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Abstract: The aim of the paper is to classify the real quadratic numledsiQ(+/d) having specific form of continued fraction
expansions of algebraic integey and is to determine the general explicit parametric repitesien of the fundamental ungy for
such real quadratic number fields wheres 2,3(mod4) is a square free positive integer. Also, Yokai'snvariantsng andmy will be
calculated in the relation to continued fraction expansibwy for such real quadratic fields.
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1 Introduction 2 Preliminaries

Definition 1.{R} sequence is defined by recurrence
relation as follows:

In Number Theory, real quadratic number fields have R=8R_1+R_2

great importance. Many researchers have obtained their o

results on the real quadratic number field§R2]). The ~ fori = 2withinitial valuesR =0and R = 1.
author ([7]-[12]) considered some types of real quadratic ~_ ... - :
fields and determined their fundamental unit as well asgfefgéltl}onsgdl'ueén%‘e_vsﬁg’ré+hb3”r’ez :gglljr;]eunnieb er;aslatl_lc_)ﬁ e
Yokoi's invariants. The purpose of this paper is to stud N ' o e
on a particular real qﬂadﬁatic field aFr:dpdetermine %pollynor_nlal is called as a characteristic equation if it is
classification of real quadratic fields including the written in the form:

continued fraction expansion which has got the partial X2 _—ax—b=0

quotients are equal to 8 in the symmetric part of period

length by considering {J-[17]). Also, Yokoi's invariants ~ For our sequence, it can be written for each element of

are calculated and presented in tables. sequence as follows:

In any k = Q(+/d) real quadratic number field, integral

basis element of algebraic integers ring in real quadratic Re = 1 [(4+ﬁ7)k_ (4— V17K
fields is determined by 2V/17

Wy = vd = [ao;a1,82,..-,8(g)_1, 280 in the case of
d = 2,3(mod4) where? = ¢(d) is the period length of
continued fraction expansion. The fundamental ggiof Remarkiet {R,} be the sequence defined as in Definition
real quadratic number field is also denoted byl Then, we state the following:

&4 = (tg + ugv/d)/2 > 1. Also, Yokoi's invariants are

fork>1

t w2 R, — 0(mod 4) n= 0(mod2);
expressed byg = Hu_dZ” andmy = Ht_d” where[[X]] ] 1(mod 4) n= 1(mod).
d d
represents the greatest integer less than or equal to forn> 0.
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Lemma 1For a square-free positive integer d congruent with ¢ = ¢(d). Moreover, we can get fundamental ugit

to 2,3 modulo 4, we put
Wq = v/d, ag = [Wq], Wr = ap +Wq. Then w ¢ R(d), but
wr € R(d) holds. Moreover for the period= ¢(d) of wg,

we get Ww = [2ap,a1,...,a0 1] and

Wy = [ag,aq,...,a-1,280] Furthermore, let
PWr+Pr—

— M — [2%’a1’...’a€71’WR] be a

QWr+ Q-1 .
modular automorphism of gy then the fundamental unit

&4 of Q(+/d) is given by the following formula:

tg+ ugvd
& = % = (a0+vVd)Qy) + Qua_1) > 1

and

ta = 280.Qy(d) +2Q¢(d)-1, Ud = 2Q(a)-
where Q is determined by @=0,Q1 =1 and Q1 =
aQi+Q1,(i>1).

ProofProof is omitted in [L6], Lemma 1]

Lemma2Llet d be the square free positive integer

congruent to 2,3 modulo 4. We will consideg which

coefficients of fundamental unit tuy as follows:
€9 = (R +4)R +Ry_1+ RV,
tg = 2(UR/ + 4R, + 2Ry and g = 2R;.

ProoflLet ¢ > 2 be the positive integer. Using Remark, we
getR, = 1(mod4) andR,_; = O(mod4) for ¢ = 1(mo4)
and ¢ = 3(mod4). By consideringu is odd positive
integer and substituting these equalities into
d= p2R2+ (8R,+Ry_1) + 17, we getd = 2(mod4).
Also, we have thaR, = 0(mod4) andR,_1 = 1(mod4)
for both¢ = 0(mod4) and? = 2(mod4). By consideringu
is odd positive integer and substituting these equalities
into thed = p2RZ + 1(8R, + Ry_1) + 17, sod = 3(mod4)
holds.

On substitutingyy into thewg, we get

the

Wr= (UR,+4)+ |UR;+4;8,8,...,8,8+ 2uR,
——
(-1

has got partial constant elements repeated 8s in the casand we have

of period/ = ¢(d). If we let & denote the @= [[v/d]] the
integer part of w for d congruent to 2,3(mod 4), then we
have continued fration expansions

Wy = v/d = [0, 81,8, -, 8y(q)_1,8(q)] = [20; 8,8, , 8, 2a)

for guadratic irrational numbers and
WR = @ + Vd = [2a,8,...,8] for reduced quadratic
irrational numbers.

In the continued fracton w = ap + vd =
[b1,by,...,bn,...] =[220,8,...,8,...], k = 2a0R« + R«_1
and Q = R¢ are determined in the continued fraction
expansion wheregRand Q are two sequences defined by:

P.1=0,R=1P1= bj+1.Pj +Pj_1,

Q1=1Q=0,Qj;1=Dbj11.Qj +Qj_1,
forj>0

1
Wr= (2UR/ +8)+—
R(IJE )8—|— 1

8+

-1
‘o L
8+ g

1

1
=(2UR +8)+=  —
( IJR[ ) 8+...+WR

Using Lemmal. and Lemma2. about the properties of
continued fraction expansion, we get

Ri-1Wr+Rr—2

WR = (2UR, + 8) +
R = (2uR,+8) RWR I R1

and by using Definitionl into the above equality, we
obtain,

WE — (2UR,+8)wr — (1+2uRy_1) =0

Prooflt can be proved easily by considering references

([71-[12).

3 Main Results

Theorem 1Let d be a square free positive integer ahd
be a positive integer satisfying that> 2. Suppose that
parameterizations of d is

d=u?Re+ H(8R +Ry_1) +17

for 4 > linteger. Ifu is odd positive integer, we have=l
2,3(mod4) and

wy = |UR/+4:8,8,...,8,84+2uRy
-1

This requires thatvg = (LR, +4) + V/d sincewg > 0.
Also, using Lemm&, we get

Wg=+vd=|uR/+4;88,...,82uR +8
N—_——
(-1

and? = ¢(d). This completes the first part of theorem.
Now, to determiney, ty andug using Lemma, we get

Q=1=R,Q@=a1.Q1+Q=Q=8=R

Q3 =aQ2+Q1 =8R+R; =65=R3,Q4 =528=Ry, - --

So, this implies thatQ; = R by using mathematical
induction¥ i > 0. If we substitute these values of the
sequence into the
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(a0 + Vd)Qya) + Qua)-1 > 1 and
rearranging, we will get
g4 = (MR +4)R +Rr_1+ RV,
tqg = 2(UR; +4)R, + 2Ry_1 andug = 2R,.

Corollary 1.1f d is a square free positive integer arids
a positive integer satisfying that > 2 as well as
parametrization of d as follows:

d=R;+2(4R + Ry 1) +17
then, we have e 2,3(mod4) and

wy= |R/+4;8,8,...,8,2uR,+8
N—_——
-1
with ¢ = ¢(d). Also, fundamental unity, coefficients of
fundamental unitg, ug and Yokoi invariant as follows:
a4 = (Re+ 4R +R_1+ RV,
ts =2(Ri+4)R,+2R,_;and yy = 2R,

Also, we have value of Yokoi’'s d-invarianj e 1.

ProofThis corollary is obtained by using Theoremvith

takingu = 1. So, we should determine value of the Yokoi's
2

. . u .
invariantmy. We know thatmy = t_d from H. Yokoi’s

d
references. If we substitutg anduy into themy, then we

get
ug
=[]
increasing

R 2
1,984 < AR

2R+ 8R/+ 2R
obtainmy = 1 for ¢ > 2 owing to definition of my.
Besides, Tabld is given as numerical illustrates. (In this
table, ¢(d) = 2,3,6,7,8 are ruled out sincel is not a
square free positive integer in these periods).

4R .
HZR,%+8R5+2R4_1H 7

since sequence and

< 2 for ¢ > 2. Therefore we

Corollary 2.1f d is a square free positive integer arids
a positive integer satisfying that > 2 as well as
parametrization of d is

d=9R?+24R,+6R, 1 +17
then, we have e 2,3(mod4) and

Wg = |3R/+4,8,8,...,8,84+6R,
——
=1

with ¢ = ¢(d). Additionally, we obtain fundamental uii,
coefficients of fundamental unit tiy as follows:

& = (3Rg +4)Rg +Ri_1+ R[\/a,

ty = 2(3R +4)R,+2R,_1 and yy = 2R,
Also, we have Yokoi's d-invariant valug & 1

ProofThis corollary is obtained by using theoreifor

U = 3. In the same manner we obtaig = 1 for £ > 2
owing to definition ofny. Besides, following Tabl& gives

an example for this corollary. (In this table, we also rule
out/(d) = 3 sinced is not a square free positive integer in
this period).

Theorem 2Let d be the square free positive integer a@nd
be a positive integer holding thét= 0O(mod2) and? > 1.
We assume that parametrization of d is

u?R2

d:4

+ (4R +Ry-1)p +17.
for p > 0 positive integer. Iy = 1(mod4) positive integer
then d= 2(mod4) and

g [ 15

+4;8,8,...,8,uw+8]
2 N——

-1

holds for¢ = ¢(d). Moreover, the following equalities also
hold:

e — (MR 4R Vad
d={—> T v+ R—1 ) +Re

tg = [JR/?+8R5+2R5_1 and y = 2R,
for g4,tg and uy.

ProofLet ¢ = O(mod2) and ¢ > 1 hold. If £ = O(mo?)
holds then we haveR, = O(mod#4),R,_; = 1(mod4).
Considering 4 = 1(mod4) positive integer and
substituting these equivalent and equations into the
parameterization a then we getl = 2(mod4).

Using Lemma2, we put

R R -
wr=HY a4y B 488 8 uR 18],
2 2 SN——
01
we get
1
Wr= (UR,+8) + 1
o
8+
1 1 1
—(UR+8) F: i
(MR, + )+8+---+8+WR

Now by using Lemmd and Lemma& about the properties
of continued fraction expansion, we get

Ri-1Wr+Rr—2

Wr = (UR/+8) +
R= (MR +8) RWR I Ri1

by using induction and property of continued fraction
expansion and the Definitioh into the above inequality,
we obtain

WA — (LR +8)Wr — (1+ pR,_1) =0.
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Table 1: ???
d od) | my Wy &
283155 4 1 [532,8,8,8,1064 280961+ 528,/283155
18430906 5 1 (4293 8,8,8,8,8586 18413205+ 4289,/18430906
348729821225306 9 1 [186743098,8,...,373486183 348729818926393 18674305/348729821225306
23010874291891347| 10 1 | [1516933568,8,...,8,303386712 23010873666443617 151693352/23010874291891347
1518368901199652330 11 1 | [12322211258,8,...,246444225) | 15183688061190744771232221121/151836890119965233(

Table 2: 2?7
d f(d) Ng Wq &d
791 2 1 [28,8,56) 225+8y/791
2522135 4 1 (15888,8,8,8,3176 838529+ 528,/2522135
165665810 5 | 1 [128718,8,...,8,209048 55204247+ 4289,/165665810
10925292311 6 | 1 [1045248.8,...,8,209048 3641620449 34840,/10925292311
720853848002 7 1 [8490318,8, ... ,8,1698062 240283449119 283009,/ 720853848002
47565024325655 8 | 1 [68967408,8,...,8,13793480 15854998629889 2298912/47565024325655
3138567467074034| 9 1 | [5602291988,...,8,112045838 1046189078695207 18674305/ 3138567467074034
207097861121649431 10 | 1 | [4550800608,8,...,8,910160120 | 69032619748435425151693352/207097861121649431
Table 3: 2?7
d £(d) | my Wy &d
66 2 1 8;8,16] 65+8,/66
71890 4 3 [268;8,8,8,536) 141569+528/66
303600066 6 | 3 [174248,8,8,8,8,34848 607056449+3484(303600066
25047334025145016018 12 | 3 | [50047311648,8,...,8,10009462328 | 50094668009019961601+100094623Z5047334025145016018
This requires thawg = % +4++/d sincewr > 0.  We assume that parameterizations of d is
Considering Lemma, we get 2

R
d= ZE+4R5+R571+17

—Vi- PR amE TR
wa = Vd = 2 +4'w’“R‘+8 Then we get & 2(mod4) and

(-1

R+8 o«
and/ = ¢(d). This completes the first part of theorem. Now Wa = { 2 88...8R+ 8]
we should detterminey,ty and ug using Lemmal, we -1
have
. and/ = ¢(d). Moreover, we have following equalities:
Q=1=R;,Qx=a1.01+Q = QR=8=Ry, R2
& = (—F + 4R, + R£_1> + Rg\/a
Qs =aQ2+Q1=8R+ Ry =65=R3,Q4 =528=Ry, - 2
This implies that @ = R by using mathematical tg = R[2,+ 8R/+2R/_; and yy = 2R,
inductionVi > 0. On substituting these values of sequence, 4
, tg + ugv/d 1,if0=2;
into theey = ———— = (ao+ Vd)Qya) + Quay-1 > 1 my = {37 if0>2
and rearranged, we get
ProofWe obtain this corollary by taking = 1 in Theorem
R? 2. In a similar way, we get,
e = (FoL 4 4R +R_) +RVA Y. we g
2 8 2R3\ !
4>4 1+ —+ — > 3,938
ta = RF+8R + 2R, 1 andpg = 2R, ( R F )

for g4,tg andug. for| > 4. Therefore, we obtain
Corollary 3.Let d be the square free positive integer &nd - 4R[2, _3
be a positive integer holding thédt= 0(mod2) and¢ > 1. Mo = RZ+8R +2R;_1]]
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for ¢ > 4. Table3 shows some numerical examples for [17] K. Tomita and K. Yamamuro, Lower Bounds for
Corollary3. (In this table we rule out(d) = 8,10 sinced Fundamental Units of Real Quadratic Fields, Nagoya Math.

is not a square free positive integer in these periods). J.,166, 29-37 (2002).
[18] K. S. Williams and N. Buck, Comparison of the lengths of

the continued fractions of D and%(l+ VD), Proc. Amer.
Math. Soc.,120(4) 995-1002 (1994).
[19] H. Yokoi, The fundamental unit and class number one

) . . ) problem of real quadratic fields with prime discriminant,
In this paper, we introduced the notion of real quadratic  Nagoya Math. J120, 51-59 (1990).

field structures such as continued fraction expansionspo] H. Yokoi, A note on class number one problem for real
fundamental unit and Yokoi invariants in the terms of quadratic fields, Proc. Japan Ac&8,,22-26 (1993).
special sequence. We established a practical method so #81] H. Yokoi, The fundamental unit and bounds for class

4 conclusion

to rapidly determine continued fraction ofwg, numbers of real quadratic fields, Nagoya Math124, 181-
fundamental unitey and Yokoi invariantsng,my for 197(1991)
classified such real quadratic number fields. [22] H. Yokoi, New invariants and class number problem in rea

quadratic fields, Nagoya Math. 132, 175-197 (1993).
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