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Abstract: We present an exponentially fast simple quantum algorithinséarching the unknown target in the unstructured dagabas
This algorithm provides an eloquent example that clearipalestrates the enormous advantage of quantum parallalisenmain
idea behind achieving exponential speedup for this newtguaalgorithm over Grover’s quantum algorithm is actuakyywsimple.
The idea consists of simultaneously employing2) oracles or black-box functions instead of utilizing onlyeaoracle or black-box
function as is done by Grover’'s quantum algorithm for seiaigkhe target in the unordered data set of $ize 2". We show that we
can attain the (explicitly unknown) target in the unstruetlidatabase of siz¢ = 2" by giving in parallel only one call, simultaneously
and independently, to appropriately defined2) oracles or black-box functions to be implemented using ayum computer. The
essential idea is to decompose the operation to be done iva gnantum system intt/2) operations to be carried out in parallel,
simultaneously and separately, on individual componefitiseosystem and thus to achieve enormous speedup in olgdherdesired
target from the unstructured data set of dize- 2" which is indeed amazing.
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1 Introduction This definition which appears very natural is at the
heart of our algorithm. This important definition allows us
We present an exponentially fast quantum method to beo decompose an operation on an entire guantum system
worked on a quantum computer for solving unstructuredinto operations on individual components which not only
search problems. We make use of following definition makes the construction of our quantum algorithm much

about the action of thproductoperator. simpler but also causes the exponential rise in its speed.
Let AandB be theoperatorsfrom vector spaceg and o
W respectively into a vector spatk say. Then the action The problem of searching in an unstructured database
of the product Operator @ B on product Space \@W is can be deSCI‘Ibed' through f0||0WIng Slmp|e example.
defined by Suppose we are given an address boolafames, and
we wish to find and contact one individual in the book.
(A2 B)(lv) ® |w)) = Alv) ® B|w). Classically, the obvious algorithm to employ is to search
from the beginning of the book to the end. We will need
where|v)eV and|w)eW. to browse through at leastN/2) entries to have 50
To generalize, le\,i = 1,2,---,n be theoperators  percent chance of finding the one we want. In other
from vector spaces,i = 1,2,---,n respectively into  words, the algorithm take®(N) operations. One knows

vector spaceU, say. Then the action of theroduct  that on a quantum computer one can do better by making
operator A ® A, ® --- ® Ay on the product space use of Grover's quantum algorithr@][which searches an

Vi@Ve® - @ Vy is defined by N-object unsorted database for the desired object in
on on on O(VN) operations, offering a quadratic speedup over its
(' Ai)(' i) = (1A M) classical counterpart. We propose a new quantum
iIJ iIJ il:l algorithm in this paper which searches #&iobject

unsorted database for the desired object (target) in just
where|v;)eV; foralli=1,2,--- ,n. one operationand thus offers an exponential speedup
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over its classical and quantum (Grover's quantumtarget. Specificallyfi(x) is defined thusfi(x) = 1 if x=t
algorithm) counterparts. Thus, the algorithm proposed inand f;(x) = 0 otherwise. A quantum oracle is a quantum
this paper performs search over an unordered data set dflack-box function, meaning it can observe and modify
sizeN = 2" items to find the unique element that satisfies the system without collapsing it to a classical state, that
some condition in a single computational step for whichwill recognize if the system is in correct state. If the
the well known classical algorithm requir€{N) steps  system is indeed in the correct state then the operator
and Grover's quantum algorithm requi®éy/N) steps. representing the oracle in effect will rotate the phase of
this (correct) state bymr radians, and otherwise this
guantum oracle will do nothing, effectivelyparkingthe
2 The Unstructured Search Problem and the correct state for further modification by subsequent
Oracle or Black-box function operatipps. We note that §uch a phase shift leaves the
probability of the system being in correct state the same.
The quantum algorithm that we propose here defines
and makes use dfn/2) oracles or black-box functions,
and we present to them indiceg, from index set
{0,1,2,3} and out of these indices from index set some
one predefined indeX;, will be the target element. Thus,

repeatedly dip into this bag, pluck out an index, and askV& define (n/2) oracles or black-box functions,
the so called oracle whether or not this is the target index T LS fT<n/z> like the one that is defined and used in
t. If it is, we stop. If not, we put the index back in the bag Grover’s quantum algorithm such thig(x) = 1 if x="T,
(replacement step) and repeat the process. Let us expred8d fr(x) = 0 otherwise, wheré = 1,2,---,(n/2). As

this classical procedure in quantum mechanical languagevas done in Grover's quantum algorith@] fve use these

a quantum analog of the bag of indices is equallyoracles to createphase inversion operatarsQ;,
weighted superposition of computational basis stdtes, | = 1,2,---,(n/2), whose actions on the correct states
ie. ﬁ sN . [x) and a quantum analog of plucking out an will cause the phase inversion of those correct states. To

index, at random, is reading this superposition state intheCreate these ~ phase inversion = operator<,

index basis which will give us a particular index stdie, | _b'%’ 2 ,]En/Z), \;]ve hmtroduce in all (n/21 anC|IIdae ‘
say, and then we will input thi) to the so called oracle qu IIIS’ 02ne3 or e%(':t p.tasetlnve][swn ctJ_pera or, and create
to find out whether or nofx) = |t). Note that since inall (n/2) 3— qubit unitary transformations

N = 2" we can express every state in the index basis i.e. Wiy, Wr X]Y) — Xy fr (X)),

[x), using n = log,N qubits and the above mentioned ' '

equally weighted superposition state can be easilyfor some duely defined(n/2) target states|T;),
prepared by applying a separate 1-qubit Hadamardigate i = 1,2,---,(n/2), where |x) € {]|00),]|01),]|10),|11)},

on each oh qubits prepared initially in the stat@), thus  and we take

Consider unordered data set containig- 2" items and
suppose these items are labelled by indicesin the
range 0< x < N — 1, and that the index of the sought after
target is x = t. In the classical unstructured search
problem we are given a bag of indices,and we have to

HEM0)*" = =51 1[x). When we read this equally 1
| i | ingle | =H[1) = —5[10) ~ |1].
weighted superposition we will get a single index ) V2

nondeterministically, mimicking the classical generate ]
and test procedure which will attain the target@iN)  We can now easily check that

steps. As stated above, Grover’s quantum algoritBm [ .

has better performence and it attains the targ@(ig’N) Wi [X)]y) = (=1 x)]y)
steps. Thus, Grover's quantum algorithm achieves

. . . when the ancilla qubily) is as given above. Thus all the
?éja?lg'csshpoeﬁguﬁ]\’air tgfoslg‘?’ss'C;‘&:A%S;thg;ég}tﬁﬂk?s ancilla qubits remain unaffected and we can ignore them

. . 5 all .in our calculations.and simply create the operators

cuantum algoritnm for performing Unsietured duantum ;= L2+ (1/2), acting on elementsy). wherelx) ¢
X . _{|00),|01),|10),|11)}, and their action can be depicted as

searchmust call the oracle at least as many times as is

done by Grover’s aIgorltthansomethmg elsbe do'ne O|x) = (_1)f'l'i(x) X) = (1 — 2[T)(Ti)|X)

to improve the speed of searching the target in the

unstructured database? How about calling a number oWherel representsdentity operatorand these operators

oracles simultaneously? We show that fortunately thisperform the same action as that of these oracles or

simple trick of simultaneously calling sufficiently many black-box functions, namel;(|x)) = —|x) if |x) = |Ti)

oraclesworks excellently. and Oi(]x)) = |x) otherwise, where |X) &

An oracle is basically a black-box function, denoted {|00),|01),|10),|11)}.

as fi(x), wherex is any general element in the domain With these preliminaries we now proceed to discuss

(index set) and is the target element to be searched in theour exponentially fast quantum algorithm to pick out the

domain, and wherf;(x) is presented with an index it desired item from an unordered data set contaihirg2"

can pronounce on whether or not it is the index of theitems.
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3 Algorithm of suitable factors théensor product representatiofor

the quantum statep) representing quantum bag of data.
We begin our algorithm by simultaneously giving call to (iilWe choose the following simple tensor product
(n/2) oracles that will modify the system depending on representation for the quantum stégg representing the
whether or not it is in the correct configaration that we areunordered data set of items in which we choose

searching for. rp=rp=---=r¢ =2, and we assume without any loss of
We now proceed with the steps of the algorithm: generality thah is an even number. Therefore, we have
()Let D ={0,1,2,--- ,N — 1} be the given unordered

data set containingl = 2" items labeled by numbers ®(n/2)

0,1,2,---,N —1 and let item labeled by lab¢lbe our W) =( |_| ©))

target item which we want to find out from the set. We 1

associate quantum states, which are computational basihere|®) = 3[|00) +01) +|10) + |11)].

states, with these items. Thus we represent item labeled (V)Let the target state be
by number 0 by computational basis st&d@---0), the |1} = [tit2---tn) = [tato)[tats) - [th-atn). We put
item labeled by number 1 by computational basis statd k) = [ta-1t2k). Thus, we can denote target state by
100---1), ---, the item labeled by numbeiN — 1) by [t} = [TiT2:+ Tins2)) = [To)[T2) -+ [Tiny2)-

computational basis statél1---1). Clearly, all these We define (n/2) unitary quantum operators,
computational basis states associated with items hav®i =1 —2|T;)(Ti| and as discussed above they do the job
length equal ton. of the oracles and the action of the oracles can be

(i)We prepare a quantum statgy), which is equally ~ depicted simply in terms of the action of these operators,
weighted superposition of all computational basis stateddi, operating on the 2-qubit elements), where [x) &
associated with the items as mentioned above. Thig|00),/01),10),|11)}, such that
equally weighted superposition state represents the;(|x)) = (—1)T®|x) = (I —2|T;)(T|)|x). Note that
unstructured set of items. Thus:

Gilx) = (I = 2[Ti)(Ti[)[x) = —[x)

1 L .
|qj>:Wilignin“llzn-lf‘l% |fX:T| and
where each ofy,is...,in takes values if{0,1}. This Ox) = (I = 2[Ti)(Ti[)[x) = [x)

superposition state represents a quantum registan of

qubits wheren is the number of qubits that are necessary!f X7 Ti- _ _ ,

to represent the entire search space of Bize 2". Thus, (V)Our next step is to creai@, 2) identical operators
the quantum state|y) representing quantum bag W, the so calledDiffusion Transforms all equal to
containingN items out of which any computational basis [2/©)(®©| —1]. Then we prepare the product operator,
state will result as an outcome of measurement (i.e. alP = ([1°"?(WQ)) and operate this product operator on
computational basis states are equally probable as afy) = ([1°("?|@)). We carry out this final operation in
outcome of measurement), therefore, this staje parallel. This action will lead us to the desired targetestat

correctly represents the unordered set of items. in a single step. Thus,
Now, let us emphasize a very simple but important
fact useful for our algorithm. This fact is that the above ®(n/2) ®(n/2)
quantum statéy) can be obtained as follows: Ply) =( |_l Wa)( 1 1e)
=
1) = HEM0)* = [ (= (10} + 1), (2
V2 =([] waiey)
=
Thus,|y) is aCompletely Separabktate having single o(n/2)
qubit identical factors, each equal [ip) = %[|0> +|1)]. _ (' l_l () = o).
Once we understand the completely separable nature of the i—

quantum statey) representing the unordered set of ittms 1hg gesired target state is thus obtained in this single
it follows that we can infact give any suitable form to this operation.

state, sincéensor product is associativeor example, we
can expresgp) as

®r ®ry ®rg 4 A Remark
) (I_l ) (I_l ) (I_l ) Speeding up solutions of NP-complete problems For

wherery,rp,--- 1 are some positive integers such that solving Hamiltonian cycle (HC) problemi], page 264),
ri+4ra+---+re=n. We call such representation in terms best classical algorithm  requiresO(p(n)2"'°9(m])
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operations, Grover's quantum algorithm requires[2] Grover L.K. Proceedings of the 28th Annual ACM
O(p(n)2osMl/2)  operations, while our quantum  Symposium on the Theory of Computing, ACM Press, New
algorithm will require onlyO(p(n)) operations where York, pp 212-219, (1996).

p(n) is the polynomial factor. The dominant effect in [3]C. Zalka, Phys. Rev. A. Volume 60, Issue 4, pp 2746-2751,
determining the resources required is the exponent in (1999).

onllog(n)] gy pnllog(n)]/2
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5 An example

Suppose we are given an unordered database in terms o
210 — 1024 labeled items kept inside a bag and items are
labeled by numbers,@,2;---1023 Our aim is to pick out
item labeled by number 72We solve quantum version of
this problem using our new quantum algorithm.

(1)We prepare quantum bag in terms of quantum state \ Physics, Mathematics, and
1 Engineering and students of
@) = — Z liziz...i10), science and engineering have successfully completed
\/ﬁ)i17i2,...7ilo their project work under his supervision. He taught
o . . various courses in Physics, Electronic Science, and
where each ofy, iz...,i10 takes values if0, 1}. Computer Science departments, and has done research in
(2)The target item s labeled by number yarious areas of these subjects. He worked on various
(727)10=(101101011},. ~ science and engineering projects and one of his projects
(3)The target state IS won award in the national science projects competition
t) = [1011010111=[10)[11)|01)|01)|11). organized by Department of Science and Technology. His
(4)We construct the operators);,i = 1,2,---,5  research interest at present is topics in Quantum
representing  (n/2) = 5  oracles, namely, computation and Quantum Information.
01 = | — 2]10)(10], 0, = | — 2/11)(11,
O; = | — 2/01)(01, O, = | — 2/01)(01,
Os = | —2|11)(11], and take five identical diffusion
transforms W = [2©)(6] - 1], where

|©) = 3[|00) +[01) + |10) + |11)].
(5)We create the product operatBr= (ni@;ﬁ” (WQ))

and operate this product operator @) = ([1°® |©)).
This gives rise to state

@(5)
( H(WQ|@>)) =10 @[11)®[01) ®|0}) @[11) = t),

the desired target state.

Note that best classical algorithm in the worst case
will require 1024 iterations, Grover’s quantum algorithm
[2] will require 32 iterations, while our new quantum
algorithm requires jushneiteration.
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