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Abstract: We present an exponentially fast simple quantum algorithm for searching the unknown target in the unstructured database.
This algorithm provides an eloquent example that clearly demonstrates the enormous advantage of quantum parallalism.The main
idea behind achieving exponential speedup for this new quantum algorithm over Grover’s quantum algorithm is actually very simple.
The idea consists of simultaneously employing(n/2) oracles or black-box functions instead of utilizing only one oracle or black-box
function as is done by Grover’s quantum algorithm for searching the target in the unordered data set of sizeN = 2n. We show that we
can attain the (explicitly unknown) target in the unstructured database of sizeN = 2n by giving in parallel only one call, simultaneously
and independently, to appropriately defined(n/2) oracles or black-box functions to be implemented using a quantum computer. The
essential idea is to decompose the operation to be done on entire quantum system into(n/2) operations to be carried out in parallel,
simultaneously and separately, on individual components of the system and thus to achieve enormous speedup in obtaining the desired
target from the unstructured data set of sizeN = 2n which is indeed amazing.
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1 Introduction

We present an exponentially fast quantum method to be
worked on a quantum computer for solving unstructured
search problems. We make use of following definition
about the action of theproductoperator.

Let A andB be theoperatorsfrom vector spacesV and
W respectively into a vector spaceU, say. Then the action
of theproduct operator A⊗B on product space V⊗W is
defined by

(A⊗B)(|v〉⊗ |w〉) = A|v〉⊗B|w〉.

where|v〉εV and|w〉εW.
To generalize, letAi , i = 1,2, · · · ,n be theoperators

from vector spacesVi, i = 1,2, · · · ,n respectively into
vector spaceU, say. Then the action of theproduct
operator A1 ⊗ A2 ⊗ ·· · ⊗ An on the product space
V1⊗V2⊗·· ·⊗Vn is defined by

(
⊗n

∏
i=1

Ai)(
⊗n

∏
i=1

|vi〉) = (
⊗n

∏
i=1

Ai |vi〉)

where|vi〉εVi for all i = 1,2, · · · ,n.

This definition which appears very natural is at the
heart of our algorithm. This important definition allows us
to decompose an operation on an entire quantum system
into operations on individual components which not only
makes the construction of our quantum algorithm much
simpler but also causes the exponential rise in its speed.

The problem of searching in an unstructured database
can be described through following simple example.
Suppose we are given an address book ofN names, and
we wish to find and contact one individual in the book.
Classically, the obvious algorithm to employ is to search
from the beginning of the book to the end. We will need
to browse through at least(N/2) entries to have 50
percent chance of finding the one we want. In other
words, the algorithm takesO(N) operations. One knows
that on a quantum computer one can do better by making
use of Grover’s quantum algorithm [2] which searches an
N-object unsorted database for the desired object in
O(

√
N) operations, offering a quadratic speedup over its

classical counterpart. We propose a new quantum
algorithm in this paper which searches anN-object
unsorted database for the desired object (target) in just
one operationand thus offers an exponential speedup
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over its classical and quantum (Grover’s quantum
algorithm) counterparts. Thus, the algorithm proposed in
this paper performs search over an unordered data set of
sizeN = 2n items to find the unique element that satisfies
some condition in a single computational step for which
the well known classical algorithm requiresO(N) steps
and Grover’s quantum algorithm requiresO(

√
N) steps.

2 The Unstructured Search Problem and the
Oracle or Black-box function

Consider unordered data set containingN = 2n items and
suppose these items are labelled by indices,x, in the
range 0≤ x≤ N−1, and that the index of the sought after
target is x = t. In the classical unstructured search
problem we are given a bag of indices,x, and we have to
repeatedly dip into this bag, pluck out an index, and ask
the so called oracle whether or not this is the target index
t. If it is, we stop. If not, we put the index back in the bag
(replacement step) and repeat the process. Let us express
this classical procedure in quantum mechanical language:
a quantum analog of the bag of indices is equally
weighted superposition of computational basis states,|x〉,
i.e. 1√

N ∑N
x=1 |x〉 and a quantum analog of plucking out an

index, at random, is reading this superposition state in the
index basis which will give us a particular index state,|x〉
say, and then we will input this|x〉 to the so called oracle
to find out whether or not|x〉 = |t〉. Note that since
N = 2n we can express every state in the index basis i.e.
|x〉, using n = log2N qubits and the above mentioned
equally weighted superposition state can be easily
prepared by applying a separate 1-qubit Hadamard gateH
on each ofn qubits prepared initially in the state|0〉, thus
H⊗n|0〉⊗n = 1√

N ∑N
x=1 |x〉. When we read this equally

weighted superposition we will get a single index
nondeterministically, mimicking the classical generate
and test procedure which will attain the target inO(N)
steps. As stated above, Grover’s quantum algorithm [2]
has better performence and it attains the target inO(

√
N)

steps. Thus, Grover’s quantum algorithm achieves
quadratic speedupover the classical algorithm. C. Zalka
[3] has shown that Grover’s quantum algorithm is
optimal. What does this mean? It means that any other
quantum algorithm for performing unstructured quantum
searchmust call the oracle at least as many times as is
done by Grover’s algorithm. Cansomething elsebe done
to improve the speed of searching the target in the
unstructured database? How about calling a number of
oracles simultaneously? We show that fortunately this
simple trick of simultaneously calling sufficiently many
oraclesworks excellently.

An oracle is basically a black-box function, denoted
as ft(x), wherex is any general element in the domain
(index set) andt is the target element to be searched in the
domain, and whenft (x) is presented with an indexx it
can pronounce on whether or not it is the index of the

target. Specifically,ft(x) is defined thus:ft (x) = 1 if x= t
and ft(x) = 0 otherwise. A quantum oracle is a quantum
black-box function, meaning it can observe and modify
the system without collapsing it to a classical state, that
will recognize if the system is in correct state. If the
system is indeed in the correct state then the operator
representing the oracle in effect will rotate the phase of
this (correct) state byπ radians, and otherwise this
quantum oracle will do nothing, effectivelymarking the
correct state for further modification by subsequent
operations. We note that such a phase shift leaves the
probability of the system being in correct state the same.

The quantum algorithm that we propose here defines
and makes use of(n/2) oracles or black-box functions,
and we present to them indices,x, from index set
{0,1,2,3} and out of these indices from index set some
one predefined index,Ti , will be the target element. Thus,
we define (n/2) oracles or black-box functions,
fT1, fT2 , · · · , fT(n/2)

like the one that is defined and used in
Grover’s quantum algorithm such thatfTi (x) = 1 if x= Ti
and fTi (x) = 0 otherwise, wherei = 1,2, · · · ,(n/2). As
was done in Grover’s quantum algorithm [2] we use these
oracles to createphase inversion operators, Oi ,
i = 1,2, · · · ,(n/2), whose actions on the correct states
will cause the phase inversion of those correct states. To
create these phase inversion operators,Oi ,
i = 1,2, · · · ,(n/2), we introduce in all(n/2) ancillae
qubits, one for each phase inversion operator, and create
in all (n/2) 3− qubit unitary transformations

ω fTi
: ω fTi

|x〉|y〉 → |x〉|y⊕ fTi (x)〉,

for some duely defined(n/2) target states |Ti〉,
i = 1,2, · · · ,(n/2), where |x〉 ε {|00〉, |01〉, |10〉, |11〉},
and we take

|y〉= H|1〉= 1√
2
[|0〉− |1〉].

We can now easily check that

ω fTi
|x〉|y〉= (−1) fTi (x)|x〉|y〉

when the ancilla qubit|y〉 is as given above. Thus all the
ancilla qubits remain unaffected and we can ignore them
all in our calculations and simply create the operators
Oi , i = 1,2, . . .(n/2), acting on elements,|x〉, where|x〉 ε
{|00〉, |01〉, |10〉, |11〉}, and their action can be depicted as

Oi |x〉= (−1) fTi (x) |x〉= (I −2|Ti〉〈Ti |)|x〉
whereI representsidentity operatorand these operators
perform the same action as that of these oracles or
black-box functions, namely,Oi(|x〉) = −|x〉 if |x〉 = |Ti〉
and Oi(|x〉) = |x〉 otherwise, where |x〉 ε
{|00〉, |01〉, |10〉, |11〉}.

With these preliminaries we now proceed to discuss
our exponentially fast quantum algorithm to pick out the
desired item from an unordered data set containingN = 2n

items.
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3 Algorithm

We begin our algorithm by simultaneously giving call to
(n/2) oracles that will modify the system depending on
whether or not it is in the correct configaration that we are
searching for.

We now proceed with the steps of the algorithm:
(i)Let D = {0,1,2, · · · ,N−1} be the given unordered

data set containingN = 2n items labeled by numbers
0,1,2, · · · ,N − 1 and let item labeled by labelt be our
target item which we want to find out from the set. We
associate quantum states, which are computational basis
states, with these items. Thus we represent item labeled
by number 0 by computational basis state|00· · ·0〉, the
item labeled by number 1 by computational basis state
|00· · ·1〉, · · · , the item labeled by number(N − 1) by
computational basis state|11· · ·1〉. Clearly, all these
computational basis states associated with items have
length equal ton.

(ii)We prepare a quantum state,|ψ〉, which is equally
weighted superposition of all computational basis states
associated with the items as mentioned above. This
equally weighted superposition state represents the
unstructured set of items. Thus:

|ψ〉= 1√
N

∑
i1,i2,...in

|i1i2 . . . in〉,

where each ofi1, i2 . . . , in takes values in{0,1}. This
superposition state represents a quantum register ofn
qubits wheren is the number of qubits that are necessary
to represent the entire search space of sizeN = 2n. Thus,
the quantum state|ψ〉 representing quantum bag
containingN items out of which any computational basis
state will result as an outcome of measurement (i.e. all
computational basis states are equally probable as an
outcome of measurement), therefore, this state|ψ〉
correctly represents the unordered set of items.

Now, let us emphasize a very simple but important
fact useful for our algorithm. This fact is that the above
quantum state|ψ〉 can be obtained as follows:

|ψ〉= H⊗n|0〉⊗n =
⊗n

∏(
1√
2
[|0〉+ |1〉]).

Thus,|ψ〉 is aCompletely Separablestate havingn single
qubit identical factors, each equal to|φ〉 = 1√

2
[|0〉+ |1〉].

Once we understand the completely separable nature of the
quantum state|ψ〉 representing the unordered set of items
it follows that we can infact give any suitable form to this
state, sincetensor product is associative. For example, we
can express|ψ〉 as

|ψ〉= (
⊗r1

∏ |φ〉)⊗ (
⊗r2

∏ |φ〉)⊗·· ·⊗ (
⊗rk

∏ |φ〉)

where r1, r2, · · · , rk are some positive integers such that
r1+ r2+ · · ·+ rk = n. We call such representation in terms

of suitable factors thetensor product representationfor
the quantum state|ψ〉 representing quantum bag of data.

(iii)We choose the following simple tensor product
representation for the quantum state|ψ〉 representing the
unordered data set of items in which we choose
r1 = r2 = · · ·= rk = 2, and we assume without any loss of
generality thatn is an even number. Therefore, we have

|ψ〉= (
⊗(n/2)

∏ |Θ〉)

where|Θ〉= 1
2[|00〉+ |01〉+ |10〉+ |11〉].

(iv)Let the target state be
|t〉 = |t1t2 · · · tn〉 = |t1t2〉|t3t4〉 · · · |tn−1tn〉. We put
|Tk〉 = |t2k−1t2k〉. Thus, we can denote target state by
|t〉= |T1T2 · · ·T(n/2)〉= |T1〉|T2〉 · · · |T(n/2)〉.

We define (n/2) unitary quantum operators,
Oi = I −2|Ti〉〈Ti | and as discussed above they do the job
of the oracles and the action of the oracles can be
depicted simply in terms of the action of these operators,
Oi , operating on the 2-qubit elements,|x〉, where |x〉 ε
{|00〉, |01〉, |10〉, |11〉}, such that
Oi(|x〉) = (−1) fTi (x)|x〉= (I −2|Ti〉〈Ti |)|x〉. Note that

Oi |x〉= (I −2|Ti〉〈Ti |)|x〉=−|x〉

if x= Ti and

O|x〉= (I −2|Ti〉〈Ti |)|x〉= |x〉

if x 6= Ti .
(v)Our next step is to create(n/2) identical operators

W, the so calledDiffusion Transforms, all equal to
[2|Θ〉〈Θ | − I ]. Then we prepare the product operator,
P= (∏⊗(n/2)(WOi)) and operate this product operator on
|ψ〉 = (∏⊗(n/2) |Θ〉). We carry out this final operation in
parallel. This action will lead us to the desired target state
in a single step. Thus,

P|ψ〉= (
⊗(n/2)

∏
i=1

(WOi))(
⊗(n/2)

∏ |Θ〉)

= (
⊗(n/2)

∏
i=1

(WOi |Θ〉))

= (
⊗(n/2)

∏
i=1

(|Ti〉)) = |t〉.

The desired target state is thus obtained in this single
operation.

4 A Remark

Speeding up solutions of NP-complete problems For
solving Hamiltonian cycle (HC) problem ([1], page 264),
best classical algorithm requiresO(p(n)2n[log(n)])
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operations, Grover’s quantum algorithm requires
O(p(n)2n[log(n)]/2) operations, while our quantum
algorithm will require onlyO(p(n)) operations where
p(n) is the polynomial factor. The dominant effect in
determining the resources required is the exponent in
2n[log(n)] or 2n[log(n)]/2.

5 An example

Suppose we are given an unordered database in terms of
210 = 1024 labeled items kept inside a bag and items are
labeled by numbers 0,1,2, · · ·1023. Our aim is to pick out
item labeled by number 727. We solve quantum version of
this problem using our new quantum algorithm.

(1)We prepare quantum bag in terms of quantum state

|ψ〉= 1√
210 ∑

i1,i2,...,i10

|i1i2 . . . i10〉,

where each ofi1, i2 . . . , i10 takes values in{0,1}.
(2)The target item is labeled by number

(727)10= (1011010111)2.
(3)The target state is

|t〉= |1011010111〉= |10〉|11〉|01〉|01〉|11〉.
(4)We construct the operators,Oi , i = 1,2, · · · ,5

representing (n/2) = 5 oracles, namely,
O1 = I − 2|10〉〈10|, O2 = I − 2|11〉〈11|,
O3 = I − 2|01〉〈01|, O4 = I − 2|01〉〈01|,
O5 = I − 2|11〉〈11|, and take five identical diffusion
transforms W = [2|Θ〉〈Θ | − I ], where
|Θ〉= 1

2[|00〉+ |01〉+ |10〉+ |11〉].
(5)We create the product operator,P= (∏⊗(5)

i=1 (WOi))

and operate this product operator on|ψ〉 = (∏⊗(5) |Θ〉).
This gives rise to state

(
⊗(5)

∏
i=1

(WOi |Θ〉)) = |10〉⊗ |11〉⊗ |01〉⊗ |01〉⊗ |11〉= |t〉,

the desired target state.
Note that best classical algorithm in the worst case

will require 1024 iterations, Grover’s quantum algorithm
[2] will require 32 iterations, while our new quantum
algorithm requires justoneiteration.
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