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Abstract: We present a simple algorithm to completely factorize aitray N-partite pure quantum state. This complete factorization
of such a pure state also specifies its complete entanglestesmss : whether the giveN-partite pure quantum state is completely
separableN factors), or completely entangled (no factors), or pdstiahtangled having entangled factors of different sizegcivh
cannot be factored further. The problem of deciding entamght status of a bipartite pure quantum state is one of iti@ jproblems
encountered in quantum information research and this enobis usually tackled using the well known Schmidt decontjmsi
procedure. One obtains Schmidt number of the state whiddekethe entanglement status of the state. In this paper stelévelop a
simple criterion which when fulfilled enables us to factergivenN-partite pure quantum state as tensor product ahauartite pure
guantum state and ampartite pure quantum state wheret n = N. This criterion gives rise to an effective mechanical praredn
terms of an easy algorithm to perform complete factorizatibgivenN-partite pure quantum state and thus provides an easy method
to determine complete entanglement status of the statkidipaper we carry out our discussion for the casl-gfubit pure quantum
state instead oN-qudit case for the sake of simplicity of presentation. Thiersion to the case dfi-qudit pure quantum state is
straightforward and follows by proceeding along similare. We just mention this extension to avoid repetition amigt briefly
demonstrate it with the help of one of the examples discuas#te end of the paper.
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1 Introduction state instead o-qudit case for the sake of simplicity of
presentation. The extension to the caseNedudit pure

One of the central issues in quantum information theory isquantum state is straightforward and follows by

whether a given multipartite pure quantum state isproceeding along similar lines. We just mention this

separable or entangledl,p,3,4,5. This important extension to avoid repetition and only briefly demonstrate

question of deciding whether a given multipartite puret with the help of one of the examples discussed at the

quantum state is separable or entangled is completelgnd of the paper.

solved in this paper. In this paper, we present an

algorithm to completely factorize an arbitraN-partite

pure quantum state, that is, it is factorized until no furthe 2 The criterion for factorization

factorization is possible. AN-partite pure quantum state

may be completely separable, that is, it is a tensor produ . . .

of l\)llstates, gach gertgining to one of the individua?partstOtatlon' Let|¢) be anN-qubit pure state :

or it may be a product oM (M < N) states, each N

belonging to one of theM subsystems, some of them ) = Z a|rs) 1)

containing two or more parts. If the completely factorized =

N-partite state has such a structure, then the states of the

subsystems containing more than one part appearing iexpressed in terms of the computational basis. Here the

this factorization are necessarily entangled, otherwisepasis vectorgrs) are ordered lexicographically. That is,

they would have factorized further. In this paper we carrythe corresponding binary sequences are ordered

out our discussion for the case NEqubit pure quantum lexicographically: r; = 00---00, r, = 00---01, ...,
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ron =11.--11 so thatr;) = |00---00), |r2) = |00---01),

, Ton = [11---11). Let m,n be any integers such that
1<mn< Nandm+n= N. Let the corresponding two
sets of computational basis vectors
lexicographically béli1),...,|iom) (each of lengthm) and
li1),---,|i2n) (each of lengtm). Rewrite|y) thus :

2m 2n

> D auplin @liv).
u=1v=1

Here in the symbady, , , the suffixiyjy is the juxtaposition
of the binary sequenceég and jy in that order. Thus we
get a 2" x 2" matrix A = [&,j,] which will be called the

2™ x 2" matrix associated toy).

W) = )

Lemma 1: The statd) given by (1) can be factored as
the product|yn) ® |(r), of anm—qubit state{(;) and an
n—qubit state|yr) if and only if the 2" x 2" matrix A
associated tdy) can be expressed & C whereB is a

1 x 2™ matrix,C is a 1x 2" matrix andBT is the transpose
of B.

Proof: With the above notation, let
2n
) =3 bfiu),
u=1

and |y

2n

)=Y ciiv).
v=1

Then the produdp) ® |y) is

2m 2n

2.2

Comparing (2) and (3) we see thgt) can be factored as
|yn) @ |yr) if and only if

Y1) @ |[Q2) = bi,Cjy [iu) @ |jv)- (3

ai j, = bi,cj,, for u=1,....,2" andv=1...,2"
i.e. if and only if A= B'C whereB =

O

[bi,] andC = [c;,].

We also need the following standard result:

Lemma 2: An a x b non-zero matrixA over complex
numbers can be expressedBI<C for some 1x a matrix
B and 1x b matrixC if and only if rankKA) =

Now we can prove the

Theorem: The statgy) given by (1) can be factored as
the product|yn) ® |y»), of anm—qubit statel;) and an
n—qubit state|,) if and only if the 2" x 2" matrix A
associated toy) is of rank 1.

Proof: With the above notation, ldty,) be thefirst basic

ordered

lexicographically belis), ...
lia)s-- -

,[iom) (each of lengthm) and
|jn) (each of lengtm). Then we can write

|

Consider the associated™Z 2" matrix A = [a,,].
Supposdry) = |ip)|jq) So that thefirst non-zero element
of Ais theqth element in thepth row, namelya; ,j,. Thus
the pth row of A is non-zero. Now, suppose ra@y = 1.
Then there exist numbeks, ... kom such thak, = 1 and

rowy = kgrowp (u = 1,...,2M ie. &,j, = koa,j,,

2m 2n

||U> ® Z aiuJ-v|jV
v=1

W) = (4)

u=1

LIjV

(u=1,....2" v=1,...,2"). Hence (4) can be written as
om 2n
|w:z|M®zm%w4
u=1 v=1
om o
=Y ki@ Y a,liv)
u=1 v=1
=[yn) @ [Yp),
om 2
where [yn) = 3 kifin) and [g2) = 5 aliv).
u=1 v=1

Thus|y) factors as stated. Conversely, supplagegiven
by (1) can be factored as the product ofranqubit state
and ann—qubit state, in that order. Then by lemma 1, the
2M x 2" non-zero matrixA associated to) can be
expressed aB"C whereB is a 1x 2™ matrix andC is a
1 x 2" matrix. Hence by lemma 2, rafik) = 1

This proves the theorernl

3 Algorithm

We now proceed to present our algorithm, based on the
above theorem, for complete factorization of an arbitrary
N-qubit pure quantum state. Later we will indicate how
this algorithm could be modified to cater to an arbitrisiry
partite pure quantum state. We use the above notation.The
steps of the algorithm are as follows.

(i) We express the giveN-qubit pure statéy) in terms of

the computational basis as

2N
= ZLa(s|rS>
s=

where the basis vectotss) are ordered lexicographically
as before.

(i) Now our aim is to check as first step (using the
Theorem just proved above) whether givep) has a
linear (1-qubit) factor and ariN — 1)-qubit factor. In
order to find the corresponding® % 2N~1 matrix A
associated toy), we rewrite this state as

vector such thag,,, # 0. Choose integers, n such that 2 N-1 _
1< mn< N andm+n= N. Let the corresponding two Y) = Z liv) ® ; aigiy|jv) | -
sets of computational basis vectors ordered u=1 V=
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Here the basis vectors ordered lexicographicallyiaje= [) = |¢n) ® |Yr). In this case our aim is to check as next
|0),]i2) = |1) (each of length 1) an{dy),...,|j,n-1)) (each step whether giverjy) has a 3-qubit factor and an
of lengthN — 1). Hence the associated matrix is |\P qubit factor. In order to find the corresponding
23 x 2N=3 matrix A associated toy), we rewrite this state
__ | @o0--0 @00---01 00--010 "+ 40111 as
~ |210-0 1001 310-010 *** A11.-11]

2N73
Z ai.uiv| JV>‘| .
v=1

Here the basis vectors ordered lexicographically are
liy) = |000),...,lis) = |111) (each of length 3) and
W) = |Yn) @ 4, li1),---lign-g)) (each of lengthN —3). We again
construct associated matrix matri&k = [a;,j,]. This,
- . - o again, leads to two separate cases, namely, whether the
where [¢1) = 5 kiliu) and |¢) = Z Aipjvlv); rank of the associated matri is equal to unity or not
u=1 V= . . .
and so on. Thus, as above the algorithm continues until
with kp = 1 where thepth row ofAis thefirstnon-zerorow  [§) is completely factored.
of A(p=1 or 2). Thus in this case the state has a factor
[n). In this case we go back to step (i) wily) = | ).
Case Il At _ ;
If rank(A) # 1, then by above theorem we do not get a 4 Generalization to N-qudit case
factor like|(1) = ki[i1) +koliz) with [) = [(1) @ [(2). In . .
this case our aim is to check as next step whether giyen ~ For this remark we use the usual notation. A gendFal
has a 2-qubit factor and N — 2)-qubit factor. For thiswe ~ gudit state with dimensiond,,da,...,dy can be written
proceed with the originally given statey) as given in the @S S
next step (iv). ES z igi.in 1102 IN)
(iv) In order to find the corresponding & 2N-2 matrix A i1,i2,in
associated t@y), we rewrite this state as whereiy € {0,1,....d—1}: k= 1,2,....N. To check

whether|) has a linear factor (on left), we re-write this

(iii) Now there are two cases. W)y=> [
Case | u=1

If rank(A) = 1, then by above theorem there exist
numbersy, k, such that

oN-1

22 2
=3y lwe|y aauiv|jv>] : state as
u=1 v=1
@) =10)® Z agi, iyliz...in) + D) ® Z atiy.inli2---IN)
Here the basis vectors ordered lexicographicallyiaje= 2, 12, N
|00), [i2) = 01, [i3 = [10), |ia) = |11) (each of length 2) 4o di -l ® A1)y in |12+ - IN).
and|j1),.... |j,n ») (each of lengtN — 2). Thus 4 =1 izzm (@y-Diz-inli2--- 1)
A000--0 4000--01 8000010 *** 800111 This allows us to write down they by (dy x d3 x - -+ x dy)
A— |8010-0 8010-01 8010-010 - 801111 matrix A associated toy) and|y) facotrs as
a100--0 810001 8100--010 * -+ &10%-11 | -
a110--0 @110--01 110--010 * " A111.--1 di—1
W) = kii) Apiy...in |12 -+ IN)
Again there are two cases. i;) |2,z, Ple-
Case |
If rank(A) = 1, then by above theorem there exist if and only if ranA) = 1. Herek, = 1 and rowy is thefirst
numbers, ... ks such that non-zero row ofA. If rank(A) # 1, we check whether a
two partite state factors out and so on. From this point, the
) = |ll/1> @), algorithm proceeds exactly as in thequbit case. Please

see Example (iv) below.
where [g) = z kliu) and [gp) = z aipjuliv);

with k, = 1 where thepth row of A is thefirst non-zero 9 Examples
row of A. Thus in this case the state has a fadtpr). In

this case we go back to step (i) witlfy) = [¢). (i) Consider following example @], page 423)
Case Il
If rank(A) # 1, then by above theorem we do not get a 1 1 1 1
factor like |@1) = kilid) + - + kelia)  with W) =510 = 5110
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We proceed as per our algorithm and first check whethetwo qubit factor to giveny). For this we construct the
|@) has a linear factor (on left). For this we rewrjt@) following associated matriA :

thus: 0ilo
1 1 A 0000
=0/00) + —=|01 10)+ 011 ~—|0000
|w>|>ﬁ|>\/—|>|> 0110
1
=0)® |0[0)+—=|1)| + 1) ® ——|O>+0|1> Clearly, rankf) = 1 and |) factors into two 2-qubit
V2 V2
factors:
Therefore the associated matAxs 1 1
1 )= (5000 +123]) o (5100 +10)).
0 —
— V2
A= _%2 0 ] By applying our method we can readily see that these two

factor states ofy) are both entangled states.
(iv) Consider the following 3-partite state comprising a

Clearly, rankf) = 2 > 1, so that|() has no linear factor qubit. a qutrit and, a qudit witd — 4.

and therefore the statg) is entangled.
(ii) Consider the following two qubit state

5 /35, 35 3 7 .
) = —=100) — —=[01) + |10} — —=|11). W) =7\ 2221000+ —'°°3>+‘v 7411022

V3 V3 V6 V6 15
To check whetheffy) has a linear factor (on left), we T ﬂl|101>+3\/ '|1O3> \/_|122>
rewrite|y) thus: . .
As per the algorithm to check whether there exists a
) = |O>®[ 1 0) 1 |1>} +|1>®{ 1 0) 1 |1>] linear factor, we rewritéy) thus:
a V3 V3 V6 V6 1 : :
|¢>=-————[m>®(5«§ém1y+4v530$-+6v7u2a)}
Therefore the associated matfiis 4v241
1
+—— ||1) ® (—15V5/01) + 12V/5i|03) — 1822
A=$_$] Zsm 1 e (~15v501 03) - 1822) )|
VERG Therefore the associated 2 (8/x 4) matrix A is
Clearly, row = 1/(+/2) row; so that rankf) = 1 and :
y, rows = 1/(v/2) rowy k&) [ 5./35i 0 /& 0..03,/4i0
1 1 1 -15 /5 -9 ’
—0®!l —o0- 1 1o 0 1 0 03 i0---0 0
W=100| JZ0- 2] +he | o= ). V71037 2o
. ] where columns six to nine consist of zeros.
Hence withk; = 1.k, = 1/(v/2), |) factors into two By applying the algorithm|) factors thus:
linear factors as follows:
3i 535 . 4\/35 6V7 .
1 ) = (\O} |1>) ® ( i|01) + |03) + i122) | .
=(|100+—=[1) | ® 0 1) ). V7 4y/241 V241 4\/241
0= 100+ i ) (510 - =in)

To check the second factor, s@i), for a linear factor, we
Hence the stat@p) is separable. rewrite it thus:
(iii) Consider the following four qubit state,

1 1 3
@) = 5110003 + (0010 +|1103 +[1110)] we) = 0 10y (010) +5v/35[1) +0]2) +4v35(3) )
First, to check whether there exists a linear factor we +1)® (0|O> +0/1)+0/2) +0|3>)
construct the associated matAx '
+[2)@ (0/0) +0[2) + 6v7i[2) +013) )]
A— 0;10000 ' )
00000i10 Therefore the associated 3 by 4 mathiis

Clearly, rankp) is greater than 1, therefore, cleaty) A 1 85‘/03—5' % 4 035
has no linear factor and therefore it is entangled. We now = 4547 ) ’
continue as per algorithm to check whether there exists a !
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Here rankA) = 2 > 1, so that|y») is entangled. Thus the Dhananjay P.
state|() is entangled and it has one linear factor and one Mehendale, Prof. Dhananja
bipartite entangled factor. P. Mehendale served
Conclusion: as associate professor
We believe that our algorithm is a very useful tool to in S. P. College,

understand the structure of a multipartite pure quantum

state vis-a-vis entanglement.
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