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Abstract: Galerkin method is used for the numerical solutions of lirieath-order boundary value problems, with two point baryd
conditions, using Legendre polynomials as basis functawes the interval—1, 1]. To examine the accuracy of the method some
examples have been considered, which shows that the metbeidigs much better accuracy as compared with [Viswanaciuzen
Ballem, Int. J. Appl. Sci. and Engl3(3), 247-260 (2015)] and [Viswanadham and Ballem, Int. J. AMath. Stat. Sci.3(3), 17-30
(2014)].
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1 Introduction between Galerkin and Petrov-Galerkin methods is that the
test and trial functions in Galerkin method are the same,
The finite element method (FEM) has become a very\évgi:gcggonpﬁgﬁxo d(s;?{lzgklr?avgqetfgggr’nether{) sargsiv?a(ljt'
powerful tool for solving the boundary value problems it for solving. diffarential i Prog " y
arise in the complex geometry. In FEM, the approximatepOpu ar for solving dilierential équations, since they are
beneficial in providing highly accurate results to

solution can be written as a linear combination of baSiSnonIinear differential equations. Petrov-Galerkin metho
functions that form a basis for the approximation space. q ; : .
s also broadly used for solving ordinary and partial

under consideration. FEM comprises variational methods

like Galerkin, Petrov-Galerkin, Collocation and Least dlfferenpal equations, as iry[8,9,10].
Squarestc. In applied science almost all researchers meet some

In Galerkin method, the residual of approximation is special classical orthogonal functions such as Legendre,

made orthogonal to the basis functions. A weak form OfHoelrr;:g?niZIr;,d hlé?/%u?;rre;n" 1f)]egr?lyunsoerglailrsl. Lﬁgseizgsrzn d
approximate solution for a given differential equation poly gely phy

exists and is sole under apt conditiods?] regardless of ﬁggglr?;relngél %%rrt:i:gllgg'e bAr?)’aoll_leguesneddr?n edlzgerﬁz?nuaé?
properties of a given differential operator on using 9 poly y 9

Galerkin method. Further, a weak solution also tends to a/vave functions of electrons in the orbits of an atom and in

classical solution of given differential equation, prost determining of potential functions in the spherically

sufficient consideration is given fo the boundary g/vrgxie;\:\llctﬁgo“r?eergﬁtrzé of the boundary value problems
conditions B]. That means the basis functions should y P

Van-on . boundary where the DGt ype. o (o1, Iished hat out, s and o ordr
boundary conditions are prescribed. Generally, y P q Y

Petrov-Galerkin method</] have come to be known as pIatg deflgctlon theoryllB], astrophysics 14 'and
stablized formulations, because they prevent the spatia}f/lJrSIOnaI V|tbrattr|]on é)f ut:uforzjn bean?slﬁ] ret:)slpectlvel_y. .
oscillations and sometimes yield nodally exact So'Utionsthgrecr)r:/:trﬁetra:aticc;rl errnogglri]n aryo\]{a L:/?S(?(;?Bl ai?i]cs e:‘lnosvssm
where the classical method would fail. The difference 9 '
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hydrodynamics and many other fields of mathematical,2 Preliminaries

physical and engineering sciences. Sincktiral. [15]

observed tenth and twelfth order equations arise inLegendre polynomial is an important orthogonal
coupled flight-dynamic and low-order aero elastic modelpolynomial among the class of classical polynomials, and
for a slender launch vehicle. is also considered as the eigenfunctions of singular
Chandrasekharl[7] pointed out that when an infinite Sturm-Liouville [32] problems. Legendre polynomials are
horizontal layer of fluid is heated from below with the solutions to the following Legendre differential equation
assumption that a uniform magnetic field is also used 2 B

across in the same direction as gravity and the fluid isD (€ =D —Au(x) =0, —1<x<1,

under the action of rotation, instability sets in. When whereD = g_x and the eigenvalu® equalsn(n+1).
instability sets in as ordinary convection, the ordinary Legendre polynomials may also satisfy the following
differential equation is tenth order. A class of recurrence relations

characteristic value problems of high order (as high as

twenty four) are known to arise in hydrodynamic and (2N+Dka(X) = Lo 1 () —Ln_1(x), ®)
hydro magnetic stability analysis, also. Agarwdg] N Ln(X) = X L (X) — L,_1(X). 4)
prese;nted the existence and uniqueness_theore_m ?—few of the Legendre polynomials are listed below
solutions of such boundary value problems, in detail. In
general, most of the ordinary differential equations have(i) Lo(X) =1,

no exact solution. In this case, finding analytical solusion

have become the goal of many researchers(ii) Li(X)=Xx,
mathematicians. Some of these methods including finite

difference methods 10,20,21], spline solutions 22, (i) La(x) = 3(3x2—1),
non-ploynomial spline techniques2324], eleventh

degree splineds], Galerkin method with sextic B-splines (iv) Ls(X) = %(5x3 —3X),

[26], Galerkin method with septic B-splines27],

differential transform method2p], modified Adomain (v) La(X)= %(35x4—30x2+3),
decomposition method2pP] and variational iteration
method B0Q]. Elahi et al. [31] constructed numerical
solution for solving special eighth order linear boundary
value problems using Legendre Galerkin method,
recently.

Aim of the paper is, to give an algorithm for handling the ki
linear tenth order boundary value problems based on
Legendre Galerkin method.

Consider the following general linear tenth-order
boundary value problem

The graph of first five Legendre polynomials is shown in
Figure 1.

0.5

LU(X):U<10>(X)+_ia@(x)u“)(x):f(x),xe[—l, 1,(1) -

subject to the boundary conditions Fig. 1: Legendre polynomials over the interjall, 1]

W1y =u1)=0, j=01234 (2

whereu(x) andf(x) are continuous functions in the space 2.1 Properties of Legendre polynomials

2 )y
¢]-1, 1[andai(x) =X. For convenience, some important properties of Legendre

npolynomials are presented which are useful in Lemmas

Preliminaries of Legendre polynomials are discussed i nd Theorems.

Section 2. In Section 3, Legendre Galerkin method is
elaborated to obtain the discrete system. Convergence an(<i‘1>
error analysis of the method is presented in Section 4. In
Section 5, handling of nonhomogeneous boundary
conditions and change of interval are discussed. In .5 ﬁrl, if m=n

Section 6, some numerical examples are considered thal Ly, (X)Ln(X)dx = (5)
prove the accuracy of the method. -1 0, ifm#n,

Legendre polynomials are orthogonal over the
interval[—1, 1]. i.e,
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and

/_11Ln(x)dx: {

(ii) Legendre polynomials are even or odd accordimgly
is even or odd.

2,ifn=0
(6)

0,ifn>0.

(iii)

Legendre polynomials are bounded by ile,
ILn(¥)] < 1.
(iv) Ln(£1) = (+1)" for all n.

Lemma 2.1.1 Let n andm be any two integers such that
n—m< N andm> 0, then

/ 11 La(x)L”_, (x)dx = O.

Proof Integrating left hand side by parts and using

Eq.(6), yields the result.

Lemma 2.1.2 Let n andm be any two integers such that
n>m, then

/_ 11 Ln(X)L% (X)dx = O.

Proof The proof is divided into two parts.

Case |I: Fon = m, we have

/ 11 La(X)Lp(x)dx = E{an}z] 11 0.

Case II: Forn > m. From Eq(3) and Eq(6), it can be
written as

1 1
/ Ln(x)LL (X)dx = / [(2m— 1)L 1(X)
1 1
+ Ln_2(X)] Ln(x)dx

- [ 11 o)LL ,(x)dx

wherei = 1,35, ...,

n, m<N, then
2, ifn=m+i

/ L (X)Lin(X)dx =
O,ifnZm+iorn<m,

(i) / L (X)L (X)lx
-1
nn+1) —mm-+1), if nZm+i
0, ifn=m+iorn<m,
2k+1<N-m.

Proof (i) Integrating left hand side by parts, we obtain
1 1
| L0Lm(9dx = [La(ILm(0]E1 ~ [ Lo L)

1
= [+ (1" = [ LaLp(x)dx
)

Forn=m+i, i=13)5,...,2k+1<N-m, and using

Lemma 2.1.2, yields

/ 11 L (X)Ln(X)dx = 2

Forn=m+i, i=0,2/4,...,

/_ 11 L/ (X)Lm(X)dx = O

For n < m, and considering the previous cases with
Lemma 2.1.2, yield™; L/, (X)Lm(X)dx = O.

2k < N—m, Eq(7) yields

(ii) The proof is divided into four parts.
(@ Forn=m+i, i =2,4,6,...,2k < N—m, then
1 " ! !
lan(x)Lm(x)dx: LI / L/ ()L (

= n(n+1)- [Ln< JLh (0]

+ L 11 Ln()LY_; (x)dx

=n(n+1)— [Ln(X)Lgfi (X)] 1;1’
[using Lemma 2L.1]

X)Ln-i (X

1 =n(n+1) —m(m+1).
= [ L a0 e
-1 (b) Forn=m+i, i=13,5,..,2k+1<N-m, then
' S LR ()Lm(x)dx =0
(c) Forn=m, then
Ln( x)dx, if m=even 1
{ JEatal /71L’,4(X)Lm(x)dx - [L Yo ( / L/ (X)L (
=0. =0.
(d) Forn < m, then integrating’_l1 Lj(X)Lm(x) dx by parts
Theorem 2.1.1 Let n andmbe any two integers such that and using EJ6) leads toj‘fl L (X)Lm(x) dx = 0.
(@© 2018 NSP
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3 Description of the Method

In order to solve the linear tenth order boundary value
problem (1) by the Galerkin method along with Legendre

basis, u(x) is approximated as

n

=y aj Lj(x).
u(x) JZOGJ i)

Where the Legendre coefficients, j = 0,1,2,...,

(8)

nin

Eq.(8) will be determined by orthogonalizing the residual

with respect to the basis functions,,
v Z

where

w) = [ o0 i ox

Approximating the integrals in E(R) by integrating by
parts such that all derivatives transfer framo L;. For

9)

(10)

convenience, few of the inner products can be calculated<u

as
(@s0u¥00.L(9) = [ llu<x> [2a(0)Lr (9] @ dx, - (11)
(26094900, 9) =~ | w0 fas00L (9] ¥ o, (12)
(@00u(9,Le () = [ llu<x> [2e(0)Lr (9] @ dx, (13)
@0, ) =~ [ 9 L D (1)
(@o(9ux. L ) = [ ao(uitodx  (5)
e L= i [(12fi:>k)<b (<Xk)>> I
Lemma 3.1 The following relations hold:
10900, L9) = [ utLE
- 25 1)<t [u (LY (x)tl, (17)

1

2. (@0(}u® (9, L () =~ [ ux){ao(x)Ls(x)} P

-1
+ f(—l)k [u% ({30 ()L (9} k} . (18)
k=5
3. (a0 (L1 09) = [ Ut fan(L (0} Vo

’ 11
+ 3 (=19 u 0 {as09L 0379 a9)

k=5

4. (@7 (0™ (.Le (9) =~ [ 11u<x>{a7<x>Lr (x)}7dx
+ f(—l)k U 09 ar(L ()} @ k} .(20)
k=5

5. (a6(Xu (L () = [ ) (as (KL ()

£ [uSmasL 0] @)

-1

6. (as00u® (9.Lr(0) = = [ ub){astoLr(} Tk (22)

Proof 1. As

W09, Lr () = [

-1

1
u9 (X)L, (x)dx.

Integrating right hand side by parts leads to the equality

L) = Bruo+ z P {u“)(x)LS*“(x)]:

[

where the boundary term

Brio= ki}(—l)k+1 [u(‘q (X)L (X)F;

is zero using the boundary conditions defined in(Ey.

yield the relation.

2. Integration of {ag(x)ul
handled in a similar manner leads to the equality

8

(@o(u® (x),Lr () = Bro+ Y (-1
k=5

[ 9L 0}

where the boundary term

4 1

5 (-0 s ], =

Bro =
K= -1

yield the relation. The other relations can be obtained

similarly.

The following theorem is obtained by replacing each term

of Eqg(9) with the defined

Eq.(11)-Eq(22).

approximation

Theorem 3.1 If Eq.(8) is the assumed approximate

solution of the boundary value proble(d) — (2), then

the discrete system for determining the coefficients

(@© 2018 NSP
Natural Sciences Publishing Cor.
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9 1
{aj}1_qis given S (- 1)kt {Lﬁk) (x)Lr(x)<9‘k>} )
. [10 ' (@ - 1 17
(1 | Li00gaq00L (9} Vax B SR S P
Zl& tes79a560 -+ (Y I []0-1+9)
6 1 _; -1
n ZS(—l)k [L}k (x){az(x)L (x)}<6*k>] ) 506438302~ ("D + 1)}
" _ A L { +] 1}
x[(i—i+8)+ 1— (—1)ti-
K=5 -1 3 13 1
x[1or—=i+2)[](j—i1+7)—
Tk 6 iEL iEL 2211840
+ 3 (1L {anoLr (3¢ . . "
k=5 x {1—(-1)*I-1 |'L(r—i+3) r!)(j —i+6)
S kL [y () (9K ] ! !
+ 3 (R L L ] 1
K= J -1 { r+] 1} r. _ | _|_4
1474560 I_L
(5) Y,
+ [LJ (X)aB(X)Lf(X)Ll qi I_!)(J —i+5),
 26(x0) Le(%) .
- Z) [(1—X;(;( (L/r ())(:())2] O=r=n k[ (k) (8—K) 1
Corn e S (L 00{ast0L (0} &)
It can be written, in matrix form, as k=5
1
AX =B 23 - n+r+J _
’ 23) ~ 10321620 J |_L J=i+8)
where 1
(2n+r(r+1)}{1+ (-1
Ho,0+ Vo0 M1,0+V10 M20+V20 - - - Hno+Vno 13 1290240
Ho1+Vo1 M11+Vi1 H21+V21 ... Un1+Vna . 1
Ho2+Vo2 H12+V12 H22+V22 ... Un2+Vn2 x IIJ)(J —i+7)+ 368640{8n(n_ 1)+8nr(r+1)
A= : ) . ) =
+(r+2)(r+21)()(r—1)}{1— (-1
. . . . 11 )
Hon+Von Hin+Vin H2n+V2n ... Unn+Vnn X I:!)(J —i+6)— Mo{l_ (_1)n+r+1—1}
and [
Hjr = / {ag()Lr ()} D Lj(x) dx, ajo(x) =1, x{481(n—1)(n—2)+72r(n—1)(r+1) (24)
+18nr(r+2)(r+1)(r—1)+ (r+3)(r+2)
6 9
Ve = [ 3 (DL 00far (L0 + z DALY () fag (9L (917 Y x(r+21)(r)(r—1)(r—2)} I_L( j—i+5),
L (96 (0L: (9 . ) )
Y (=1L 00{as(L 017
n 25 kL(k) L(0)}80 k=5 -1
_ L 1\ 13 P
-3 g “easrzot Y0
+LE5)(x)aG(x)L,(x)}il.] 92160(2n+r (r+1) {1+ (-1}
11

x[1(j—i+6)+ {1—( )”*r“}
The termy; , can be calculated using the results given in iEL 30720
Sect. 2, while the boundary terwj, can be calculated as < {8n(n—1)+8nr(r+ 1)+ (r +2)(r +1)(r)

9 2
L 09691 (9], = ggzp {1 (-} [0 -1+ <(r=DIN]-1+5).

(@© 2018 NSP
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6 1 .
S (-1 {LE'O (X){az(X)Ly (x)}<6—k>} ) 4.2 Error analysis of the method
K=5 -
1 1 In this subsection, an error estimator for tenth order
= mo{l— (=Y |'L(j —i+6) boundary value problems using Legendre Galerkin
i= approximation has been discussed.

1 n+r+j—
—m(2n+r(r+1)){1+(—1) AR

9

x[1(j—1+5).
I
After solving the linear system(24) having (n+ 1)
equations withn+ 1) unknowns, yield the column vector

X = (0o, 01, A,..., ay)". Thus, u(x) can now be
approximated by E¢8).

4 Convergence and Error Analysis

In this section, convergence and error analysis of the

Legendre Galerkin method have been discussed.

4.1 Convergence of the method

Lemma 4.1.1 Let x(t) € HX] -1, 1 (a Sobolev space)
and letx\(t) = S ciLi(t) be the best approximation
polynomial ofx(t) in the #2-norm, then

[1X(1) = Xa(V)]] 21, 27 < G0 N Xl Ity 3 »

andcg is a non-negative constant which depends on the A

selected norm and is free frox(t) andn.
Proof [33,34,39].

Theorem 4.1.1 Assumek : X — X is bounded, with X a
Banach space, andl — k : X — X is bijective. Further
assume

||k —KLn|| =0 as n— oo,

then for all sufficiently largen, sayn > N, the operator
(A —kLp) ! exists as a bounded operator from X to X.
Moreover, it is uniformly bounded such that

supl|(A —KLn) || < o.
n>N

F:)r the solution of
(A —KLp)xm=Lny, xm€ X and(A —K)x=y;

X—Xm= A (/\ — LnK)il(X_ Ln(X)),

A 1
————||x—L < IX=Xnl| < JAT[(A =KL
Ty X a0 < [l [ < AT = kL) |

[[X—=La(X)]]-
Proof [36].
Consequently, the approximation rate of Legendre

polynomials isn~¥ with respect to Lemma 4.1.1 also
from Theorem 4.1.1|x — xn|| converge to zero as soon as
[IX—Lal|-

Consideren(X) = u(x) — un(Xx) as the error function of
Legnedre approximation,(x) to u(x), whereu(x) is the
exact solution of Eq1) with boundary conditions defined
in Eq.(2). So,un(x) satisfies the following problem

uLo %) +.§0a‘(x>u§‘i>(x) = f(X) +Pa(x), x€ [-1, 1],(25)

with boundary conditions
ul(-1) =u(1)=0, i=0,1,2,3,4, (26)
where Py(x) is a perturbation term linked withuy(x)
obtained as follows
9 .
Pa(x) = Ui (x) + %a;(x)uﬁ')(x) —f(x), 1=0,1,2,3,4.
i=

(27)
To determine an approximatiogy n(X) to en(X), in the
same way as in Sect.3 for the solution of @g.with
Eq.(2). Subtracting Eq22) and Eq(23) from Eq.(1) and
Eq.(2) respectively, yields the error function of the form

9 .
PA0) =~ (0 — .zoewx)e(n”(x), (28)
and
(-1 =el(1)=0, i=0,1,23,4. (29)

Solving this problem using the Legendre Galerkin method
to get the approximatioen n(X).

5 Handling of Boundary Conditions and
Solution Domain

If the boundary conditions are nonhomogeneous or the
solution domain is [a, b], then these conditions are
converted to homogeneous conditions through an
interpolation with a known function and the domain of

solution must be converted fe-1, 1]. Consider

Lu(t):u(lo)(t)—k_ia;(t)u(i)(t) = f(t), tea b, (30)

subject to the following boundary conditions
ul(@) =6;, u(b)=¢q, j=0,1,234 (31)

Using the linear transformatioh = b—5""x+ b%‘, then
Eq.(30) takes the form

(52) 0 ¢ ia@oo (525) W0
~f(x), xe[-1, 1,(32)

Lu(x) =

(@© 2018 NSP
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where No = 7—68(—10590 —1050; — 450, — 1003 — Oy

x=P=8 bta +105@, — 105, + 450, — 1005+ @y).
2 2

subject to the following boundary conditions

(i) 2 ) (i) 2\
0= (525) 6 =0 W= (32) @
= @, j=0,1,2,3,4. (33)

The problem takes the form

LY(x) = W(lo)(x)fia;(x)w(i)(x) = f*(x), xe [-1,1],

(35)
To transform the nonhomogeneous boundary conditiongubject to the following boundary conditions
(33) to homogeneous boundary conditions, replacing 0 0
wy)(—1)=0, wW(1)=0, j=0,1,2,3,4 36
U(x) = W(x) + Q(x) (34) =1) (H)=0] (36)
. . . ) where
where ¥(x) is the interpolating polynomial such that
W) (~1) = @ andwl)(1) = @}, | =0,1,2,3,4. Also ) =10 -1
9 .
o =0 S ax) 2V x.
Q(x) = 20’7] x). i;ﬁ
= Consider
n
Mo 7—28(384@o+ 2799, + 870, + 1405+ Oy P(x) = Z)aj Lj(x), (37)
J:
+38400 — 2790, + 870, — 1405+ By), be an approximate solution of Eg5). Then,
n
m 7—28(—94590 — 5610, — 1410, — 1805 — O, u(x) = Zoaj Li(x) + Q(x), (38)
=

+9450) — 561®; + 141, — 18Dz + Dy) ,

be the approximate solution @B4). Using the inverse

1 linear transformationx = 2t — 242 in (38), yields the
N2 = g5 (~1050, — 570, ~120; ~ 04 approximate solution(t) of Eq.(30).
+105¢; — 57®, + 123 — CD4) ,
1 6 Numerical Examples
N3 = —= (3159 + 3150; + 1050, + 1605+ O4

192
—315%y + 315¢; — 105, + 163 — @y),

1
—— (3501 + 350, + 1003+ Oy

The reliability and effectiveness of the present method is
examined through some examples that appreciate the
results.

M= 128 Example 1 Consider the following differential equation
—35®; + 350, — 10P3 + @),
' 2 3+ Pa) u9 (x) — u@ (x) + xu(x) = (—8+x—x3)e, xe [0, 1],
1 (39)
Ns 128 (—1890y— 1899, — 770, — 1405

—0Oy+ 189y — 189, + 77D, — 145+ @y),

subject to the boundary conditions
u(0)=1, u(l)=0, U(0)=0, Uu(1) = —e, U’(0) = -1,

1 u’(1) = —2e, U"(0) = —2, U”(1) = —3e, U¥(1) = —3,
Ne = —=(—210; — 210, - 803 — O, 4( ) © (1) @)
192ia> 210, + 803 — @, uhL) - —de o
e 2+8%s = Pa). The exact solution of the problemigx) = (1 — x)e*.
n7 %2(135@0+ 1350, +570,+ 1203+ 04 It is evident from the Table 1 that the errors (in absolute

ns

—135% + 1351 — 57, + 123 — @y) ,

1
7_68(15@1+ 150, + 603+ Oy

—1501 + 150, — 6@3+ @),

value) obtained by the proposed method (fioe 10) are
less than those developed by Viswanadham and Ballem
(Viswanadham and Ballem, [26, 27]). Whereas, the
absolute errors for Example 1 are shown in Figure 2.

(@© 2018 NSP
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Table 1: Numerical resultsfor Example 1 Table2: Numerical resultsfor Example 2
X LG-Errors [26] [27] X LG-Errors [26]
0.1 | 2.47834x 10711 | 2.324581x 10 ® | 1.537800x 10> 0.1 | 1.47672x 10 11 | 1.788139x 10/
0.2 | 4.44401x 10 10 | 1.090765x 10 ° | 4.452467x 10 ° 0.2 | 2.6114x10 10 | 1.192093x 10/
0.3 | 1.74799x 10 9 | 3.635883x 10 ° | 3.331900x 10 > 0.3 | 1.01268x 109 | 2.875924x 10°°®
0.4 | 3.44192x 109 | 4.988909x 10> | 3.552437x 10> 0.4 | 1.96537x 10 ° | 3.606081x 10 °
0.5 | 4.26365x 10 7 | 4.547834x 10 ° | 9.477139x 10 © 0.5 | 2.39889x 10 ° | 2.44370x 10 °
0.6 | 3.51165x10°9 | 3.725290x 10> | 2.586842x 10> 0.6 | 1.94626x 109 | 3.516674x 10°°®
0.7 | 1.81954x 10 9 | 1.931190x 10 ° | 3.975630x 10 ° 0.7 | 9.93086x 10 10 | 2.250075% 10 ©
0.8 | 4.71966x 10 10 | 8.672476x 10 © | 3.531575< 10 > 0.8 | 2.53598x 10710 | 1.639128x 10°°®
0.9 | 2.6854x 1011 | 7.867813x 10 ° | 2.214313<10°° 0.9 | 1.42011x 10 1T | 2.145767x 10°©
LG-Errors LG-Errors
4.x 10—9} L
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Fig. 2: Absolute Errors for Example 1 Fig. 3: Absolute Errors for Example 2

domain is transformed tp-1, 1]. The main advantage of
the presented algorithm is to achieve higher accuracy in
the solutions, using few number of terms in the suggested
approximation. The obtained results are comparable with
the solutions available in the literature. Consequerttly, t
proposed method is suitable choice for getting
encouraging results of higher order boundary value
problems.

Example 2 Consider the following differential equation
u9(x) 4-5u(x) = 10 cosx+ 4(x— 1) sinx, x € [0, 1],(41)
subject to the boundary conditions

u(0) =0, u(l) =0, U(0) = -1, Uu(1) = sinl,

u’(0) = 2, u’(1) = 2cosl, u”(0) =1, u”(1) = —3sinl,

u@(0) = —4, u¥ (1) = —4cosl. (42)

The exact solution of the problem is

u(x) = (x—1) sinx. References
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