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Abstract: Generalized Leibniz rule and some theorems in the calciltiedractional derivatives and integrals was used to ofitz
fractional solutions of the radial Schrodinger equati@msformed into a singular differential equation and, ¢heslutions were also
exhibited as hypergeometric notations.

Keywords: Fractional calculus, generalized Leibniz rule, fractiaradculus theorems, radial Schrodinger equation.

1 Introduction

Claim of the derivatives and integrals with any arbitrarger that is, fractional calculuswas born in 1695 and, this
new and remarkable subject has intensive work fields such atkematics, physics, chemistry, biology, medicine,
engineering and so on since that d&y?] 3,4,5,6].

In our present article, we analyze this concept for the te8crodinger equation and so, we can summarize some
scientific studies related to fractional calculus and 8dhnger equation in this section. For instance, Yildirifi {ised
Homotopy Perturbation Method for the fractional nonlin8ahrodinger equation. Rida et al] fapplied the ADM for
finding the solution of the generalized fractional nonlin€ahrdodinger equation subject to some initial conditidns

[9], Muslih et al. obtained solutions of the fractional Sdiiiriger equation via Lagrangian and Hamiltonian approach.
And, Naber LO] studied on the time fractional Schrodinger equation.@bgal. [L1] investigated the local fractional
Schrddinger equations in the one-dimensional Cantorigtem. In his study, the approximations solutions were
obtained by using the local fractional series expansiorhotetDong developed a space-time fractional Schrodinger
equation containing Caputo fractional derivative and th@rqum Riesz fractional operator from a space fractional
Schradinger equation irlP]. Baleanu et al. 13] exhibited approximate analytical solutions of the frangl non-linear
Schrodinger equations by using the homotopy perturbaietnod. Jumarield] introduced from Lagrangian mechanics
fractal in space to space fractal Schrodinger’'s equatianfractional Taylor’s series. In1p], nonlinear Schrodinger
equations with steep potential well was investigated. A edcal method for the solution of the time-fractional
nonlinear Schrodinger equation in one and two dimensidmstwappear in quantum mechanics was applied..[In

[17], free particle wavefunction of the fractional Schrodingvave equation was obtained and the wavefunction of the
equation was represented in terms of generalized threerdiimnal Green’s function that involves fractional powefrs
time as variablg”. Laskin [18] introduced some properties of the fractional Schrodingguation and proved the
Hermiticity of the fractional Hamilton operator and estabéd the parity conservation law for fractional quantum
mechanics and, also studied on the relationships betweehnattional and standard Schrodinger equations. Yasek et
[19] obtained the general solutions of Schrodinger equatannbn central potential via Nikiforov Uvarov method.
Al-Jaber RQ] formulated analytic solution of the free particle radigp&ndent Schrodinger equation in N-dimensional
space by means of homotopy perturbation method. In thisrpapealso studied to find the fractional solutions of the
Schrodinger’s radial equation via generalized Leibnle and some fractional calculus theorems.

* Corresponding author e-madozturk27@gmail.com

(@© 2018 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/pfda/040104

28 NS 2 0. Ozturk, R. Yilmazer: On applications of the fractionallccgus ...

The paper is organized as follows. In Section 2, we give tserggl materials and methods. In Section 3, we state
the main results of this paper. In Section 4, we specify theksions of this work.

2 Materials and Methods
In this section, we exhibit the essential materials and ough
Definition 1.Riemann-Liouville fractional derivative and integral foulas are defined bj21],

1 dm Xy
F(n—k)dx" Jg (x—y)ktl-n

(n—1<k<nneN)

aDXX (%) = [X(9)]k = dy, 1)

and

oD X(X) = [X ()] x = — /X XY gy (x> a,k>0) @)
g F (k) Ja (x=y)t=x ’ '

Definition 2.Suppose that (z) is analytic and, branch point gf(z) isn’t found inside and o®, whereQ :={Q~, Q*},

Q™ is a contour along the cut joining the points z and +ilm(z), which starts from the point at o, encircles the

point z once counter-clockwise, and returns to the peist and Q" is a contour along the cut joining the points z and

o +ilm(z), which starts from the point &b, encircles the point z once counter-clockwise, and rettoribe point ato,

r(k+1) X (x)dx _
N (k¢2Z")

2 Jo (x—2z)k+1

Xk (2) =
and
X-n(z):= lim xc(z) (neZ),

where x#£ z, —mm < argx—z) < rrfor Q~ and,0 < argx—z) < 2mfor Q*, and, fractional derivative of (z) with k
order is shown ag(«x(z) (k > 0) and, similarly, fractional integral of((z) with —k order is shown ag«(z) (k < 0),
where| xx(2) |< 0 andk € R [22].

Lemma 1.Suppose that (z) and /(z) are analytic and single-valued functions. Linearity rusegiven by

(KX (2) + LY@k = Kxx(2) + Lk (2), (©)
where K and L are constants arde R, ze C [23].
Lemma 2.Suppose that(z) is an analytic and single-valued function. Then, index isléefined by

(Xv)k(2) = (Xv+x)(2) = (Xx)u(2), (4)

wherek, v € R, ze C and| ﬁ |< 0 [23].

Lemma 3.Suppose thak (z) and /(z) are analytic and single-valued functions. Generalizedbhé& rule is shown as
follows:
rk+1)

X@¥@k =3 FriormT D

(K+1
n

XK*n(Z)wn(Z)v (5)

wherek € R, ze Cand| - s E ey |<oo[24]

Remarkn the fractional calculus, the following equalities arevided 24:

(") =a*e”* (a#0,k eR,zeC), (6)
(6799, =e ™ qke 9% (a£0,k €R,z€C), (7)
_ —IT[K,_(K_G) —K F(K_a) .
#)e=e ™ (KER,ZEC,lil_(_a) ‘< ), )
wherea is a constant and,
rk)r(1—«)

Mk—n)y= (=" (keR,neN) 9)

Fin+1-«k)
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Theorem 1Suppose thap_x # 0 and, M(z;m), N(z n) are polynomials in z of degrees m And,
m ) m
M(Z:m)=%a@zm"=ao|'|(z—zj-) (a0 #0,meN), (10)
i= =1
and,
n .
N(zn) = zobiz”" (bp #0,ne N). (11)
i=

Thus, the nonhomogeneous linear ordinary fractional diffegral equation

i (T) Mi(z m) + é (i l_< 1) Ni-1(z n)] Xu-i(2) w2

+ (’f) NlboXv_n-1(2) = Y(z) (MneN,k,veR),

M(zm)xu(2) +

has the following solution:

X2 = (%ﬁé%e““m’”))18‘““’“’”>LUH (26 C\{21,....2m}), (13)
where 2 Nix:
o(zm,n) = M((;(;'rr:?)dx (ze C\{z,....,Zm}). (14)

And, the homogeneous linear ordinary fractional diffeegrial equation

gmi (’f) Mi(z m) + éi (i '_< 1) Ni-1(z n)] Xu-i(2) s

+ (T) N'boXy-n-1(2) =0 (MneN,k,v €R),

M(zm)xu(2) +

has the following solution:
X(2) =K[e "F™V]y (16)
where K is an arbitrary constarj24].
Theorem 2When| Y (2) [< o (k € R) andy_, # 0O, then
AZx2+Bzx1+ (DZ+Ez+F)x=¢ (AD#0,ze C\{0},x = X(2), (17)
has the solution as follows:

X: VeEZ{

wherev, € andk are in the form:

Aflzf(KJrl)Jr% e252 (Zf(erl) efezw) ‘| ZK*% eZsz} ’ (18)
—K
-1 K—1

_A-B+/A-BZ-2AF __ D
- A , =\ /4, (19)

v
and, ( |
2Av +B)e+E
STy (20)
Moreover,
AZX2+Bzx1+ (DZ+Ez+F)x =0 (AD+#0,ze C\{0},x = x(2)), (21)
has the solution in the form:
X = Kz"e‘fz(z“’mﬁ\+B e’zgz) v (22)
K_

where K is an arbitrary constarj24].

In the next section, we investigate the solutions in thetivaal forms and hypergeometric forms for the radial ecprati
by using the generalized Leibniz rule and Theozm
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3 Main Results

3.1 Onthe Generalized Leibniz Rule

In the B-dimensional space, fractional Schrodinger equaticatdsal component is

B-1 2m ac\ pp—B-2) _
Xa(y) + y xu(y) + F(Hezyc_z) BV x(y) =0, (23)
where constant is ac = #!-2)2)50 (c>2),1<pB<3and0<y< o,
For Equ. 3), we get some transformations as
~ méac

Z= Zay7 X= ype—ayw’ a= ﬁZ

wherea? = —2mE/ﬁz. Thus, we obtain the following singular differential egoat

A
2o+ (A =2y + (02 =5 )y =0, (24)
whereA =2p+ B —1, 0= s=g 7= [24].
Theorem 3Suppose that & 4 in Equ. £4), and so, we have

w

2o+ (-2t (2-2)w=0 (25

Equ. @5) has the following fractional solutions:

s (26)
and,
1ae - 5E
Y2 =Lz 7 [z ( z )ez](l?), (27)
where ze C, € {1 0#| i |[< o,k € R} and K, L,A, & are constants.
ProofAt first, we getyy = 2@ (z+# 0,9 = ¢(2)), and so,
A
2@+ (2042 =)@+ (P T(A = 1)+ @)z - (1+3)]e=0. (28)

If we assume that? + 7(A — 1) + w= 0 in Equ. @8), we write an equality as = 1‘2*“ whereé = /(A —1)2—4w.
(i) Whent = 24+ we have

1+¢
zq@+(1+£—z)(pl—(7)q0:0. (29)
If we apply Equ. §) (Generalized Leinbiz ru)gor all of terms in Equ. 29), so, we obtain
1+
2o+ (K4 1+ E 2o~ (K725 Jp=0 (30)

Now, we assume that + # =01in Equ. @0), thus,k = — (%) and in the end, we have

e I <¢=¢(z>=qo(”)>. (31)

2
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The solution of Equ.31) is found easily as follows:

and, by substituting above assumptions, we write

1+&

W@ =Kz = [z_ (T) ez}

sty (32)
(ii.) By means of similar steps, the second fractional solution is
1-A-¢& _(1-&
W@ =Lz = [z () (33)
“\ Tz

After, the hypergeometric notations of Eq82( and Equ. 83) are presented by the following theorems:

[ 1€
Theorem 4Let G be the Gauss hypergeometric function, and suppos% Eha(_z_)}

functiony(z) in Equ. @2) is written by

<o (neN,z#0). Thus,

w(z):Kz*%ZG[%,#;ﬂ (E\a) (34)

Proof At first, we use the generalized Leibniz rule for E¢R)( and so,

1-A

W@ =Kz iﬂ[z(%)}

(% —n)n!

After, the following form is obtained by means @)( (8) and Q):

(ez)_(H)- (35)

In the end, we write

& nl\z
and, L
1-¢ 1
v =Kz be[ 5t ]

e
Theorem 5Let G be the Gauss hypergeometric function, and suppos% Eha(_z_)} ‘ <o (neN,z+#0). Thus,
n
functiony(z) in Equ. @3) is written by

W(z) =Lz &G #%ﬂ (E‘<1) (36)

3.2 Onthe Fractional Calculus Theorems

Under the Coulomb potential, Schrodinger equation’salachmponent isg5],

2 2m €\ pp+1) B
xey)+ xam+ 5 (B+ 5 ) - 55— xv =0 (37)
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For Equ. 87), we get some transformations as

mée?

Z= Zayv X = _1/2LIJ7 b: Wa

wherea? = —2mE/ﬁZ. So, we obtain the following singular differential equatio

Z
2+ 21— (— bzt & )w 0, (38)
wherep(p +1) = ¥
If we use the Theoremfor Equ. 38), we can write
1 k2
A=B=1 D=-; E=b F=-_ (39)

and, by applying19) and Q0), we have
V= il—( £= i}

2’ 2’
and,
_(2v+1)e+b
B 2e '
Thus, the fractional solution of EqU3®) is
Y= szesz[ (2v+1— K)efzsz} ) (40)
K—1

Theorem 6Let G be the Gauss hypergeometric function, and suppose* [Iira{?"”"‘)} ’ <o (neN,z#0). Thus,
n
functiony(z) in Equ. @0) is written by

W(z) =Kz e He —826{1 K,1—K— n+g _Ziez} (‘ 2gz‘<1) (41)

4 Conclusion

We studied on the Schrddinger equation’s radial compariatihef -dimensional space and under the Coulomb potential
respectively, and we first transformed these equation®tsitigular differential equations by means of some assomgti
After, the generalized Leibniz rule and some fractionatchis theorems were applied to these singular equationsdue
find the fractional solutions, and hypergeometric solwgiaere also obtained. Thus, we exhibited two different smhut
methods for two different equations. Moreover, we used Té®@ to Equ. 5) and, applied generalized Leibniz rule to
Equ. 38) in our different studies.

References

[1] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujifeactional Calculus Models and Numerical Metho&eries on Complexity,
Nonlinearity and Chaos, World Scientific, Boston, 2012.

[2] K. S. Miller and B. RossAn Introduction to the Fractional Calculus and Fractionaifferential Equation Wiley, New York, 1993.

[3] K. B. Oldham and J. Spani€Fhe Fractional CalculusAcademic Press, New York, 1974.

[4] 1. Podlubny, Fractional Differential Equations: An Introduction to Fetional Derivatives, Fractional Differential Equations,
Methods of Their Solution and Some of Their Applicatidxsademic Press, San Diego, 1999.

[5] B. Ross,Fractional Calculus and Its Application$pringer-Verlag, Berlin, 1975.

[6] S. G. Samko, A. A. Kilbas and O. I. Maricheffractional Integrals and DerivativeGordon and Breach Science Publishers,
Philadelphia, 1993.

[7] A. Yildirim, An algorithm for solving the fractional ndimear Schrddinger equation by means of the homotopy psation
method,Int. J. Nonlin. Sci. Numer. Simul0 (4), 445-450 (2011).

(@© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl4, No. 1, 27-33 (2018) www.naturalspublishing.com/Journals.asp NS = 33

[8] S. Z. Rida, H. M. EI-Sherbiny and A. A. M. Arafa, On the sban of the fractional nonlinear Schrodinger equatiBhys. Lett. A
372(5), 553-558 (2008).

[9] S. I. Muslih, O. P. Agrawal and D. Baleanu, A fractionah®@dinger equation and its solutidnj. J. Theor. Phys49, 1746-1752
(2010).

[10] M. Naber, Time fractional Schrodinger equatidnMath. Phys45, 3339 (2004).

[11] Y. Zhao, D.-F. Cheng and X.-J. Yang, Approximation swaos for local fractional Schrodinger equation in the -alensional
Cantorian SystemAdv. Math. Phys2013 Article ID 291386, 1-5 (2013).

[12] J. Dong and M. Xu, Space-time fractional Schrodinggragion with time-independent potentialsMath. Anal. Appl344, 1005—
1017 (2008).

[13] D. Baleanu, A. K. Golmankhaneh and A. K. Golmankhanedlyig of the fractional non-linear and linear Schrodinggquations
by homotopy perturbation methoRom. J. Physs4, 823-832 (2009).

[14] G. Jumarie, From Lagrangian mechanics fractal in spacgpace fractal Schrodinger’s equation via fractiongllidiés series,
Chaos, Solit. Fract41 (4), 1590-1604 (2009).

[15] T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Scimgdr equations with steep potential wellpommun. Contemp. MatB.
(4), 1-21 (2001).

[16] A. Mohebbi, M. Abbaszadeh and M. Dehghan, The use of ehfess technique based on collocation and radial basisifunsct
for solving the time fractional nonlinear Schrodinger atjon arising in quantum mechanidsng. Anal. Bound. Elen87 (2),
475-485 (2013).

[17] M. Bhatti, Fractional Schrodinger wave equation aratfional uncertainty principlént. J. Contemp. Math. Sc2 (19), 943-950
(2007).

[18] N. Laskin, Fractional Schrodinger equatiétys. Rev. 66 (5), Article ID 056108, 1-7 (2002).

[19] F. Yasuk, C. Berkdemir and A. Berkdemir, Exact soluti@f the Schrodinger equation with non central potentiaNi&iforov
Uvarov method,). Phys. A: Math. Ger88, Article ID 06579, 1-12 (2005).

[20] S. Al-Jaber, Solution of the radial N-dimensional Safinger equation using homotopy perturbation metfivain. J. Phys58
(3-4), 247-259 (2013).

[21] A. A. Kilbas, H. M. Srivastava and J. J. TrujilloTheory and Applications of Fractional Differential Equattis Elsevier,
Amsterdam, 2006.

[22] K. Nishimoto,An Essence of Nishimoto’s Fractional Calculus (Calculushef21 st Century): Integrations and Differentiations
of Arbitrary Order, Descartes Press, Koriyama, 1991.

[23] R. Yilmazer, N-fractional calculus operatdi¥ method to a modified hydrogen atom equatibtgth. Commun15, 489-501
(2010).

[24] R. Yilmazer and O. Ozturk, Explicit solutions of singuldifferential equation by means of fractional calculugragpors,Abstr.
App. Anal.2013 Article ID 715258, 1-6 (2013).

[25] R. L. Mills, The hydrogen atom revisitetht. J. Hyd. Energy25 (12), 1171-1183 (2000).

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	 Introduction
	 Materials and Methods
	 Main Results
	 Conclusion

