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Abstract: The instability of collisional electron and ion in warm plasma is investigated. However, the dispersion relation of collisional
electron at equilibrium ion and the dispersion relation of collisional ions at equilibrium electron are studied. It is found that the collision
term is more effective in the instability. Also, the separation of variables method is used to find the transverse electrostatic wave potential
in cylindrical coordinates, of electrons and ions plasma. It is found that this wave potential is independent of the collision parameter.
On the other hand, the longitudinal electrostatic wave potential is investigated and found to be strongly depending on the collision
parameter.
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1 Introduction

The number of theoretical publications devoted to various
collective processes in electron–ion plasmas has
increased enormously in recent years. This interest is
primarily due to the fact that such plasma is typical rather
than exceptional in astrophysical conditions. For example,
it is assumed that such plasmas exist in the inner regions
of accretion disks near black holes [1], in magnetospheres
of neutron stars [2,3], in active galactic nuclei [4], and
even in solar flares [5]. The theory of collective processes
in quantum plasma is one of the most actively developing
fields in plasma physics [6,7,8,9] Ion-acoustic waves
(IAWs) in plasma have been attracting attention of
physicists for decades. The interest in IAWs remains alive
because not all problems have been solved in this field
[10]. Ion-acoustic waves (IAWs) in quantum electron-ion
plasma with degenerate components are theoretically
investigated using a system of quantum equations of gas
dynamics by Dubinov and Kitayev, 2015 [11]. Models of
ionization equilibrium of thermal plasmas with
multicharged ions are exactly solved [12]. Collisionless
unmagnetizede–p–i plasma consisting of quantum
degenerate gases of ions, electrons, and positrons at
nonzero temperatures was considered. The dispersion
equation for isothermal ionic sound waves was derived
and analyzed [13]. The collisionless unmagnetized

degenerate plasma with zero temperature components
was considered and the exact barometric formulas for the
electron and ion degenerate gases and the exact
expressions for the electron and ion Debye radii were
derived [14].

Binary Coulomb collisions between charged particles,
characterized by a cubic dependence of the collision rates
on the relative particle velocity, are one of the
distinguishing features of plasma physics. It plays a
crucial role in a variety of transport, relaxation and
dissipative phenomena in magnetically confined plasmas
[15,16]. The effects of electron-electron and electron-ion
Coulomb collisions on the electron distribution function
are studied by Hagelaar, 2015 [17]. A difficult problem
that often arises when trying to derive theoretical
predictions for the behavior of waves in plasma is how to
include effects of particle collisions in the theory [19,18].
When collision effects are considered, three regimes of
sheath behavior are evident. There is a collisionally
dominated (i.e., mobility limited) regime, a collisionless
regime, and a transition regime that separates them
[20].In this paper we present the study of the warm
plasma of electron and ion with take into consideration
the collision between the particles of electron-ion, and the
effect of this collision on the potential function.

The layout of this paper is as follows; In Sec. 2, we derive
the basic electron ion plasma differential equations
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describing the model. In Sec.3 the separation of variable
method is used to find the complete solution of these
equations. In Sec.4 is assigned for numerical results and
conclusions.

2 Basic Equations

We consider a warm unmagnetized collisional plasma
system consists of ions and electrons. This system is
governed by the continuity equation, the momentum
equation, and Poisson‘s equation respectively [21,22,23,
24]

∂ne,i

∂ t
+∇.(ne,iVe,i) = 0, (1)

me,ine,i(
∂Ve,i

∂ t
+(Ve,i.∇)Ve,i)

=±ene,iE −∇Pe,i −me,ine,iΓe,iVe,i, (2)

∇.E =
e
ε0
(ni − ne), (3)

WhereE is the electric field.ne,i, Ve,i, me,i, andΓe,i, are the
density, velocity, mass and collision term of electrons and
ions respectively. The positive (negative) sign in Eq.(2) is
assigned for ions (electrons).The pressure term isPe,i =

γne,iKBTe,i, whereγ = 2+N
N , is the ratio of specific heats of

substrate. The degree of freedom,N = 1, and hence,γ = 3
so Pe,i=3neiKBTe,i, while KB, Te,i are Boltzmann constant
and electron and ion temperatures respectively.

2.1 Collision of Electron in warm plasma at
Equilibrium Ion

At first, assuming a small perturbation around the
equilibrium number density of electrons and a constant
number density of ions, the plasma parameters appearing
in Eqs.(1)–(3) can be expanded as











ne=n0+ne1 , ne1≪n0
Ve=V0+Ve1 , Ve1≪V0
E=E0+E1 , E1≪E0
Pe=P0+Pe1 , Pe1≪P0











, (4)

At plasma equilibrium state we have

E = E0, ni = ne = n0, ρ = e(ni − ne) = 0, (5)

Applying Eqs.(4) and (5) in Eqs. (1),(2) and (3):

∂ (n0+ ne1)

∂ t
+∇.(n0+ ne1)(V0+Ve1) = 0, (6)

me(n0+ ne1)(
∂ (V0+Ve1)

∂ t
+((V0+Ve1).∇)(V0+Ve1)

=−e(n0+ne1)(E0+E1)−∇(P0+Pe1)−me(n0+ne1)Γe(V0+Ve1)= 0,
(7)

∇.(E0+Ee1) =
e
ε0
(n0− (n0+ ne1)), (8)

In this perturbation approximation, we assume
thatni = n0 is a constant andV0=E0 = 0.In addition we
setP0 = 3n0KBTe, Pe1=3ne1KBTeand E1 = ∇ /0e1,i1,
where/0e1,i1 is the perturbed part of the electric potential
affected on the electrons and ions. For first order
perturbation, Eqs.(6),(7) and (8), with some mathematical
manipulation, give the 4th order differential equation;

(∇2+K2
e )∇

2 /0e1 = 0, (9)

Where the electron wave vector,Ke, satisfy the dispersion
relation:

K2
e =

1

3λ 2
De

[
ω (ω + iΓe)

ω2
pe

−1]. (10)

Hence, the electron plasma frequencyω2
pe =

n0e2

meε0
, and

the electron Debye lengthλ 2
De =

ε0KBTe
n0e2 .

2.2 Collision of Ion in Warm Plasma at
Equilibrium Electron

In this case, we assume a small perturbation around the
equilibrium number density of ions and a constant number
density of electrons. The plasma parameters appearing in
Eqs.(1)–(3) can be expanded, in a similar way, as











ni = n0+ni1, ni1 ≪ n0
Vi =V0+Vi1, Vi1 ≪V0

E = E0+E1, E1 ≪ E0
Pi = P0+Pi1, Pi1 ≪ P0











, (11)

Substitute from Eqs.(5) and (11) in Eqs.(1), (2) and (3):

∂ (n0+ ni1)

∂ t
+∇.(n0+ ni1)(V0+Vi1) = 0, (12)

me(n0+ ni1)(
∂ (V0+Vi1)

∂ t
+((V0+Vi1).∇)(V0+Vi1)

= e(n0+ni1)(E0+E1)−∇(P0+Pi1)−mi(n0+ni1)Γi(V0+Vi1)= 0,
(13)

∇.(E0+E1) =
e
ε0
(n0− (n0+ ni1)), (14)

Assumingne = n0, for first order perturbation, we can
obtain a similar 4th order differential equation for ions as

(∇2+K2
i )∇

2 /0i1 = 0, (15)

Where the ion wave vector,Ki, satisfy the following
dispersion relation:

K2
i =

1

3λ 2
Di

[
ω (ω + iΓi)

ω2
pi

−1]. (16)
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Hence, the ion plasma frequencyω2
pi =

n0e2

miε0
, and the

electron Debye lengthλ 2
Di =

ε0KBTi
n0e2 .

Eqs. (10) and (16) are the dispersion relations for electron
and ion acoustic waves which can be rewritten as a
quadratic equation inω as

ω2+ iΓe,iω −ω2
pe,i(1+3λ 2

De,iK
2

e,i
) = 0 (17)

The roots of equation (17) in this case are

ω =−
i Γe,i

2
±

√

− Γ2
e,i

4
+ω2

pe,i(1+3λ 2
De,iK

2

e,i
) (18)

It is clear that, the square root in Eq. (18) may be real or
imaginary. If it is real we assume thatω =ωr+iω i to obtain

ωr =±

√

Γ2
e,i

4
−ω2

pe,i(1+3λ 2
De,iK

2

e,i
) (19)

and

ωi =−
i Γe,i

2
(20)

If ω is imaginary we get

ωr = 0 Andωi =−
Γe,i
2 ±

√

Γ2
e,i
4 −ω2

pe,i(1+3λ 2
De,iK

2

e,i
)

From Eq.(20), it is clear that the damping rate increases
linearly with the collision rate,Γe,i,and it does not depend
on the wave number,Ke,i. However, from Eq.(19), the
damping rate depends onΓe,i, and the wave number,Ke,i.
In addition, the instability occurs when

Γ2
e,i> 4ω2

pe,i(1+3λ 2
De,iK

2

e,i
).

3 The acoustic wave solution of Eqs. (9) and
(15)

We will seek the solution for electron and ion wave
propagating in three variables cylindrical geometry. The
equations describing this acoustic wave are Eqs. (9) and
(15). These equations can be separated to two 2nd order
differential equations as;

∇2 /0e, i1 = 0, (21)

And
(∇2+K2

e, i) /0e, i1 = 0. (22)

Equation (21) describes a finite wavelength transverse
wave of electrons and ions plasma. It is clear that this
wave is independent of the collision parameter,Γe,i. On
the other hand, equation (22) describes the longitudinal
electron and ion plasma waves which strongly depend on
the collision parameter. In three dimensional cylindrical
coordinates Equation (21) takes the form

∇2 /0e, i1 =
1
r

∂
∂ r

(

r
∂ /0e, i1

∂ r

)

+
1
r2

∂ 2 /0e, i1

∂θ 2 +
∂ 2 /0e, i1

∂ z2 = 0.

(23)

Let the function; /0e, i1 (r, ϑ , z)is separated in the form;
/0e, i1 (r, ϑ , z) = R(r)ϑ (θ )Z(z), then equation (23) can
be written as

(

d2R
dr2 +

1
r

dR
dr

)

1
R
+

1

ϑr2

∂ 2ϑ
∂θ 2 +

1
Z

∂ 2Z
∂ z2 = 0. (24)

To separate the dependence of Z, equation (24) can be
rewritten as
(

d2R
dr2 +

1
r

dR
dr

)

1
R
+

1

ϑr2

∂ 2ϑ
∂θ 2 =−

1
Z

∂ 2Z
∂ z2 =−a2

, (25)

Wherea is a constant. Hence,

Z = Z0 e−az (26)

Similarly, to separate the dependence ofR(r)andϑ (θ ) in
equation (25) we can write

(

d2R
dr2 +

1
r

dR
dr

)

r2

R
+ a2r2 =−

1
ϑ

∂ 2ϑ
∂θ 2 = n2

, (27)

This gives;
ϑ = ϑ0einϑ (28)

And
(

r2 d2R
dr2 + r

dR
dr

)

+(a2r2
− n2)R = 0 (29)

Let (S = ar ) so by chain rule, equation (29) takes the form
of Bessel equation as;

(

S2 d2R
dS2 + S

dR
dS

)

+(S2
− n2)R = 0 (30)

Eq.(30) has the following solution

Jn (S) =
∞

∑
m=0

(−1)n

m! (m+ n+1)22m (
S
2
)2m+n

. (31)

wheren is an integer and it is the order of Bessel function,
Jn (S) .In view of Eqs.(26), (28) and (31), the complete
solution of Eq.(24) is

/0e,i1 (r, ϑ , z) =Ca,n Jn(ar) e−azeinϑ
,a≤ 0,n= 0,±1, ±2, . . . ,

(32)
Similarly, Eq. (22) in three dimensional cylindrical
coordinates takes the form

1
r

∂
∂ r

(

r
∂ /0e,i1

∂ r

)

+
1
r2

∂ 2 /0e,i1

∂θ 2 +
∂ 2 /0e,i1

∂ z2 +K2
e, i /0e, i1 = 0,

(33)
By the same way of separation of previous solution,
equation (33) solved to take the form

/0e,i1 (r, ϑ , z) =Ca,n Jn(ar) eike,izeinϑ
,a≤ 0,n= 0,±1, ±2, . . . ,

(34)
Equation (32) describes a potential function as a solution
of equation (21) for finite wavelength transverse wave of
electrons and ions plasma. On the other hand, equation
(34) describes the potential function of longitudinal
electron and ion plasma waves which strongly depend on
the collision parameter.
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4 Numerical Results

For numerical calculations purpose we can rescale the
wave frequency,ω , and the wave vector,Ke,i, by the
plasma frequency,ωpe,i, and the reciprocal of Debye
length, 1

λDe,i
,respectively. In this case Eq.(20) becomes

ω i =−
Γe,i

2
±

√

Γ2
e,i

4
− (1+3K

2
e,i), (35)

WhereΓ e,i =
Γe,i

ωpe,i
.

From Eq. (35), we notice that the damping rate depends
on the collision parameterΓe,i and the wave number,Ke,i .
In Fig. 1, we plotted this equation for electrons, where the
collision for electron plasma is small compared with ion
plasma and it is clear that the damping rate increases with
Γe and it decreases withKe.Fig. 2.shows the same behavior
for the damping rate for ions where the collision is high.

Fig. 1. Graph of the damping rate, for electron plasmaω i
vs the wave number,KeforΓe = 5, solid lineΓe = 4dashed
line, andΓe = 3dotted line.

Fig. 2. Graph of the damping rate for ion plasmaω i vs the
wave numberKi, forΓi = 100, solid lineΓi = 50,dashed
line, andΓi = 20,dotted line.

5 Conclusions:

In this paper, the dispersion relation of collisional
electron at equilibrium ion and the dispersion relation of

collisional ions at equilibrium electron are calculated. The
frequency is plotted against the collision term. The
instability due to collision term is studied. It is found that
the collision term affects on the instability. The solutions
for electron and ion wave propagating in three variables
cylindrical geometry are calculated. These equations were
separated into two 2nd order differential equations; the
first describes a finite wavelength transverse wave of
electron and ion plasma, and the second describes the
longitudinal electron and ion plasma waves. It’s found
that, the transverse wave of electrons and ions plasma are
independent of the collision parameterΓe,i, while the
longitudinal electron and ion plasma waves are strongly
depend on the collision parameter. Graphs describe the
variation of damping rate of electron plasma waves with
the wave number,Ke and the damping rate of ion plasma
waves with the wave number,Ki are plotted, at different
values of electron collision frequency. It is found that the
increase on the collision electron frequency or the
increase on the collision ion frequency leads to increase
of the damping rate which means that the instability is
more affected by the collision frequency of electrons and
ions.
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