J. Stat. Appl. Pro6, No. 3, 487-497 (2017) %N =¥\ 487

Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/060305

A New Method for Adding Two Parameters to a Family of
Distributions with Application

M. Gharibt, B. I. Mohamme#* and Kh. A. H. Al-Ajm

1 Department of Mathematics, Faculty of Science, Ain Shamisesity, Abbassia, Cairo, Egypt.
2 Department of Mathematics, Faculty of Science, Al- Azhaiversity, Nasr city (11884), Cairo, Egypt.

Received: 20 Mar. 2017, Revised: 2 Aug. 2017, Accepted: 8 2ag7
Published online: 1 Nov. 2017

Abstract: In this paper, a new method is proposed for adding two paeni&t a continuous distribution that extends the methods of
[5] and [14] for adding a parameter to a family of distributions. Usihg fidded parameters, the skewness and kurtosis of thaénmgsult
family can be fully controlled. Also simple sufficient cotidins for the shape of the density and hazard rate functibtieamew family

are provided. Finally, the new method is applied in particulo the one parameter Burr XlI distribution to yield a thgarameter
extended Burr XII distribution which may serve as a competid such commonly used three parameters families of bigtans such

as generalized gamma and inverse Gaussian distributions.

Keywords: Markov-Bernoulli Geometric distribution; Maximum Likélood Estimation; Censored Data; Kaplan-Meier Estimator;
(P-P) plot; Geometric-Extreme Stability.

1 Introduction

The problem of constructing and extending classes anditsaf continuous distributions is one of the continue activ
research problems in statistics, This is due, from one sd#he limitations of the existing distributions and itsKao
modeling some random phenomena, and from the other sideeéb tine sustainable needs of modern and developed
application fields (for a detailed review, see etf][and the references therein). Expanding families of diations

by adding one or more parameter make it richer and more feexdsl modeling numerous types of data. For example,
introducing a scale parameter leads to the acceleratechbfiel, and taking powers of the survival function introduae
parameter that leads to the proportional hazards maglek$suming some dependency in the sequence of independent
and identically distributed (11D) Bernoulli random variab (RV'S), gives an additional parameter that is inteiguiets a
correlation coefficient.J4] introduced another method for adding a parameter to a yashillistributions. This method is
used by numerous authors to extend some important distitsusuch asq], [8] and others. In order to include skewness
in the normal distribution,4] introduced the skew normal family of distributions. Theppa[6] pioneered the class of
beta generated distributions with two added parameterayMaw families of distributions utilizing this techniqueea
defined and studied (see e.g])[ A lot of developments in this area and others were regestliewed by 12].

In this paper another general method of adding two parasétea family of distributions is discussed. The new
method represents an extension of the method$]odid [14]. Also, families expanded using the method introduced
here have the property that the minimum (maximum) of a Mdkoroulli geometric number of independent random
variables with common distribution in the family has a dsition again in the family. Finally the new method is apglie
particularly, to a one parameter Burr XII distribution. Thesulting three parameter Markov-Bernoulli extended Burr
Xl (MBEB XII) distribution is statistically analyzed. Its shown that the MBEB XII distribution can be represented
as a mixture of one and three parameters Burr XlI distrimgtid-urther, simple sufficient conditions for the shape of
the density and hazard rate functions of the MBEB XII disttibn are provided. Finally, utilizing maximum likelihood
estimation, the MBEB Xl distribution is fitted to a set of domly censored data.
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Starting with a survival function (S, the two parameters family of SF’'S

- _ GFM[1-pFX] _ aF([1-pF (Y]
S T aF W 1A (- p Al F
aF (x) [1- pF (x)]

= ——— (-0 <X <o a>0 0C< <1
FO) + 1—p) aF g " e <l

where,0 =1— a, is proposed and discussed in section 2.

Note that, whemp = 0, the family @) reduces to the one parameter family introducedlay. [
o

Also, if (1-p)a =1, i. e.,p=%-=, then the family {) reduces in this case to the one parameter family

G (x, a)=F (x) [aF (X) +F (x)] (—o <X <o a>1)
Fora =1 both ) and @) give G (x) = F (x).

2 Density and hazard rate functions of the new family

If F(x) has a density (x) and hazard rate- then G has the density g given by

_af(x[1-2pF (0 +p(1—(1-p)a)F* ()]
R L @p@F W

and hazard rate
[1—2pF_(x)+p(1— 1-p)a

Ja)F2 ()]
r(x.a,p) =re (x) [1-pF W[ {1-A-(1-p)a)F 9}

Thus,

_ . (1-pa)
Jim ¢ (x.a,p) = Jim a-p)a

re(X),

and

Jim r(x,a,p) = lim r (x).

It follows from (4) that

<r(Xo,p) <re(X), (o <x <o a>1 0<p<l),

(1-p)a
and
re(x) <r(x,a,p) < e (3 (o <x<w0<a<l 0<p<l,
(1-p)a
Moreover,
F0<Bxap) <[FXTmE, (—o<x<woa>L0<p<l),
and

1

F(X)] T <G(x,a,p) <F(x)

, (o <x< o O0<aoa<l 0<p<l,
Now, from (4) we have(F (x) < 1= F*(x) < F(x)

Hence,"*%2) s increasing (decreasing) ifor a > % (a < 25

rE(x) = ), where,0<p < 1.

1)

)

®3)

(4)

(®)

(6)

()

(8)
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3 A MB-Extended Burr XII Distribution

PuttingF (x) = (1+x°)"1,x> 0, ¢ > 0, in (1) we get the three parameters survival function

_ a(1+x) H[1-p(1+x)

e W R T TERRT R ©)

aHi(x,c)+(1—a) Ha(x,a,p,c),

where, . .
Hl(X,C) =H (X707171)7

8

H2 (X,a,p,C) = ; a(l_p) [1_(1_p)a]r72 F(X,C,r,l),

r=
and

H(x,c,k,a) = (1+ (g)c) ,x>0,c,k a>0

which is the SF of Burr Xl distribution with parameters c, hcba ([L0]).

It is clear from Q) thatG(x,a, p,c) is a mixture of two Burr XII distributions one of them is onerpmeter and the
other is a countable mixture of two parameters Burr XI| dlsttions.

Now differentiating @) with respect to x we get

g(X,a,p,C):ahl(X,C)+(1—o{) hZ(XaavpaC)v (10)

where d
hl (X7 C) = &Hl (Xa C) 5
and d
hZ(Xaaava) = &HZ(Xaavva)'
From (10), after dividing byG (x,a, p,c) and carrying some manipulations we can express
H(X,C,l,(l_p)% _ 1
(6 (x,0,p,C) = [+ - @) A (xcLl2-p)alt) r) (11)

- 1

H (xc1l1-p)alt)
The following theorem gives simple conditions under which pdf (L0) is decreasing or unimodal.

Theorem 1The pdf of the MBEB XII distribution, given §%0), is decreasingif &< 1, 0< a < £ | and is unimodal if

c>1 0<a< % .

ProofThe pdf (L0) can be written as
acxt [1_p(1+x0)—1_p(1+x0)—2 €+ (1-p)a)

gx) = )
¥ e+ (1-p)al?
then the first derivative of g(x) is given by
X(372
IX)=——% _d(x), x>0
[x°+(1-p)a]

where

D (x)= [(c_ 1) (p(1+x6)*2 €+ (1-p)a) — (1_ p(1+x0)*l)) — 200 (145€) 3 (X4 (1-p) ) + pOk(14+x°) 2
—pxC(1+xC)*2} X+ (1-p) a] —20¢ [(p(1+x0)*2) €+ (1-p)a)— (1—p(1+x0)*1)} .

If ®(0) =a(l—p)*(c—1)(pa—1)>0andc<1, a< %, then® (x) > 0 for all x > 0 and hencey(x) < 0 for
all x> 0, theng(x) is decreasing.

Since forc> 1, a < %, limy_0g9(x) =0 and lim_..g(x) =0, then the pdf g(x) of MB-EB XII distribution first
increase and the decrease to zero and hence has axgpgdgven by the equatio® (Xmeq) = 0.
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Remarks

1.Fora > % the curve of the pdf will lie in the negative part of the plameldhis contradicts the fact that the pdf must

be non-negative and thus these choiceg ahdc are not suitable.
2.Fora =1,p =0,g(x) is decreasing i€ < 1 and is unimodal it > 1, which is the well-known result for the Burr XII
distribution ([L8]).

The r' moment of the MB-EB(XI1) distribution
If X is a RV having the MB-EB(XII) distribution given byg], then itsr" momentE (X"), r > 1, is given by:

E(X’):r/Omer(x)dx

wheref(a,b) is the beta function.
Fig (1) below shows the pdf curves for the MBEBXII distritarifor some selected values of the parameteosand

p.

Fig. 1 (a) o =2 (bold), 2.5 (plain), 3 (point), p=0.1,0=07 Fig.1(b) a2 (bold), 2.5 (plain), 3 (point), p=01c=17

Fig. 1: The pdf of the MB-EB (XlIl)distribution for selected valuektbe parameters andz

The PDF ¢x) of the MB-EB (XII) distribution for selected values of therpaneters.
In fig. (1)(a) c=0.7, (c < 1), showing that ¢x) is decreasing. In fig. (1) (b)€ 1.7, (c > 1), showing that gx) is
increasing-decreasing.
The hazard rate function of the MB-EB(XII) distributio8)(is given by
o H1—p+x) = p(1+x) 2 +a(1—p))|
(¢+a(l-p)[L1-pL+x) ]
Note that for alla > 0, 0< p < 1, we have

h(x) =

(12)

o0, O<c<l1
1-p(1-a(1-

ho) = =B, c=1
0, c>1
0, c<1
1

h(e) = { @@ 7y c=1.
o0, c>1

The following theorem describes the behavioh@).
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Theorem 2The HRF tfx) of the MBEB XII distribution given b1 2), is decreasingife< 1, 0< a < 1 | and is unimodal
ifc>1, 0<a<%.

ProofThe proof is similar to that of theorefn

Remark

Forp =0, a = 1,h(x) is decreasing i€ < 1 and is unimodal it > 1 which is the well-known result for the Burr XII
distribution ([]).

It follows from theoren® that the HRF of the MB-EBXII distribution have the same bebras its pdf (Fig??).

4 Maximum Likelihood Estimation (MLE) for Censored Data

Consider a data set of size n consisting of m uncensored \@ig®rs d;,...,d,, and n-m censored observations
e1,...,en—m- For simplifying the notations we shall denote all the oba&ons byt;, ...ty with censoring indicators
& =1forti=d andd =0 forti = . We havem= 731, &.

The likelihood function of MBEB (XII) distribution def|nedyo(10)

n

Ln(at.p.0) = [{g)}* (G0}

then the log-likelihood function is

In(a,p,c) :_i{d [logc+ (c—1) ]log(t)

+log[1-p(1+t°) "= p(1+t°) ? (F+a(l-p))
—(1+d)log (t°+a(1—p)) +loga
+(1-8)logll—p(1+t*) 7]}

The first derivative ofn (a, p,c) with respect tax, c andp, respectively, are given by

din din din
a2 3¢ =% 5 =0

To test the null hypothesidp : a =1, p = 0 (Burr XII distribution) we use the likelihood ratio testRI). Under
Ho the likelihood ratio statisticA = —2[In(1, 0,€) —In(@, p, €) |, has approximately a chi-square distribution with 2
degree of freedom. Also, for model selection, we use the K&kiaformation criterion (AIC) and Bayesian information
criterion (BIC) defined as:

AIC = loglikelihood— 2k,
BIC = loglikelihood— ;Iog(n) )
Wherek is the number of parameters in the model and n is the samp@eFsiz more details about the AIC and BIC, see
[1] and [17], respectively.
The model with higher AIC (BIC) is the one that better fits tladad
Application

The following data represent the ordered remission times@nths) of a random sample of 137 bladder cancer patient
([13] P. 231).
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Table (4.1)remission times (months) of 137 bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 | 23.63

0.20 2.23 3.52 4.98 6.97 9.02 13.29 | 24.80+
0.40 2.26 3.57 5.06 7.09 9.22 13.80 | 25.74

0.50 2.46 3.64 5.09 7.26 9.47 14.24 | 25.82

0.51 2.54 3.70 5.17 7.28 9.74 14.76 | 26.31

0.81 2.62 3.82 5.32 7.32 10.06 | 14.77 | 32.15

0.87+ | 2.64 3.88 5.32 7.39 10.34 | 14.83 | 34.26

0.90 2.69 4.18 5.34 7.59 10.66 | 15.96 | 36.66

1.05 2.69 4.23 5.41 7.62 10.75 | 16.62 | 43.01

1.19 2.75 4.26 541 7.63 10.86+| 17.12 | 46.12

1.26 2.83 4.33 5.49 7.66 11.25 | 17.14 | 79.05

1.35 2.87 433+ | 5.62 7.87 11.64 | 14.36

1.40 3.02 434 5.71 7.93 11.79 | 18.10

1.46 3.02+ | 4.40 5.85 8.26 11.98 | 19.13

1.76 3.25 450 6.25 8.37 12.02 | 19.36+
2.02 3.31 451 6.54 8.53 12.03 | 20.28

2.02 3.36 465+ | 6.76 8.60+ | 12.07 | 21.73

2.07 3.36 4,70+ | 6.93 8.65 12.63 | 22.69

+ censored data.

The data set has minimum (maximum) uncensored remissi@natrd.08 (79.05) months. Also the data set contains
nine censored remission time at 0.87, 3.02, 4.33, 4.65, 8.80, 10.86, 19.36, 24.80 months.

The following table gives a comparison between the MLE, likglhood, AIC and BIC for the fitted MBEB(XII)
and Burr XII distributions to the bladders cancer data. ToioWing table shows high values of both AIC and BIC,
which favor selecting the MBEB (XII) distribution.

Table (4.2)rA comparison between the MLEs, Log-likelihood, AIC, BI®@y fthe fitted MBEB(XII) and Burr(XII)
distributions of the remission times from 137 cancer pasien

Model Parameter| MLE Log- AIC BIC
likelihood
MBEB(XI)| p 0.5435 | -451.625 -457.625| -449.005
a 2.4272
c 0.7588
Burr(XIll) | c 0.7495 | -519.762 -521.762| -522.222

The results in the above table show that the fitted MBEB (Xidjrébution should be selected based on either the BIC
or AIC procedure.
For the given data, under HQ(IL,0,C) = —519762, thus

X = —2[-519762+ 451625)] = 136.286

X5005=5.991,

therefore, we cannot accept the null hypothesis, i.e. thE igRects the assumption that the Burr(XIl) model is suiabl
for the given data.

Let t;)s be the ordered survival times afgls be their corresponding censoring indicatold] festimator (KME),
also known as the product-limit estimator, of a survivaldiion is defined as

Gn(t)= |‘| {1— . },t>o.
£ <t n—i+1

i=1,...,n

The following figures show the probability-probability @-plot of the KME versus the fitted Burr (XII) and MBEB
(XII) survival functions for the given data.
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Fig. 2: p-p plot of KME versus fitted Burr (XII) survival function
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Fig. 3: p-p plot of KME versus fitted MBEB XII survival function.
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We note that the depicted points for the fitted MBEB (XII) sual function are near to the 4%ine, indicating good
fit as comparing with the fitted Burr(XIl) survival function.

Sinced= 2.4272 p=0.5435 ¢= 0.7588 then the estimated hazard rate functigr)s as shown in the following
figure.

Fig. 4: The estimated hazard rate function of MBEB XII distributioesed on the remission times of bladder cancer data.

5 MB Geometric-Extreme Stability

We first give the definition of MBG distribution.

Definition 1.If {Z;},i = 1,2, ... is a two states Markov chain with statesiE=0, 1, with the following one step transition
probabilities matrix

0 Zi1 )
29[ e -
1l a-p+ap

and initial distribution:
P(Zy=1)=p=1-P(Z1=0), where p[0, 1] and [0, 1] , and if W is the rv representing the number of transitions
necessary for the systgihd) to be in state Efor the first time, then the probability mass function (pniifj\bis given by:

=1

p, n
PW=n)= { (1-pal(l-al)"? n>2 (14)

where,
a=1/[(1- p) P =EW)+ p/(1- p).
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The distribution(14) is called the Markov - Bernoulli geometric (MBG) distriboi [2].
If X1, X2, . . . is a sequence of iid rv’s with distribution in the fam(iy and if N has a MBG distribution of1, 2, . .
3, then min(X, Xz, . . ., Xy) and max(X, Xz, . . ., Xy) have distributions in the family. To explain why this pripés of
interest, we recall that extreme value distributions armeiling distributions for extrema, and as such they are sonmest
useful approximations. In applications a rv of interest rhaythe extreme of only a finite, possibly a random number N of
rv's. When N has a MBG distribution, the rv has a nice stapflitoperty, not unlike that of extreme value distributions.
Assume that N is independent of thesXvith a MBG(p,p) distribution given by(14), and let U = min(%, Xo, . . .,
Xn), V = max(4, X, . . ., XN)-

Definition 2.1f Fe F implies that the distribution of U (V) is in F, then F is sa@ e minimum- MBG stable (maximum
MBG stable). If F is both MBG-minimum and MBG-maximum stathlen F is said to be MBG-extreme stable.

The term ‘max-MBG stable’ extends, in some sense, the teax-gaometric stable’ which has been used b4
for families of distributions, has been used, also, b§] fo describe a related but more restricted concept (theylappe
term not to families of distributions but to individual dibutions), in their sense, a distribution is ‘max-geonestable’
if the location- scale parameter family generated by therithistion is max stable in Marshall and Olkin’s sense. The
three ideas coincide for families F that are parameterizgddzation and scale. The logistic distribution is an exaenpl
for this.

Example IThe family of logistic distributions logisticq, A), with SF of the form

_ 1
FX= 1 gax

Is a MBG-extreme stable family. It is interesting to notetthia substituting this family inX) then the SF of the resulting
four parameters MBE logistic family can be written as:

(—0o <X < o, 6,2 >0).

ap 1 1-a 1

+ Y
1-(1-p)a 1+6ex I-(1-p)a 1t L5 ex

G(xa,p,0, A)=

Which is the SF of a mixture of thge two logistic distributions
logistic (6, A), and logistic W, A).

Theorem 3The parametric family of distributions of the foi(t) is MBG extreme stable.

Proof Spouse thaXy, Xz, . . ., Xw is a sequence of independent random variables with a comistribdtion G given by
(1), Mis independent of the X,'s with a MBG distribution givew {iL4), and if

Un= min(X1,X2,..., X n), Vn=max(X1,X2,...X n),

then
G (x) =Pr(Ux>x)
= PT(X1>X1,X2>X2, - 7XN>XN) = g |_:m (X)PF(M = m)
m=1
S+ (- () Y FT R -a
m=2
_ .2 1
=pF(x)+(1-p)a 'F (x) 1 (1—a DFE(X)]
_F(X)[p—pF(x)+a'F(x)]
 [I-(1-a HF(X)]
where
a'=(1-p)p
Hence,

M- pF)]
=1 a R
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Which is () with a = p, hence = min(X1,X2, ..., X n) whereN ~ MBG distribution belongs to the familyi}. Hence,
(2) is a minimum MBG stable family.
Also,
H (X) ZPT(VN <X) ZPI'(X1<X1,X2<X2, XN <XN)
= Z F™ (x)Pr(M =m)

m=1

F2(x)(1—a )™
2

1 _ PF(X)[1—pF(x)]
[1-(1-ahF(x)] - [1-(1-ahF(x)]

= pF(x)+(1-p)a 'F(x)

M e

= pF(x)+(1—p)a 'F*(x)

So thaﬂ(x):%, —00 < X < 00

Which is (1) with = % , and {28 instead ofp, where a® = (1-p)p.
Hence, \{=max(X1,X2,....X ) where N ~ MBG distribution belongs to the familyl]. Therefore, {) is a
maximum MBG stable family.

6 Conclusion and Summary

In this paper, a new method is proposed for adding two paensi&d a continuous distribution that extends the methods
of [5] and [14] for adding a parameter to a family of distributions. The edigharameters provide additional flexibility
for fitting diverse shapes of data. Some of the propertieb@inew family are derived and some of its subfamilies are
defined. A detailed study is provided for the particular aeken the extended distribution is the one parameter But (XI
distribution. The derived properties include: probabpitiensity function, its shape, hazard rate function, mosyerd
maximum likelihood estimation.

We note that for MBEB(XII) distribution, the Bayesian infoation criterion (BIC) and Akaike information criterion
(AIC) are higher than the corresponding (BIC) and (AIC) oé tBurr(XIl) distribution. Also the fitted MBEB (XII)
survival function indicates strong linear relationshipixeen the empirical and fitted survival functions comparét e
fitted Burr (XII) survival functions. All these results lead to select the MBEB (XII) distribution as the best disttiba
for the given data.
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