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The effect of viscosity of an infinite fluid lying over the surface of micropolar honey-

comb half space has been investigated due to a concentrated source. The expressions

of displacement components, microrotation, force stress and couple stress are obtained

in the transformed domain after applying the integral transforms. A numerical inver-

sion method has been used to obtain the resulting expressions in physical domain. As

a special case the deformation caused due to a moving load has been deduced from the

present problem by changing some parameters. The numerical results are presented

graphically. Some particular cases have also been derived and these results have been

compared with already established results.
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1 Introduction

Materials with a cellular microstructure are frequently found in nature. In industry,

synthetic cellular materials are increasingly used to make light and stiff structures or struc-

tures that need to absorb energy during their service lifetime. Cellular materials have

several other attractive nonstructural features such as excellent dielectric properties and

low thermal and electric conductivities. These features allow different conductive grades

to be manufactured. For the purpose of analysing mechanical behaviour, these materials

can be broadly categorized as two-dimensional cellular solids (honeycombs) or as three-

dimensional cellular structures (foams).

Modern engineering structures are often made up of materials possessing an internal

structure. Polycrystalline materials, materials with fibrous or coarse grain structure come
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in this category. Classical elasticity is inadequate to represent the behavior of such mate-

rials. The analysis of such materials requires incorporating the theory of oriented media.

For this reason, micropolar theories were developed by Eringen (1966a, 1966b) for elastic

solids, fluids and further for non-local polar. A micropolar continuum is a collection of

interconnected particles in the form of small rigid bodies undergoing both translational and

rotational motions.

The plane deformations of a honeycomb can involve both bending and stretching of cell

walls. Thus at the perimeter of any cell in a regular honeycomb there are bending moments

as well as normal and shear forces acting on the cell walls. For a homogenized continuum

model of the honeycomb, these stress resultants on the cell boundary translate to couple

stresses in addition to normal and shear stresses. Gibson and Ashby (1988) have summa-

rized the mechanical properties of a variety of honeycombs and foams. Investigations into

the effects of elastic properties of non-periodic honeycombs were discussed by Silva et

al. (1995). Klintworth and Stronge 1988) studied elastic buckling and plastic collapse of

metallic hexagonal honeycombs and concluded that yielding occurs at stresses below those

given by the plastic analysis. Wang and Stronge (1999) developed a micropolar theory for

two dimensional stresses in elastic honeycombs.

Papka and Kyriakides (1994, 1998) have examined the quasi-static compressive crush-

ing and response of metallic and polycarbonate honeycombs subjected to both in-plane uni-

axial and biaxial compressive loading. Triplett and Schonberg (1998) discussed the effect

of differences in honeycomb material properties on static and dynamic response. Chung

and Waas (2002) derived the sensitivities of the in-plane macroscopic linear stiffness of per-

fectly elliptical-cell honeycombs to geometric imperfections through an analytical method

and a finite-element-based numerical solution. Huang, Yan and Yang (2002) investigated

the relation between the Poisson’s ratio of a re-entrant honeycomb structure by varying

the micropolar material constants. Liang and Chen (2006) investigated the collapse of a

sandwich panel or beam with a square cell honeycomb. Mora and Waas (2007) studied

the micropolar elastic representation of a honeycomb structure using the configuration of a

thick plate with a rigid circular inclusion, and in conjunction with experimental measure-

ments of the deformation response. Chung and Waas (2009) derived a set of expressions

for the characterization of circular cell honeycombs as micropolar elastic solids.

The deformation at any point of the medium is useful to analyze the deformation field

around mining tremors and drilling into the crust of the earth. It can also contribute to the

theoretical consideration of the seismic and volcanic sources since it can account for the

deformation fields in the entire volume surrounding the source region.

In the present paper we determine the components of displacement, microrotation and

stresses in a micropolar honeycomb half-space with an overlying viscous fluid due to con-

centrated source acting along the interface of two media. The solution is obtained by intro-

ducing potential functions after employing integral transformation technique. The problem



606 Praveen Ailawalia

of moving load is derived from the investigation by suitable change of parameters. The

deformation due to other sources such as strip loads, time harmonic loads, etc. can also be

similarly obtained.

2 Formulation of the problem

We consider a homogeneous, micropolar honeycomb solid half-space (medium I) with

an overlying viscous fluid (medium II). A rectangular coordinate system(x, y, z) having

origin on the surfacey = 0 andy− axis pointing vertically into medium I is considered. A

normal point force is assumed to be acting at the origin along the interface on they−axis.

The stress-strain equations in two dimensional micropolar theory are written as (Erin-

gen; 1966, 1968),

[σ] =




t11

t22

t12

t21

m13

m23




= [D][ε] (2.1)

where

[ε] = [ε11, ε22, ε12, ε21, φ3,1, φ3,2]T , (2.2)

t11, t22, t12, and t21 are the force stresses,m13 and m23 are couple stresses,

ε11, ε22, ε12, ε21 are micro-strain tensor andφ3 is the microrotation vector.

The strain-displacement relations are as follows (Yang and Huang, 2001),

[ε] =




ε11

ε22

ε12

ε21

φ3,1

φ3,2




=




∂u1
∂ x
∂u2
∂ y

∂u2
∂ x − φ3

∂u1
∂ y + φ3

∂φ3
∂ x
∂φ3
∂ y




(2.3)

where whereu1 andu2 are the displacements in thex andy directions.

The [D] matrix, in equation (1) is defined as material property matrix expressed as

follows:

In the micropolar plane strain problem,ε11, ε22, ε12, ε21 andφ3 are the only non-zero
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Figure 2.1: Geometry of the problem

strains in equation (3).

[D] =




λ + 2µ∗ + K λ 0 0 0 0
λ λ + 2µ∗ + K 0 0 0 0
0 0 µ∗ + K µ∗ 0 0
0 0 µ∗ µ∗ + K 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ




(2.4)

whereλ, µ∗,K, α andβ are micropolar constants and have the relationµ = µ∗ + K/2
(Cowin, 1970).

Following Fehler (1982), the equations of motion in a viscous medium are,

(K0 +
4
3
η

∂

∂ t
)∇(∇.

−→
V )− η

∂

∂ t
∇(∇×−→V ) = ρ0 ∂2−→V

∂ t2
, (2.5)

whereK0 is the bulk modulus,η is the fluid viscosity,ρ0 is the fluid density and
−→
V is the

displacement in viscous medium.

The stress and displacement relation in viscous medium are given by

τmn = (K0 − 2
3
η

∂

∂ t
)Vk,kδmn + η

∂

∂ t
(Vm,n + Vn,m).m, n = 1, 2.3. (2.6)

Using (3) and (4) in equation (1) and using the equation of motion,

tji,j = ρüi, (2.7)

we obtain the equations of motion for a micropolar honeycomb structure in two dimen-

sional form as,

(λ + 2µ∗ + K)
∂2 u1

∂ x2
+ (µ∗ + K)

∂2 u1

∂ y2
+ (λ + µ∗)

∂2 u2

∂ x∂ y
+ K

∂φ3

∂ y
= ρ

∂2u1

∂ t2
, (2.8)
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(µ∗ + K)
∂2 u2

∂ x2
+ (λ + 2µ∗ + K)

∂2 u2

∂ y2
+ (λ + µ∗)

∂2 u1

∂ x∂ y
−K

∂φ3

∂ x
= ρ

∂2u2

∂ t2
, (2.9)

γ∇2φ3 + K(
∂u2

∂ x
− ∂u1

∂ y
)− 2Kφ3 = ρj

∂2φ3

∂ t2
. (2.10)

3 Solution of the Equations

The displacement components in medium I are related to the potential functions

q(x, y, t) andψ(x, y, t) as

u1 =
∂ q

∂ x
+

∂ ψ

∂ y
, u2 =

∂ q

∂ y
− ∂ ψ

∂ x
. (3.1)

Using (11) in equations (8)-(10), we obtain

[∇2 − ρ

(λ + 2µ∗ + K)
∂2

∂ t2
]q = 0, (3.2)

[∇2 − ρ

(µ∗ + K)
∂2

∂ t2
]ψ +

K

(µ∗ + K)
φ3 = 0, (3.3)

[∇2 − 2K

γ
− ρj

γ

∂2

∂ t2
]φ3 − K

γ
∇2ψ = 0, (3.4)

Introducing dimensionless variables defined by

x′ =
x

h
, y′ =

y

h
, φ′3 =

j

h2
φ3, q′ =

q

h2
, ψ′ =

ψ

h2
, [tij , τij ]′ =

[tij , τij ]
λ

,

m′
ij =

mij

λh
, t′ =

c1

h
t, v′ =

v

h2
, ϕ =

ϕ

h2
, F ′ =

F

λ
, (3.5)

whereh is a parameter having dimension of lengthc2
1 = λ∗+2µ∗+K

ρ , in equations (12)-(14)

and then applying the Laplace transform with respect to time ’t’ defined by

[q̄, ψ̄, φ̄3](x, y, p) =
∫ ∞

o

e−pt[q, ψ, φ3](x, y, t)dt, (3.6)

and then the Fourier transform with respect to ’x’ defined by

[q̃, ψ̃, φ̃3](ξ, y, p) =
∫ ∞

−∞
eıξx[q̄, ψ̄, φ̄3](x, y, p)dx, (3.7)

on the resulting equations we get,

[
d2

dy2
− (ξ2 + p2)]q̃ = 0, (3.8)

[
d2

dy2
− (ξ2 +

ρc2
1

µ∗ + K
p2)]ψ̃ +

Kh2

j(µ∗ + K)
φ̃3 = 0, (3.9)
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[
d2

dy2
− (ξ2 +

2Kh2

γ
+

ρjc2
1

γ
p2)]φ̃3 − Kj

γ
[
d2

dy2
− ξ2]ψ̃ = 0, (3.10)

Eliminatingφ̃3 from (19) and (20), we get

[
d4

dy4
+ A∗

d2

dy2
+ B∗]ψ̃ = 0, (3.11)

where

A∗ = −(a11 + a13 − a12a14), B∗ = a11a13 − a12a14ξ
2,

a11 = ξ2 +
ρc2

1

µ∗ + K
p2. a12 =

Kh2

j(µ∗ + K)
,

a13 = ξ2 +
2Kh2

γ
+

ρjc2
1

γ
p2, a14 =

Kj

γ
. (3.12)

The solutions of equations (18) and (21) satisfying the radiation conditions are

q̃ = D1exp(−q1y), (3.13)

ψ̃ = D2exp(−q2y) + D3exp(−q3y), (3.14)

φ̃3 = a∗2D2exp(−q2y) + a∗3D3exp(−q3y), (3.15)

where

q2
1 = ξ2 + p2, q2

2,3 =
−A∗ ±√A∗2 − 4B∗

2
,

a∗2,3 =
1

a12
(a11 − q2

2,3). (3.16)

Similarly we obtain the solution for equations of viscous medium (medium II) as

ṽ = D4exp(q4y), (3.17)

ϕ̃ = D5exp(q5y), (3.18)

whereṽ(x, y, t) andϕ̃(x, y, t) are potential functions in the viscous medium such that

V1 =
∂ v

∂ x
+

∂ ϕ

∂ y
, V2 =

∂ v

∂ y
− ∂ ϕ

∂ x
. (3.19)

and

q2
4 = ξ2 +

3ρ0c2
1p

2h

3K0h + 4ηc1p
, q2

5 = ξ2 +
ρ0c2

1p
2h

ηc1
. (3.20)
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4 Boundary conditions

We consider viscous fluid/micropolar elastic honeycomb interface at which a concen-

trated normal load is acting at the origin of the Cartesian coordinate system. Mathemati-

cally the boundary conditions at the interfacey = 0 are given by,

t22 = τ22 − Fδ(x)δ(t). t21 = τ21, m23 = 0, u1 = V1, u2 = V2. (4.1)

whereδ() is Dirac delta function.

Using the dimensionless quantities defined by (15) on the boundary conditions (31), we

obtain the boundary conditions in dimensionless form with primes. After suppressing the

primes for convenience and applying Laplace and Fourier transform defined by (16) and

(17) on the resulting dimensionless boundary conditions, we obtain the boundary condi-

tions in the transformed domain.

With the help of (1)-(4), (6), (11), (15), (23)-(25), (27) and (28) in the transformed

boundary conditions, we obtain the expressions for displacement components, microrota-

tion, force stress and tangential couple stress as,

ũ1 =
F

∆
[iξ∆1e

−q1y − q2∆2e
−q2y + q3∆3e

−q3y] (4.2)

ũ2 =
F

∆
[q1∆1e

−q1y + iξ(∆2e
−q2y −∆3e

−q3y)] (4.3)

φ̃3 =
F

∆
[a∗2∆2e

−q2y − a∗3∆3e
−q3y)] (4.4)

˜t21 = −F

∆
[s1∆1e

−q1y − s2∆2e
−q2y + s3∆3e

−q3y] (4.5)

˜t22 = −F

∆
[r1∆1e

−q1y − r2∆2e
−q2y + r3∆3e

−q3y] (4.6)

m̃23 = − Fγ

jλ∆
[a∗2q2∆2e

−q2y − a∗3q3∆3e
−q3y] (4.7)

where

∆ =
4∑

i=1

(−1)i+1figi, ∆1 = a∗3q3f12 − a∗2q2f11, ∆2 = a∗3q3f21,

∆3 = a∗2q2f21, f1 = a∗2q2r3 − a∗3q3r2, f2 = a∗2q2s3 − a∗3q3s2,

f3 = q2q3(a∗2 − a∗3), f4 = iξ(a∗2q2 − a∗3q3),

g1 = s1(ξ2 − q4q5) + s4(ξ2 + q1q5) + iξs5(q1 + q4),

g2 = r1(ξ2 − q4q5) + r4(ξ2 + q1q5) + iξr5(q1 + q4),

g3 = r1(iξs4 − q4s5)− r4(iξs1 − q1s5)− r5(q1s4 − q4s1),
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g4 = r1(iξs5 + q5s4)− r4(s1q5 − iξs5)− iξr5(s1 + s4),

f11 = s3(ξ2 − q4q5)− q3(iξs4 − q4s5)− iξ(s4q5 + iξs5),

f12 = s2(ξ2 − q4q5)− q2(iξs4 − q4s5)− iξ(s4q5 + iξs5),

f21 = s1(ξ2 − q4q5) + s4(ξ2 + q1q5) + iξs5(q1 + q4),

r1 = −ξ2 + q2
1

λ + 2µ∗ + K

λ
, r2,3 = −iξ

(2µ∗ + K)
λ

q2,3,

r4 =
1
λ

[(K0 +
2
3h

ηc1p)q2
4 + ξ2(

2
3h

ηc1p−K0)]

r5 = −2iξηc1p

λh
q5, s1 = iξq1

(2µ∗ + K)
λ

,

s2,3 =
1
λ

[µ∗ξ2 + (µ∗ + K)q2
2,3 +

Kh2

j
a∗2,3]

s4 =
2iξηc1p

λh
q4, s5 = −ηc1p

λh
(ξ2 + q2

5). (4.8)

5 Particular cases

5.1

Neglecting micropolarity effect in medium I i.eα = β = γ = K = j = 0, µ∗ = µ

,we obtain the components of displacement and stresses for an elastic medium at viscous

fluid/elastic solid half-space interface as,

ũ1 =
F

∆∗ [iξ∆∗
1e
−q′1y − q′2∆

∗
2e
−q′2y] (5.1)

ũ2 =
F

∆∗ [q′1∆
∗
1e
−q′1y + iξ∆∗

2e
−q′2y] (5.2)

˜t21 = − F

∆∗ [s∗1∆
∗
1e
−q′1y − s∗2∆

∗
2e
−q′2y] (5.3)

˜t22 = − F

∆∗ [r∗1∆∗
1e
−q′1y − r∗2∆∗

2e
−q′2y] (5.4)

where

∆∗ =
6∑

i=1

(−1)i+1f∗i , ∆∗
1 = s∗2(ξ

2 − q4q5)− q′2(iξs4 − q4s5)− iξ(s4q5 + iξs5),

∆∗
2 = s∗1(ξ

2 − q4q5) + q′1(iξs5 + s4q5)− iξ(iξs4 − s5q4),

f∗1 = (ξ2 − q4q5)(r∗1s∗2 − r∗2s∗1), f∗2 = (iξs4 − q4s5)(r∗1q′2 − iξr∗2),

f∗3 = (r∗2q′1 − iξr∗1)(s4q5 + iξs5), f∗4 = (ξ2 − q′1q
′
2)(s4r5 − s5r4),
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f∗5 = (iξs∗1 + q′1s
∗
2)(r4q5 + iξr5), f∗6 = (q′2s

∗
1 − iξs∗2)(r5q4 − iξr4),

q
′2
1 = ξ2 +

ρc2
1p

2

λ + 2µ
, q

′2
2 = ξ2 +

ρc2
1p

2

µ
, s∗1 =

2iξµ

λ
q′1,

s∗2 =
µ

λ
(ξ2 + q

′2
2 ), r∗1 =

(λ + 2µ)
λ

q
′2
1 − ξ2, r∗2 = −2iξµ

λ
q′2. (5.5)

5.2

Neglecting viscous effect in medium II, we obtain the components of displacement,

microrotation and stresses for a micropolar elastic honeycomb at non-viscous fluid/ mi-

cropolar elastic honeycomb half-space interface as,

ũ1 =
F

∆∗∗ [iξ∆∗∗
1 e−q1y − q2∆∗∗

2 e−q2y + q3∆∗∗
3 e−q3y] (5.6)

ũ2 =
F

∆∗∗ [q1∆∗∗
1 e−q1y + iξ(∆∗∗

2 e−q2y −∆∗∗
3 e−q3y)] (5.7)

φ̃3 =
F

∆∗∗ [a∗2∆
∗∗
2 e−q2y − a∗3∆

∗∗
3 e−q3y)] (5.8)

˜t21 = − F

∆∗∗ [s1∆∗∗
1 e−q1y − s2∆∗∗

2 e−q2y + s3∆∗∗
3 e−q3y] (5.9)

˜t22 = − F

∆∗∗ [r1∆∗∗
1 e−q1y − r2∆∗∗

2 e−q2y + r3∆∗∗
3 e−q3y] (5.10)

m̃23 = − Fγ

jλ∆∗∗ [a∗2q2∆∗∗
2 e−q2y − a∗3q3∆∗∗

3 e−q3y] (5.11)

where

∆∗∗ =
3∑

i=1

(−1)i+1f∗∗i , ∆∗∗
1 = q′4(a

∗
2q2s3 − a∗3q3s2),

∆∗∗
2 = −a∗3q3s1q

′
4, ∆∗∗

3 = −a∗2q2s1q
′
4,

f∗∗1 = s1q
′
4(a

∗
3q3r2 − a∗2q2r3), f∗∗2 = (r1q

′
4 + r∗4q1)(a∗3q3s2 − a∗2q2s3),

f∗∗3 = iξs1r
∗
4(a∗2q2 − a∗3q3), q

′2
4 = ξ2 +

ρ0c2
1p

2

K0
, r∗4 =

K0

λ
(ξ2 − q

′2
4 ). (5.12)

5.3

Neglecting micropolarity effect in medium I and viscous effect in medium II, we obtain

the components of displacement and stresses for an elastic solid at non-viscous fluid/ elastic

solid half-space interface as,

ũ1 =
F

∆∗∗∗ [iξ∆∗∗∗
1 e−q′1y − q′2∆

∗∗∗
2 e−q′2y] (5.13)

ũ2 =
F

∆∗∗∗ [q′1∆
∗∗∗
1 e−q′1y + iξ∆∗∗∗

2 e−q′2y] (5.14)
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˜t21 = − F

∆∗∗∗ [s∗1∆
∗∗∗
1 e−q′1y − s∗2∆

∗∗∗
2 e−q′2y] (5.15)

˜t22 = − F

∆∗∗∗ [r∗1∆∗∗∗
1 e−q′1y − r∗2∆∗∗∗

2 e−q′2y] (5.16)

where

∆∗∗∗ = s∗1(r
∗
2q′4 − iξr∗4)− s∗2(r

∗
1q′4 + r∗4q′1), ∆∗∗∗

1 = −s∗2q
′
4. ∆∗∗∗

2 = s∗1q
′
4. (5.17)

5.4

Neglecting micropolarity effect in medium I and lettingK0, η, ρ0 → 0 in medium

II, we obtain the transformed components due to a concentrated source acting on the free

surface of elastic half-space.

6 Steady state response due to moving load at the interface of viscous
fluid and micropolar elastic honeycomb.

We consider a concentrated normal point load moving along the interface of viscous

fluid (medium II) and micropolar elastic honeycomb (medium I). The rectangular cartesian

coordinates are introduced having origin on the surfacey = 0 and y− axis pointing

vertically into medium I. Let us consider a pressure pulseP (x + Ut) which is moving

with a constant velocityU in the negativex direction for an infinite long time so that a

steady state prevails in the neighbourhood of the loading as seen by the observer moving

with the load (Figure 2).

                                                      Viscous Fluid
  (medium II)

         
O           U                          F                   x               

Micropolar elastic honeycomb
(medium I)

     y

Figure 6.2: Steady state response at the interface

Using Galilean transformations (Fung, 1968)x∗ = x + Ut, y∗ = y, t∗ = t whereU

is the magnitude of moving load velocity at the interface of viscous fluid and micropolar

elastic honeycomb and introducing dimensionless quantities defined by (15) and applying

Fourier transforms defined by (17) in the resulting equations, we obtain the results in case
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of moving load at the interface of viscous fluid and micropolar elastic honeycomb. The

boundary conditions in this case are

t22 = τ22 − Fδ(x∗)δ(t). t21 = τ21, m23 = 0, u1 = V1, u2 = V2. (6.1)

whereP (x + Ut) = Fδ(x∗).

 

By changingp → −iξ U
c1

in the expressions (22), (26), (30), (38), (43) and (50), we

obtain

(a) The expressions given by (32)-(37) for displacement, microrotation, stresses and

couple stress for micropolar elastic honeycomb at viscous fluid/micropolar elastic honey-

comb interface in case of moving normal point load. Kumar and Ailawalia (2005) obtained

these expressions (takingµ∗ = µ) for different load velocities.

(b) The transformed components given by (39)-(42) for displacement and stresses for

an elastic medium at viscous fluid/elastic solid half-space interface due to moving point

load at the interface.
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(c) The expressions given by (44)-(49) for displacement, microrotation, stresses and

couple stress for micropolar elastic honeycomb at non-viscous fluid/micropolar elastic hon-

eycomb interface for a moving normal point load. Kumar and Ailawalia (2004) derived

these expressions (takingµ∗ = µ) for subsonic, transonic and supersonic load velocities.

(d) The components given by (51)-(54) for displacement and stresses for an elastic

medium at non-viscous fluid/elastic solid half-space interface due to a moving point load

along the interface of two media (Kennedy and Hermann, 1973).

(e) The transformed components due to a moving concentrated load acting on the free

surface of elastic half-space after neglecting micropolarity effect in medium I and letting

K0, η, ρ0 → 0 in medium II (Cole and Huth, 1958).

7 Inversion of the transform

The transformed displacements, microrotation, stresses and couple stress are functions

of y, the parameters of Laplace and Fourier transformsp and ξ respectively, and hence

are of the formf̃(ξ, y, p) . To get the function in the physical domain, we first invert the
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Fourier transform and then Laplace transform by using the method applied by Sharma and

Kumar (1997).

8 Numerical results and discussions

For numerical calculations we take aluminium epoxy composite (Gauthier, 1982,

pp.459) as micropolar elastic solid (medium I).

ρ = 2.19× 103Kg/m3. λ = 7.59× 109N/m2, µ = 1.89× 109N/m2,

K = 0.0149× 109N/m2, γ = 0.0268× 105N, j = 0.00196× 10−4m2,

Following White (2003) we take the physical constants for a viscous fluid as,

Fluid Densityρ0(Kg/m3) Viscosityη(Kg/msec) Bulk ModulusK0(N/m2)
Benzene 881 6.51x10−4 1.4x109

Kerosene 804 1.92x10−3 1.6x109

Glycerin 1260 1.49 4.34x109
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The values of normal displacementu2 , normal force stresst22 and tangential couple

stressm23 for a micropolar elastic honeycomb(MHC) and elastic solid(ES) have been stud-

ied and the variations of these components with distancex at the planey = 1.0 , F = 1.0
andh2 = 1.0× 10−19m2, for

 

(i) Micropolar elastic honeycomb (MHC) are shown by (a) solid line (—) with benzene

as viscous fluid. (b) solid line with centered symbols (*) with kerosene as viscous fluid.

(c) solid line with centered symbols (
⊙

) with glycerin as viscous fluid. (d) solid line with

centered symbols (•) with non-viscous fluid.

(ii) Elastic solid (ES) are shown by (a) dashed line (....) with benzene as viscous fluid.

(b) dashed line with centered symbols (*) with kerosene as viscous fluid. (c) dashed line

with centered symbols (
⊙

) with glycerin as viscous fluid. (d) dashed line with centered

symbols (•) with non-viscous fluid.

These variations are shown in Figure 3-8. The computations are carried out fory = 1.0
in the range0 ≤ x ≤ 10.0. In case of moving load, the calculations are carried out for the

case whenU < c1.
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9 Discussions for different cases

9.1 Dynamic load

The values of normal displacement for both MHC and ES lie in a very short range

when a non-viscous fluid lies over the surface of solid. With increase in viscosity of fluid

the variations becomes oscillatory in nature. There is not much difference in the values

of normal displacement for the three types of viscous fluids considered in the problem. It

could however be observed that the variations of normal displacement for an ES are less

oscillatory as compared to the variations obtained for MHC. These variations of normal

displacement are shown in figure 3. Similar to the discussions for normal displacement,

the values of normal force stress are also less in magnitude for a non-viscous fluid lying

over the surface of the medium (MHC and ES). The variations obtained in this case are

however less oscillatory for a particular medium in comparison to the variations obtained

for normal displacement. For an ES the values of normal force stress are very close to each

other for different viscous fluids considered in the problem but this difference is somewhat

significant in nature for MHC. These variations of normal force stress are shown in figure
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4. It could easily be observed from figure 5 that the variations of tangential couple stress

are quite similar to the variations of normal displacement with difference in magnitude.

 

9.2 Moving load

The variations of normal displacement for ES are almost linear in nature when a low

viscosity fluid lies over the surface of solid (Benzene and Kerosene). For MHC, the value

of normal displacement, near the point of application of source, is almost identical for low

viscosity fluids (Benzene, Kerosene and non-viscous fluid) but as the source moves away

from the point of application, the difference between these values becomes significant.

For a high viscous fluid (Glycerin) the variation of normal displacement for MHC is less

oscillatory. These variations of normal displacement on application of moving load are

shown in figure 6. The variations of normal force stress are similar to the variations of

normal displacement but with opposite nature. The values of normal force stress for MHC

(with low viscous fluid over the surface) first increase and then oscillate with increase in

horizontal distance. Here also the variation of normal force stress with high viscous fluid
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lying over the solid (MHC) is less oscillatory. These variations of normal force stress are

shown in figure 7.We may observe from figure 8 that the values of tangential couple stress

lie in a short range with a non-viscous fluid and a low viscous fluid overlying the half-

space. These variations are however highly oscillatory in nature when the source is moving

with a constant velocity along the interface of a high viscous fluid (Glycerin) and elastic

honeycomb.

10 Conclusion

The variations of all the quantities vary significantly with the viscosity of the fluid lying

over the surface of solid. Also micropolarity effect and the nature of source applied along

the interface of two media plays an important role in the study of deformation of a solid.
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