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The efficiency and security of most elliptic curve cryptosystems are based on exponenti-
ation. One such method could be the use of short addition-subtraction chain. This paper
proposes a new strategy to find sufficiently efficient doubling-free (SPA-resistant) short
addition-subtraction chain for an arbitrary integer by utilizing a precise golden ratio.
It is termed as the golden ratio addition-subtraction (GRASC) method. The proposed
method has attained 12% to 28% reduction in the average chain length compared to
other doubling-free addition chain methods known in the literature.
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1 Introduction

Elliptic curve cryptography was proposed independently by Koblitz [6] and Miller [10]
in 1985. It facilitates two parties to generate a secret key for communication across an inse-
cure channel. The most fascinating feature of elliptic curve cryptography is that it utilizes
much smaller key of size 160 bits to provide same level of security as other cryptographic
standards such as RSA of 1024 bits. The strength of elliptic curve cryptosystems (ECC) is
based on the infeasibility of the elliptic curve discrete logarithm problem. The major build-
ing block of most ECC is computation of the form kP known as the scalar multiplication or
exponentiation, where k is a positive integer (a secret scalar) and P is a point on an elliptic
curve defined over a finite field. Therefore, efficient and secure exponentiation methods
are vital in ECC. There are many exponentiation methods proposed in literature [1], such
as double-and-add using binary scalar representation, triple-and-add using ternary scalar
representation, use of addition chains etc. Most of these methods are dependable on the



124 Raveen R. Goundar et al.

secret scalar or exponent, hence through side-channel analysis it leaks secret information.
This is known as side-channel attack, recently discovered by Kocher et al. [7]. In one type
of side-channel attack, known as simple power analysis (SPA), the attackers uses the power
consumption to monitor each operations. Due to each type of operations having differ-
ence in power consumption, helps attackers to retrieve secret scalar. One way to overcome
SPA attack is the use doubling-free addition(-subtraction) chain [3]. It results in a fixed
sequence of operations, hence attackers could not detect any information through SPA.
Note that inversion of a point in elliptic curve cryptography is cost negligible, hence addi-
tion and subtraction operation involves same power consumption. The addition-subtraction
chain involving one doubling, that is 2, is unaffected by SPA attack since the computation
of 2P is required in almost all ECC.

Our contribution will deal with the construction of doubling-free short addition-
subtraction chain, enhancing efficiency and security in applications to ECC. Although
finding a minimal addition chain is known to be an NP-hard problem [9], we propose a
reasonably short addition-subtraction chain involving mostly of Fibonacci pattern. In fact,
there has been many strategies proposed in the literature [2,5,8,13] to obtain a sub-optimal
chain. Our propose method is dependable on two parameters, therefore it is considered
not to be sub-optimal. We experimentally select suitable parameters for a 160 bit inte-
ger for the best results. We will make comparison of our proposed method with the other
doubling-free addition chain methods known in the literature.

The rest of this paper is organized as follows. In section 2, we give a brief overview on
addition chains and Fibonacci sequence. In section 3, we propose a new strategy (GRASC)
for finding moderately short addition-subtraction chain. In section 4, we discuss our exper-
imental results and make comparisons with the previous methods in the literature.

2 Background

In this section, we briefly state some classic definitions used in the study of addition
chains and an overview on Fibonacci sequence. More details could be cited from [1, 4].

Definition 2.1. An addition chain computing an integer k is given by two sequences v =
(v0, . . . , v`) and w = (w1, . . . , w`) such that v0 = 1 , v` = k , vi = vr + vs , for all 1 ≤
i ≤ ` with respect to wi = (r, s) and 0 ≤ r, s ≤ i− 1 . The length of the addition chain is
`.

Definition 2.2. An addition-subtraction chain is similar to an addition chain except that the
coordinate vi = vr + vs is replaced by vi = vr + vs or vi = vr − vs.

Definition 2.3. The Fibonacci sequence is defined as Fn = Fn−1 +Fn−2 for n ≥ 2 where
F0 = 0 and F1 = 1.
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The Fibonacci sequence has many properties [4, 12]. We recall one here by stating the
following Binet’s Formula.

Theorem 2.4 (Binet’s Formula).

Fn =
φn − (1− φ)n

√
5

, ∀n ∈ N ,

where φ = (1 +
√

5)/2 is the positive root of the real polynomial X2 −X − 1 .

From the above theorem it is easy to deduce the following classical result.

lim
n→∞

Fn

Fn−1
= φ , (2.1)

where φ is the golden section and here we term it as the golden ratio.

3 Proposed Strategy (GRASC Method)

In this section, we discuss our propose strategy for finding an efficient doubling-free
short addition-subtraction chain by utilizing a precise golden ratio. We term it as the golden
ratio addition-subtraction chain method or GRASC method in short.

The last term, v` in a doubling-free addition chain is maximal if the following condition
holds:

vi = vi−1 + vi−2 for i = 2, 3, . . . , ` , (3.1)

that is, when v is a Fibonacci sequence. Thus, our aim is to maintain a Fibonacci pattern.
Our strategy creates chain starting from the last term. As deduced from equation (2.1), the
ratio between the two large succeeding terms in a Fibonacci sequence, maintains the value
near φ, therefore we consider multiplying the last term (in the case of 160 bit integer) by
an inverse of a golden ratio to get its preceding term. That is

vi−1 ≈ vi × φ−1 , (3.2)

where φ−1 = (−1 +
√

5)/2 is the inverse of the golden ratio. Then we follow the Fi-
bonacci pattern working downwards, checking each time the ratio between two succeeding
terms to be near golden ratio value, if not, then we take few actions and repeat the Fibonacci
pattern working downwards. We continue with this process until we reach some prescribed
lower bound, a small term, thereafter we can efficiently find doubling-free short addition
chain. We join this short addition chain to the previous chain to complete the overall chain.
Experimentally, we found that a 160 bit Fibonacci integer has minimal chain length of
231, whereas GRASC method gives an average chain of length 258 for an arbitrary inte-
ger of 160 bit. In fact, GRASC methods gives minimal chain for Fibonacci numbers or
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equivalently if (3.2) holds but we do not guarantee for the case of non Fibonacci arbitrary
integers to be minimal. We believe that GRASC method gives moderately short addition-
subtraction chain since it utilizes mostly of the Fibonacci pattern. The following describes
the GRASC method in detail.

We consider making chain starting from the last term, which is the input k. Let ui

denote the reverse of vi, that is, ui = v`−i . To maintain (3.2), we let

u0 =k ,

u1 =[u0 × φ−1] ,

ui =ui−2 − ui−1 for i = 2, 3, . . . (3.3)

If continued with the procedure (3.3), we will not be able to achieve the best result, since
ui will exponentially deviate from (ui−1 × φ−1) as i increases. In order to overcome this
problem, we introduce the parameter MAXIMALGAP such that the above procedure (3.3)
terminates whenever

|ui − (ui−1 × φ−1)| > MAXIMALGAP or ui 6 ui−1

2
.

In such case, we define, new ui to be the nearest integer of (ui−1 × φ−1). We resume
the procedure (3.3) with ui−1 and new ui as the initial terms. Note that it is necessary to
include old ui in the chain between ui−1 and new ui. As a consequence, we have a gap,
gj = |old ui−new ui| which we include in the storage. Also note that a subtraction is
involve, whenever old ui < new ui. We introduce another parameter, LOWERBOUND, to
cease the procedure (3.3) when ui ≤ LOWERBOUND. Note that the storage initially con-
sists of 1, 2, and 3. Later we have included all the gj’s in the storage. Once the execution
of procedure (3.3) is ceased, we include the last two ui’s of the chain in the storage. Thus,
using the storage, we randomly find a short addition chain by avoiding the use of doubling,
except for numeral 2. Finally, we join this chain to the third last ui of the previous chain re-
sulting in a moderately short addition-subtraction chain for the given input k. Note that the
storage capacity is dependent on the experimentally selected values for the two parameters.
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Algorithm 1 Golden Ratio Addition-Subtraction Chain method (GRASC method)

Input: An integer k, MAXIMALGAP and LOWERBOUND.
Output: Short addition-subtraction chain for k.

1. φ−1 ← −1+
√

5
2

2. u0 ← k

3. u1 ← [k × φ−1]
4. u2 ← u0 − u1

5. v = {u0, u1, u2}
6. S = {1, 2, 3}
7. i ← 2
8. j ← 1
9. while ui > LOWERBOUND do
10. if |ui − (ui−1 × φ−1)| > MAXIMALGAP or ui 6 ui−1

2 then
11. i ← i + 1
12. ui ← [ui−2 × φ−1]
13. v ← v ∪ {ui}
14. ui+1 ← ui−2 − ui

15. v ← v ∪ {ui+1}
16. gj ← |ui − ui+1|
17. S ← S ∪ {gj}
18. j ← j + 1
19. i ← i + 1
20. else
21. i ← i + 1
22. ui ← ui−2 − ui−1

23. v ← v ∪ {ui}
24. S ← S ∪ {ui, ui−1}
25. w ← a short addition chain including all terms from S

26. return w ∪ v

Note that in step 13 of Algorithm 1, if ui < ui+1 then gj’s will involve subtraction
during exponentiation.

Example 1. Evaluate Algorithm 1 for the inputs k = 131456, LOWERBOUND =
10 and MAXIMALGAP = 6.

We begin by letting

u0 =k = 131456 ,

u1 =[u0 × φ−1] = 81244 ,

u2 =u0 − u1 = 50212 ,
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u3 =u1 − u2 = 31032 ,

u4 =u2 − u3 = 19180 ,

u5 =u3 − u4 = 11852 ,

u6 =u4 − u5 = 7328 ,

u7 =u5 − u6 = 4524 ,

u8 =u6 − u7 = 2804 .

Since u8 exceeds the MAXIMALGAP, that is |2804− (4524× φ−1)| > 6 , we let

u9 = [u7 × φ−1] = 2796 .

There is a gap, g1 = |2804− 2796| = 8 , which we include in the storage. Let

u10 =u7 − u9 = 1728 ,

u11 =u9 − u10 = 1068 ,

u12 =u10 − u11 = 660 ,

u13 =u11 − u12 = 408 ,

u14 =u12 − u13 = 252 ,

u15 =u13 − u14 = 156 ,

u16 =u14 − u15 = 96 ,

u17 =u15 − u16 = 60 ,

u18 =u16 − u17 = 36 ,

u19 =u17 − u18 = 24 ,

u20 =u18 − u19 = 12 .

Since u20 ≤ u19/2 , we let
u21 = [u19 × φ−1] = 15.

There is a gap, g2 = |12− 15| = 3 , which we include in the storage. Let

u22 =u19 − u21 = 9 .

We stop the above continuous procedure at u21, since u22 transcends the given
LOWERBOUND= 10. Now, we consider the storage which consists of pre-numbers 1, 2, 3
and additional gap numbers g1 = 8 and g2 = 3. Further, we include u21 = 15 and u22 = 9
in the storage. Hence we have

{1, 2, 3, 8, 3, 15, 9}
We exclude the repeated numbers and rearrange it as

{1, 2, 3, 8, 9, 15}
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We search for a moderately short addition chain including all numbers from the storage.
We already have 1 , 2 and 3 . Further, we insert 5, so that 3 + 5 → 8 . It follows that
1 + 8 → 9 , 5 + 9 → 14 and 1 + 14 → 15 . Hence, this completes our chain utilizing all
the storage elements. Thus, we attain the following doubling-free short addition chain.

1 → 2 → 3 → 5 → 8 → 9 → 14 → 15.

Finally, we join this chain to the previous chain at u20, resulting in a complete chain for
k = 131456 with length 28.

Next, we utilize the above chain to compute exponent k = 131456 starting from
numeral 1. we denote v as the addition-subtraction chain, where v`−i = ui. It follows that

v0 = v28−28 = u28 = 1 ,

v1 = v28−27 = u27 = v0 + v0 = 2 ,

v2 = v28−26 = u26 = v0 + v1 = 3 ,

v3 = v28−25 = u25 = v1 + v2 = 5 ,

v4 = v28−24 = u24 = v2 + v3 = 8 ,

v5 = v28−23 = u23 = v0 + v4 = 9 ,

v6 = v28−22 = u22 = v3 + v5 = 14 ,

v7 = v28−21 = u21 = v0 + v6 = 15 ,

v8 = v28−20 = u20 = −v2 + v7 = 12 ,

v9 = v28−19 = u19 = v5 + v7 = 24 ,

v10 = v28−18 = u18 = v8 + v9 = 36 ,

v11 = v28−17 = u17 = v9 + v10 = 60 ,

v12 = v28−16 = u16 = v10 + v11 = 96 ,

v13 = v28−15 = u15 = v11 + v12 = 156 ,

v14 = v28−14 = u14 = v12 + v13 = 252 ,

v15 = v28−13 = u13 = v13 + v14 = 408 ,

v16 = v28−12 = u12 = v14 + v15 = 660 ,

v17 = v28−11 = u11 = v15 + v16 = 1068 ,

v18 = v28−10 = u10 = v16 + v17 = 1728 ,

v19 = v28−9 = u9 = v17 + v18 = 2796 ,

v20 = v28−8 = u8 = v4 + v19 = 2804 ,

v21 = v28−7 = u7 = v18 + v19 = 4524 ,
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v22 = v28−6 = u6 = v20 + v21 = 7328 ,

v23 = v28−5 = u5 = v21 + v22 = 11852 ,

v24 = v28−4 = u4 = v22 + v23 = 19180 ,

v25 = v28−3 = u3 = v23 + v24 = 31032 ,

v26 = v28−2 = u2 = v24 + v25 = 50212 ,

v27 = v28−1 = u1 = v25 + v26 = 81244 ,

v28 = v28−0 = u0 = v26 + v27 = 131456 .

4 Experimental Results and Comparisons

In this section, we discuss our results and make comparisons with other doubling-free
methods in the literature [11].

We carried out an experiment to analyze the GRASC method using python program-
ming language on a 1.66 GHz Intel Core Duo processor. We randomly selected 10000
integers k of 160 bits and set the searching ranges of the parameters of LOWERBOUND
to be between 5 to 23 and the MAXIMALGAP to be between 5 to 15. The experimental
results in Table 4.1 shows that it took 209 trials to obtain chains of lengths between 253 to
261 and on an average it took about 3 seconds to find each chain. Whereas according to
Meloni [11], in the case of EAC method, a 160-bit integer k will require testing of more
than 45000 g’s to find a chain of length 270, where g is randomly selected in the range
1 ≤ g ≤ k. Hence the best case for a EAC was found to be of length 320.

GRASC length (`) # inputs k

GRASC-261 15
GRASC-260 389
GRASC-259 2165
GRASC-258 3610
GRASC-257 2555
GRASC-256 1003
GRASC-255 219
GRASC-254 37
GRASC-253 7

Table 4.1: The distribution of chains based on GRASC method for 160 bit integers k.

Our experimental result on Table 4.1 shows that chains of length between 257 to 259
could be found most efficiently using GRASC method. The best case was found to be chain
of length 258. Note that GRASC method includes 26 points (worst case) in the storage, see
appendix for details.

The data on Table 4.2 shows that GRASC method has attained 28%, 20%, 12% and
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Methods Chain length

Fibonacci-and-add [11] 358
Signed Fib-and-add [11] 322

Window Fib-and-add [11] 292
EAC [11] 320

GRAC 258

Table 4.2: The average length of doubling-free addition chain for 160 bit integers

19%, in reduced average chain length compared to Fibonacci-and-add, Signed Fib-and-
add, Window Fib-and-add and EAC methods respectively.

5 Conclusion

In this paper we have proposed a new strategy to find an efficient doubling-free short
addition-subtraction chain by utilizing a precise golden ratio. The empirical data shows that
GRASC method has attained 12% to 28% reduction in the average chain length compared
to other doubling-free addition chain methods. Further work may include finding chains of
much shorter lengths. One may consider giving formal algorithms for GRASC method to
suit implementations in ECC. Also, reducing the storage content can make GRASC method
more applicable to small memory constraint devices in ECC. The GRASC method has a
unique way of creating chain, hence its real diligence is yet to be discovered.
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Appendix

Here, we give an estimation of the storage capacity. That is the number of gj’s required
in GRAC method for a 160 bit integer. Note that the number of gj’s are same as the number
of new ui being computed.

We have
{

u0 = k , u1 = [ k
φ ] , u2 = u0 − u1 , u3 = u1 − u2 , . . .

}
.

Note that Fibonacci sequence gives the optimum result, therefore we have a desire to
maintain such pattern for the GRAC method. Thus, we will check at every step to maintain
the property of a Fibonacci sequence given by equation (2.1).

For i = 1∣∣∣∣u1 − k

φ

∣∣∣∣ ≤
1
2

.

For i = 2∣∣∣∣u2 − k

φ2

∣∣∣∣ =
∣∣∣∣u0 − u1 − k

φ2

∣∣∣∣

=
∣∣∣∣k − u1 − k

φ2

∣∣∣∣

=
∣∣∣∣k −

k

φ
− k

φ2
+

k

φ
− u1

∣∣∣∣

=
∣∣∣∣

k

φ2
(φ2 − φ− 1) +

k

φ
− u1

∣∣∣∣ , using Theorem 2.4, we get
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=
∣∣∣∣
k

φ
− u1

∣∣∣∣

≤ 1
2

.

For i = 3∣∣∣∣u3 − k

φ3

∣∣∣∣ =
∣∣∣∣u1 − u2 − k

φ3

∣∣∣∣

=
∣∣∣∣u1 − k

φ
+

k

φ2
− u2 − k

φ3
+

k

φ
− k

φ2

∣∣∣∣

=
∣∣∣∣(u1 − k

φ
) + (

k

φ2
− u2)− k

φ3
(1− φ2 + φ)

∣∣∣∣ , using Theorem 2.4, we get

=
∣∣∣∣u1 − k

φ

∣∣∣∣ +
∣∣∣∣

k

φ2
− u2

∣∣∣∣

≤ 1
2

+
1
2

= 1 .

Hence, in general we have
∣∣∣∣ui − k

φi

∣∣∣∣ ≤
∣∣∣∣ui−2 − k

φi−2

∣∣∣∣ +
∣∣∣∣ui−1 − k

φi−1

∣∣∣∣ .

Assuming MAXIMALGAP to be 11, we will check the number of terms exist before MAX-
IMALGAP is exceeded. It follows that

i = 4 : 1
2 + 1 = 3

2 ,

i = 5 : 1 + 3
2 = 5

2 ,

i = 6 : 3
2 + 5

2 = 4 ,

i = 7 : 5
2 + 4 = 13

2 ,

i = 8 : 4 + 13
2 = 21

2 ,

i = 9 : 13
2 + 21

2 = 17 .

The MAXIMALGAP is exceeded at i = 9 , therefore at i = 10, a new ui is computed.
Hence, we could infer that in worst case, a new ui is computed once in every 10th term for
GRAC method. Therefore, the maximum number of points in the storage for an average
chain of length 258 will be 26 .


