁa)\) X eL(a,y7B,A)+G(a7y,B7/\)d(a’ yvﬁa)\)
Jaypr €@ VEATCE@VEAd(a,y,B,A)

I(t) = E[u(a,y,B,A)] = (32)

whereu(a,y,3,A) is a function ofa, y, B andA
L(a,y,B,A) is Log-likelihood function
G(a,y,B,A) is Log of joint prior density
Then the ratio of the integral in equation (32) can be appnaxéd as:

4

R 4
() = u(@.7.f.A) 4332 u.,-+zoig,-)aj+%_zlz 3 ZL.Jko., &0))

e
= U(@,V,B,A) + (G18y + O + U8z + U484 + 85+ 8g)

[A(01011 + 02012+ 03013 + 04014) + A2(01021 + 02022 + (3023 + 04024)

3(01031 + Up032 + U3033+ (4034) + Aa(01041 + 02642 + (3043 + 04644)] (33)

whered = 4161 + §20i2 + §30i3 + §40ia,i = 1,2,3,4 8 = 2((12012 + 013013 + (14014 + 023023 + U24024 + (34034)

1/n A A LA JR
s = 5 (U11011 + U22022 + U33033 + Ug4044)

A = L1611 + Lo 022 + 633 + La4i6sa + 2(L12612 + L13613 + L14i614 + Loa023 + L2464 + L34634) Put
Gi = W i—1.234

6 =G,6,=7,65=0,65=
G(a,y,B,A) = logm(a,y,3,A)

Lag
=A,

= (a1—1)loga + (az—1)logy+ (as—1)logB + (aa — 1)logA — (arby+ ybo + Bbz+ Aba) (34)
OI — au(611092193194)’ ':IIJ 62 (‘9319"952’9?3194)7 I,J — 172 3 4
[y = CHGL00 | —1234

& 0%L(01.60.65.0n) ¢ -
Lijk_W7|7J7k_1727374

R i=j
PO St

Now the values of the Bayes estimates of various paramederbe obtained by used Lindley Approximation under
symmetric and asymmetric loss function. For more detadsZsmani 15 and Soliman13).

4.2.1 Symmetric Bayes estimation

1.Squared error loss function (SE) The Bayes estimatorshef parameters,y, 3 andA under squared error loss
function are

s = E(alt), e = E(yIt), B = E(BIt), A =E(A ). (35)
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Fig. 1: PDFs under normal and accelerated conditions

4.2.2 Asymmetric Bayes estimation

1.Linex loss function The Bayes estimators of the parametey, 3 andA under Linex loss function are

. 1 - . 1 -
Gtinex = — 2 10gE(e “t), Pinex = —logE(e Yt),

~ 1 ~ 1
Buinec = —Z10gE (€ ¥ 1), Avinex = —  logE(e™ 1. (36)

2.General entropy loss function

The Bayes estimators of the parameterg, 3 andA under General Entropy (GE) loss function are

foe = (E(a°It) Y fee = (E(y °It)) /",
Boe = (E(B~°It)) Y/, Ace = (E(A~°|t)) Y/ (37)

5 Numerical Example

In this section for illustrative purposes, we present a &mn example to check the estimation procedures. In this
example, by using the algorithm described in Balakrishmah®andhu3], we generate two samples from WE(, 3)
distribution with parametersr = 0.5, y =2, B = 2 and A = 1.5, using progressive censoring scheme (CSs)
ny = np =50, m = 20, mp = 30, R,=(5,0,0,5,0,0,3,0,0,5,2,2,2,1,1,1,1,1,1,0)apd (3,0, 0,0, 2,0, 0, 0, 2,
0,0,0,200,301010,1,0,0,2,0,1,0, 2,0). The failhg two progressively censored data sets were observed:
Data Set 1: 0.1124, 0.1868, 0.2994, 0.3077, 0.3107, 0.3419,0.375%,78, 0.3799,0.3827, 0.3970, 0.4417,0.4788,
0.5074,0.5749,0.6107,0.6546, 0.7651,0.7696, 0.8122.

Data Set 2: 0.0471, 0.1578, 0.1881, 0.2148, 0.2516, 0.2866, 0.29%@/6, 0.3110, 0.3455, 0.3536, 0.3587, 0.3637,
0.3879, 0.3940, 0.4008, 0.4232, 0.4238, 0.4616, 0.4668936,0.5092, 0.5716, 0.5922, 0.6111, 0.6445, 0.6500,
0.6564,0.6637,0.7307.

Figure 1 plots the PDFs under normal and accelerated conditNewton—Raphson iteration method used to obtain
the MLEs of WED parameters.Denote the estimates using Miteshootstrap-p,bootstrap-t, Bayes estimate according
to MCMC, Bayes estimate according to SE loss function, LINB¥s function, and GE loss function, respectively by
MLE, Bootp , Boot; , MCMC, Lindleys, Lindleyiine« andLindleyce.
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Table 1. Different point estimates féa,y,3,A) = (0.5,2,2,1.5)

Parameters o y B A

MLE 0.1901 1.9071 1.8308 1.6789
Boot, 0.2237 1.9486 1.9353 1.2973
Boot 0.1495 1.6402 1.8345 1.6383
MCMC 0.2119 1.8448 1.8799 1.4522
Lindleys 0.1896 1.8057 1.8375 1.5245

Lindleyine (c=0.5) 0.1894 1.8042 1.8330 1.5085
Lindleyce (c=0.5) 0.1868 1.8032 1.8306 1.4985
Lindleyine (c=-0.5) 0.1898 1.8072 1.8424 1.5435
Lindleyce (c=-0.5)  0.1886 1.8048 1.8351 1.5147

Table 2. 95% confidence intervals farandy
Method o Length y Length
ACI [-0.8909,1.271] 2.16189 [-1.9884,5.6501] 7.63848
Boot, CI  [0.0433,0.8435] 0.80018 [1.0487,2.9498] 1.90117
Boot ClI [0.0286,0.1858] 0.15721 [1.5453,1.7598] 0.21453
CRI [0.1374,0.3041] 0.16670 [1.8301,1.8603] 0.03019

Table 3. 95% confidence intervals fBrandA
Method B Length A Length
ACI [0.4181,3.3961] 2.97805 [0.717,2.6409] 1.92387
Boot, CI  [1.4402,2.6574] 1.21722 [1.0084,1.8777] 0.8693
Boot ClI [1.7762,1.8677] 0.09159 [1.6142,1.6562] 0.04198
CRI [1.8631,1.8967] 0.03357 [0.8386,2.3268] 1.48819

Table 4. 90% confidence intervals farandy
Method o Length y Length
ACI [[0.7171,1.0972] 1.81432 [-1.3744,5.036] 6.41042
Boot, CI  [0.0452,0.6866] 0.64141 [1.1301,2.8601] 1.7300
Boot CI  [0.0466,0.1844] 0.13776 [1.5661,1.7443] 0.17812
CRI [0.1428,0.2734] 0.13062 [1.8371,1.8912] 0.05410

Table 5. 90% confidence intervals fBrandA
Method B Length A Length
ACI [0.6575,3.1568] 2.49926 [0.8717,2.4862] 1.61456
Boot, CI [1.4731,2.5297] 1.0566 [1.0227,1.7637] 0.7410
Boot ClI  [1.7888,1.863] 0.07416 [1.6187,1.6546] 0.03594
CRI [1.8798,1.9113] 0.03145 [0.9154,2.1195] 1.20408

6 Conclusion

Based on PRO-II-C samples, this paper is related to full Bayw non-Bayes procedures for the analysis of the CSPALT
using the WED failure model. The classical Bayes estimaesat be obtained in explicit form. One can clearly see the
scope of MCMC-based Bayesian solutions which make evegyéntial development routinely available. In this paper,
we have considered the maximum likelihood and Bayes estsrfatr the parameters of WED using PRO-II-C scheme.
This paper also studied the construction of confidencevatefor the parameters and acceleration factor by using the
parametric bootstrap methods. It is well known that wherpatlameters are unknown, the Bayes estimates cannot be
obtained in explicit form. We used the MCMC and Lindley’stia@mues to compute the approximate Bayes estimates and
the corresponding credible intervals. A numerical exanuglag the simulated data set is presented to illustrate hew t
MCMC, Lindley’s and parametric bootstrap methods work dgs®gressive censored data.
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