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Abstract: We present a simple algorithm to completely factorize an arbitrary N-partite pure quantum state. This complete factorization
of such a pure state also specifies its complete entanglementstatus : whether the givenN-partite pure quantum state is completely
separable (N factors), or completely entangled (no factors), or partially entangled having entangled factors of different sizes which
cannot be factored further. The problem of deciding entanglement status of a bipartite pure quantum state is one of the initial problems
encountered in quantum information research and this problem is usually tackled using the well known Schmidt decomposition
procedure. One obtains Schmidt number of the state which decides the entanglement status of the state. In this paper we first develop a
simple criterion which when fulfilled enables us to factorize givenN-partite pure quantum state as tensor product of anm-partite pure
quantum state and ann-partite pure quantum state wherem+n= N. This criterion gives rise to an effective mechanical procedure in
terms of an easy algorithm to perform complete factorization of givenN-partite pure quantum state and thus provides an easy method
to determine complete entanglement status of the state. In this paper we carry out our discussion for the case ofN-qubit pure quantum
state instead ofN-qudit case for the sake of simplicity of presentation. The extension to the case ofN-qudit pure quantum state is
straightforward and follows by proceeding along similar lines. We just mention this extension to avoid repetition and only briefly
demonstrate it with the help of one of the examples discussedat the end of the paper.
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1 Introduction

One of the central issues in quantum information theory is
whether a given multipartite pure quantum state is
separable or entangled [1,2,3,4,5]. This important
question of deciding whether a given multipartite pure
quantum state is separable or entangled is completely
solved in this paper. In this paper, we present an
algorithm to completely factorize an arbitraryN-partite
pure quantum state, that is, it is factorized until no further
factorization is possible. AnN-partite pure quantum state
may be completely separable, that is, it is a tensor product
of N states, each pertaining to one of the individual parts,
or it may be a product ofM (M < N) states, each
belonging to one of theM subsystems, some of them
containing two or more parts. If the completely factorized
N-partite state has such a structure, then the states of the
subsystems containing more than one part appearing in
this factorization are necessarily entangled, otherwise,
they would have factorized further. In this paper we carry
out our discussion for the case ofN-qubit pure quantum

state instead ofN-qudit case for the sake of simplicity of
presentation. The extension to the case ofN-qudit pure
quantum state is straightforward and follows by
proceeding along similar lines. We just mention this
extension to avoid repetition and only briefly demonstrate
it with the help of one of the examples discussed at the
end of the paper.

2 The criterion for factorization

Notation: Let |ψ〉 be anN-qubit pure state :

|ψ〉=
2N

∑
s=1

ars|rs〉 (1)

expressed in terms of the computational basis. Here the
basis vectors|rs〉 are ordered lexicographically. That is,
the corresponding binary sequences are ordered
lexicographically: r1 = 00· · ·00, r2 = 00· · ·01, . . . ,
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r2N = 11· · ·11, so that|r1〉= |00· · ·00〉, |r2〉= |00· · ·01〉,
. . . , r2N = |11· · ·11〉. Let m,n be any integers such that
1 ≤ m,n < N andm+ n= N. Let the corresponding two
sets of computational basis vectors ordered
lexicographically be|i1〉, . . . , |i2m〉 (each of lengthm) and
| j1〉, . . . , | j2n〉 (each of lengthn). Rewrite|ψ〉 thus :

|ψ〉=
2m

∑
u=1

2n

∑
v=1

aiu jv|iu〉⊗ | jv〉. (2)

Here in the symbolaiu jv, the suffixiu jv is the juxtaposition
of the binary sequencesiu and jv in that order. Thus we
get a 2m×2n matrix A = [aiu jv] which will be called the
2m×2n matrix associated to|ψ〉.
Lemma 1: The state|ψ〉 given by (1) can be factored as
the product,|ψ1〉⊗ |ψ2〉, of anm−qubit state|ψ1〉 and an
n−qubit state|ψ2〉 if and only if the 2m× 2n matrix A
associated to|ψ〉 can be expressed asBTC whereB is a
1×2m matrix,C is a 1×2n matrix andBT is the transpose
of B.

Proof: With the above notation, let

|ψ1〉=
2m

∑
u=1

biu|iu〉,

and |ψ2〉=
2n

∑
v=1

c jv| jv〉.

Then the product|ψ1〉⊗ |ψ2〉 is

|ψ1〉⊗ |ψ2〉=
2m

∑
u=1

2n

∑
v=1

biuc jv|iu〉⊗ | jv〉. (3)

Comparing (2) and (3) we see that|ψ〉 can be factored as
|ψ1〉⊗ |ψ2〉 if and only if

aiu jv = biuc jv, for u= 1, . . . ,2m and v= 1. . . ,2n

i.e. if and only ifA= BTC whereB= [biu] andC = [c jv].
�

We also need the following standard result:

Lemma 2: An a× b non-zero matrixA over complex
numbers can be expressed asBTC for some 1× a matrix
B and 1×b matrixC if and only if rank(A) = 1.

Now we can prove the

Theorem: The state|ψ〉 given by (1) can be factored as
the product,|ψ1〉⊗ |ψ2〉, of anm−qubit state|ψ1〉 and an
n−qubit state|ψ2〉 if and only if the 2m× 2n matrix A
associated to|ψ〉 is of rank 1.

Proof: With the above notation, let|rw〉 be thefirst basic
vector such thatarw 6= 0. Choose integersm,n such that
1 ≤ m,n < N andm+ n= N. Let the corresponding two
sets of computational basis vectors ordered

lexicographically be|i1〉, . . . , |i2m〉 (each of lengthm) and
| j1〉, . . . , | j2n〉 (each of lengthn). Then we can write

|ψ〉=
2m

∑
u=1

[

|iu〉⊗
2n

∑
v=1

aiu jv| jv〉
]

. (4)

Consider the associated 2m × 2n matrix A = [aiu jv].
Suppose|rw〉 = |ip〉| jq〉 so that thefirst non-zero element
of A is theqth element in thepth row, namelyaip jq. Thus
the pth row of A is non-zero. Now, suppose rank(A) = 1.
Then there exist numbersk1, . . . ,k2m such thatkp = 1 and
rowu = kurowp (u = 1, . . . ,2m) i.e. aiu jv = kuaip jv,
(u= 1, . . . ,2m, v= 1, . . . ,2n). Hence (4) can be written as

|ψ〉=
2m

∑
u=1

[

|iu〉⊗
2n

∑
v=1

kuaip jv| jv〉
]

=
2m

∑
u=1

ku|iu〉⊗
2n

∑
v=1

aip jv| jv〉

= |ψ1〉⊗ |ψ2〉,

where |ψ1〉=
2m

∑
u=1

ku|iu〉 and |ψ2〉=
2n

∑
v=1

aip jv| jv〉.

Thus|ψ〉 factors as stated. Conversely, suppose|ψ〉 given
by (1) can be factored as the product of anm−qubit state
and ann−qubit state, in that order. Then by lemma 1, the
2m × 2n non-zero matrixA associated to|ψ〉 can be
expressed asBTC whereB is a 1× 2m matrix andC is a
1×2n matrix. Hence by lemma 2, rank(A) = 1.

This proves the theorem.�

3 Algorithm

We now proceed to present our algorithm, based on the
above theorem, for complete factorization of an arbitrary
N-qubit pure quantum state. Later we will indicate how
this algorithm could be modified to cater to an arbitraryN-
partite pure quantum state. We use the above notation.The
steps of the algorithm are as follows.
(i) We express the givenN-qubit pure state|ψ〉 in terms of
the computational basis as

|ψ〉=
2N

∑
s=1

ars|rs〉

where the basis vectors|rs〉 are ordered lexicographically
as before.
(ii) Now our aim is to check as first step (using the
Theorem just proved above) whether given|ψ〉 has a
linear (1-qubit) factor and an(N − 1)-qubit factor. In
order to find the corresponding 21 × 2N−1 matrix A
associated to|ψ〉, we rewrite this state as

|ψ〉=
2

∑
u=1

|iu〉⊗
[

2N−1

∑
v=1

aiuiv| jv〉
]

.
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Here the basis vectors ordered lexicographically are|i1〉=
|0〉, |i2〉= |1〉 (each of length 1) and| j1〉, . . . , | j2(N−1)〉 (each
of lengthN−1). Hence the associated matrix is

A=

[

a00···0 a00···01 a00···010 · · · a01···11
a10···0 a10···01 a10···010 · · · a11···11

]

.

(iii) Now there are two cases.
Case I

If rank(A) = 1, then by above theorem there exist
numbersk1,k2 such that

|ψ〉= |ψ1〉⊗ |ψ2〉,

where |ψ1〉=
2

∑
u=1

ku|iu〉 and |ψ2〉=
2N−1

∑
v=1

aip jv| jv〉,

with kp = 1 where thepth row ofA is thefirst non-zero row
of A (p= 1 or 2). Thus in this case the state has a factor
|ψ1〉. In this case we go back to step (i) with|ψ〉= |ψ2〉.
Case II

If rank(A) 6= 1, then by above theorem we do not get a
factor like|ψ1〉= k1|i1〉+k2|i2〉 with |ψ〉= |ψ1〉⊗|ψ2〉. In
this case our aim is to check as next step whether given|ψ〉
has a 2-qubit factor and an(N−2)-qubit factor. For this we
proceed with the originally given state|ψ〉 as given in the
next step (iv).
(iv) In order to find the corresponding 22×2N−2 matrixA
associated to|ψ〉, we rewrite this state as

|ψ〉=
22

∑
u=1

|iu〉⊗
[

2N−2

∑
v=1

aiuiv| jv〉
]

.

Here the basis vectors ordered lexicographically are|i1〉=
|00〉, |i2〉 = 01, |i3 = |10〉, |i4〉 = |11〉 (each of length 2)
and| j1〉, . . . , | j2(N−2)〉 (each of lengthN−2). Thus

A=







a000···0 a000···01 a000···010 · · · a001···11
a010···0 a010···01 a010···010 · · · a011···11
a100···0 a100···01 a100···010 · · · a101···11
a110···0 a110···01 a110···010 · · · a111···11






.

Again there are two cases.
Case I

If rank(A) = 1, then by above theorem there exist
numbersk1, . . . ,k4 such that

|ψ〉= |ψ1〉⊗ |ψ2〉,

where |ψ1〉=
4

∑
u=1

ku|iu〉 and |ψ2〉=
2N−2

∑
v=1

aip jv| jv〉,

with kp = 1 where thepth row of A is thefirst non-zero
row of A. Thus in this case the state has a factor|ψ1〉. In
this case we go back to step (i) with|ψ〉= |ψ2〉.
Case II

If rank(A) 6= 1, then by above theorem we do not get a
factor like |ψ1〉 = k1|i1〉 + · · · + k4|i4〉 with

|ψ〉= |ψ1〉⊗ |ψ2〉. In this case our aim is to check as next
step whether given|ψ〉 has a 3-qubit factor and an
(N − 3)-qubit factor. In order to find the corresponding
23×2N−3 matrixA associated to|ψ〉, we rewrite this state
as

|ψ〉=
23

∑
u=1

|iu〉⊗
[

2N−3

∑
v=1

aiuiv| jv〉
]

.

Here the basis vectors ordered lexicographically are
|i1〉 = |000〉, . . . , |i8〉 = |111〉 (each of length 3) and
| j1〉, . . . , | j2(N−3) 〉 (each of length N − 3). We again
construct associated matrix matrixA = [aiu jv]. This,
again, leads to two separate cases, namely, whether the
rank of the associated matrixA is equal to unity or not
and so on. Thus, as above the algorithm continues until
|ψ〉 is completely factored.

4 Generalization to N-qudit case

For this remark we use the usual notation. A generalN-
qudit state with dimensionsd1,d2, . . . ,dN can be written
as

|ψ〉= ∑
i1,i2,...iN

ai1i2...iN |i1i2 . . . iN〉

where ik ∈ {0,1, . . . ,dk − 1}; k = 1,2, . . . ,N. To check
whether|ψ〉 has a linear factor (on left), we re-write this
state as

|ψ〉= |0〉⊗ ∑
i2,...,iN

a0i2...iN |i2 . . . iN〉+ |1〉⊗ ∑
i2,...,iN

a1i2...iN |i2 . . . iN〉

+ · · ·+ |d1−1〉⊗ ∑
i2,...,iN

a(d1−1)i2...iN |i2 . . . iN〉.

This allows us to write down thed1 by (d2×d3×·· ·×dN)
matrixA associated to|ψ〉 and|ψ〉 facotrs as

|ψ〉=
(

d1−1

∑
i=0

ki |i〉
)

⊗
(

∑
i2,...,iN

api2...iN |i2 . . . iN〉
)

,

if and only if rank(A)= 1. Herekp = 1 and rowp is thefirst
non-zero row ofA. If rank(A) 6= 1, we check whether a
two partite state factors out and so on. From this point, the
algorithm proceeds exactly as in theN-qubit case. Please
see Example (iv) below.

5 Examples

(i) Consider following example ([6], page 423)

|ψ〉= 1√
2
|01〉− 1√

2
|10〉.
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We proceed as per our algorithm and first check whether
|ψ〉 has a linear factor (on left). For this we rewrite|ψ〉
thus:

|ψ〉= 0|00〉+ 1√
2
|01〉− 1√

2
|10〉+0|11〉.

= |0〉⊗
[

0|0〉+ 1√
2
|1〉
]

+ |1〉⊗
[

− 1√
2
|0〉+0|1〉

]

Therefore the associated matrixA is

A =

[

0 1√
2

− 1√
2

0

]

Clearly, rank(A) = 2> 1, so that|ψ〉 has no linear factor
and therefore the state|ψ〉 is entangled.
(ii) Consider the following two qubit state

|ψ〉= 1√
3
|00〉− 1√

3
|01〉+ 1√

6
|10〉− 1√

6
|11〉.

To check whether|ψ〉 has a linear factor (on left), we
rewrite|ψ〉 thus:

|ψ〉= |0〉⊗
[

1√
3
|0〉− 1√

3
|1〉
]

+ |1〉⊗
[

1√
6
|0〉− 1√

6
|1〉
]

Therefore the associated matrixA is

A =

[

1√
3
− 1√

3
1√
6
− 1√

6

]

Clearly, row2 = 1/(
√

2) row1 so that rank(A) = 1 and

|ψ〉= |0〉⊗
[

1√
3
|0〉− 1√

3
|1〉
]

+ |1〉⊗ 1√
2

[

1√
3
|0〉− 1√

3
|1〉
]

.

Hence withk1 = 1,k2 = 1/(
√

2), |ψ〉 factors into two
linear factors as follows:

|ψ〉=
(

|0〉+ 1√
2
|1〉
)

⊗
(

1√
3
|0〉− 1√

3
|1〉
)

.

Hence the state|ψ〉 is separable.
(iii) Consider the following four qubit state,

|ψ〉= 1
2
[|0001〉+ |0010〉+ |1101〉+ |1110〉]

First, to check whether there exists a linear factor we
construct the associated matrixA :

A =

[

0 1
2

1
2 0 0 0 0 0

0 0 0 0 0 1
2

1
2 0

]

Clearly, rank(A) is greater than 1, therefore, clearly|ψ〉
has no linear factor and therefore it is entangled. We now
continue as per algorithm to check whether there exists a

two qubit factor to given|ψ〉. For this we construct the
following associated matrixA :

A =









0 1
2

1
2 0

0 0 0 0
0 0 0 0
0 1

2
1
2 0









Clearly, rank(A) = 1 and |ψ〉 factors into two 2-qubit
factors:

|ψ〉=
(

1√
2
[|00〉+ |11〉]

)

⊗
(

1√
2
[|01〉+ |10〉]

)

.

By applying our method we can readily see that these two
factor states of|ψ〉 are both entangled states.
(iv) Consider the following 3-partite state comprising a
qubit, a qutrit and, a qudit withd = 4.

|ψ〉= 5
4

√

35
241

i|001〉+
√

35
241

|003〉+ 3
2

√

7
241

i|022〉

− 15
4

√

5
241

|101〉+3

√

5
241

i|103〉− 9

2
√

241
|122〉.

As per the algorithm to check whether there exists a
linear factor, we rewrite|ψ〉 thus:

|ψ〉= 1

4
√

241

[

|0〉⊗
(

5
√

35i|01〉+4
√

35|03〉+6
√

7i|22〉
)]

+
1

4
√

241

[

|1〉⊗
(

−15
√

5|01〉+12
√

5i|03〉−18|22〉
)]

Therefore the associated 2 by(3×4) matrixA is

A=





0 5
4

√

35
241i 0

√

35
241 0 · · ·0 3

2

√

7
241i 0

0 −15
4

√

5
241 0 3

√

5
241i 0 · · ·0 −9

2
√

241
0



 ,

where columns six to nine consist of zeros.
By applying the algorithm,|ψ〉 factors thus:

|ψ〉=
(

|0〉+ 3i√
7
|1〉
)

⊗
(

5
√

35

4
√

241
i|01〉+ 4

√
35√

241
|03〉+ 6

√
7

4
√

241
i|22〉

)

.

To check the second factor, say|ψ2〉, for a linear factor, we
rewrite it thus:

|ψ2〉=
1

4
√

241

[

|0〉⊗
(

0|0〉+5
√

35i|1〉+0|2〉+4
√

35|3〉
)

+ |1〉⊗
(

0|0〉+0|1〉+0|2〉+0|3〉
)

+ |2〉⊗
(

0|0〉+0|1〉+6
√

7i|2〉+0|3〉
)]

Therefore the associated 3 by 4 matrixA is

A=
1

4
√

241





0 5
√

35i 0 4
√

35
0 0 0 0
0 0 6

√
7i 0



 ,
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Here rank(A) = 2> 1, so that|ψ2〉 is entangled. Thus the
state|ψ〉 is entangled and it has one linear factor and one
bipartite entangled factor.
Conclusion:
We believe that our algorithm is a very useful tool to
understand the structure of a multipartite pure quantum
state vis-a-vis entanglement.
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