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Abstract: Atallah et al. [L0] and Al-Gashgari et al 9] achieved a new technique for testing exponentiality baseldaplace transform,

in this paper we introduce a new test for testing exponétytigérsus "exponential better than used in moment gemegdtinction
ordering class'EBUnyg). By simulation, the critical values and the powers of thepmsed test under various alternatives are calculated
to assess the performance of the test. It is shown that tipeged test enjoys good power and performs better than s@vieps tests

in terms of Pitman’s asymptotic efficiencies for severatmative. Finally sets of real data are used as exampldsistrite the use of
the proposed test in practical application.

Keywords: Moment generating function, EBU, Hypothesis test, Pitmafficiency, Laplace transforrAMS Subject Classification:
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1 Introduction

Equally important in reliability theory is the concept ofiag. No aging means the age of the component has no effect
on the distribution of its residual lifetime. Positive (r@ige) aging means that the age has, in some probabilistaese
an adverse (beneficial) effect on the residual lifetime.hSaging could be positive, whereby a component wears out
with time, or negative, whereby time has a beneficial effecthe residual lifetime. These notions of aging are captured
through the well known monotonic aging classes like indrepfailure rate (IFR), increasing failure rate averagd=(j,
decreasing mean residual life (DMRL), new better than udél)), new better than used in expectation (NBUE) and
harmonic new better than used in expectation (HNBUE). Foiniliens and interrelationships of these classes, se@®arl
and Proschanl] and Deshpande et afL}].

The EBU class has been introduced by Elbaid];[ he also discussed The closure properties under relabili
operation, moment inequality, and heritage under shocketod

Definition 1.1X is exponential better (worse) than used (denoted lsyBBU) If

F(x+t) <F(t)er, Wxt>0.

Statisticians and reliability analysts studied exporaietter than used classes of life distributions from usgipoints
of view. Related paper dealing with EBU problems include tHet al. 23], Attia et al. [11], Abdul moniem p], Hendi
and AL-Ghufily [21] and AL-Ghufily 7,8. _ _

Given two non-negative random variablésandY, with survival functions= and G, respectivelyX is said to be
smaller tharY in the moment generating function ordering (denotecbymg+ Y) if and only if,

/wesxlz_(x)dxg/mesyé(y)dy forall s> 0.
0 0

Definition 1.2We say that X is exponential better than used in the momemtragtmg function order (denoted by X
EBUngs) if Xt <mgr Y forall t>0,whereY is an exponential random variable with the same ragat.
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Equivalently, Xe EBUng¢ if and only if,

00 _ u _ 1
S F(x+1)dx< Ft), V 0<s< =, t>0. 1.1
|| EFxrtdes TEoFD, v 0<s<o 1> (L.1)

Note that, the definition 1.2 is motivated by comparing themant generating function of the life tim& of a component

of aget with the moment generating function of another new life tn&f a component which is distributed exponentially
with meanpu. EBUngs class developed first by Abbal fand subsequently by Gadallah 19.

In the current investigation, we present a procedure toXeist exponential versus it iEBUygs and not exponential

in Section 2. In Section 3, the Pitman asymptotic efficien@ee calculated for some commonly used distributions in
reliability. Monte Carlo null distribution critical poistand the power estimates are simulated in Section 4. Fioalliest

is applied to two sets of real data in Section 5.

2 Testing Exponentiality

One of the oldest inference problems in reliability is tegtexponentiality versus the most commonly known classes of
aging distributions.For testing exponentiality versusiN8ass see Hollander and Proschad]| Koul [27], Alam and
Basu M], and Ahmad B], among others. For testing NBUE we refer to Hollander armsphan 25], Koul and susarla
[28] and Borges et al.1[3], while testing versus HNBUE are discussed by Basu and Hiorftd], Ahmed [3] and Hendi
et al. 22. Testing versus NBUL are discussed by Diab et &7] fand Diab [L6]. Testing exponentiality versu$BUngs
class was first taken up by Ahmad and Kayagl [This was followed by the works of Mahmoud and Gadallati |

Our goal in this section is to present a test statistic baselaplace transform for testingo : d(s,3) = 0 versus
Hi: (s, B) > 0. Using (L.1) the measure of departure can be defined as

5(s,B) — u/ e*ﬁtF_(t)dt—(l—su)/ / P (x -+ t)dxdt
0 0 JO
The following lemma is essential for the development of @st statistic.
Lemma 2.1f ¢(B) = J5"e PdF(x) then

O(s,B) =s(Bu+1)(1-@(B)) —B(su—1)(1—@(-9)).

ProofNote that

5(s.B) = u/oooe*ﬁtF_(t)dt—(1—su)/ooo/()mes"*ﬁtlz_(xjtt)dxdt
= IJ|1— (1—5[.1)|2.

One can show that

o - 1
Iy = /0 e PFMd=5(1-0(8))

//esx BUE, x+tdxdt—/ / e PlesU-UF (u)dudt

[B(1—o(=9)) +s(1—(B))l.

and

"B (B +59)
Thus the result follows.

To make the test scale invariant, we &gfs, ) = —52@

Note that undeHp : &.(s, ) = 0, while underH; : d:(s,8) > 0.
To estimated; (s,8), let X3, X2 , X3 ,- -+ , Xn be a random sample from F, so the empirical forndds, 8) is

Sin(s.B) = anZ;Z (BXi +1)(1—e X)) — B(sX —1)(1—e™)]. 2.1)
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By defining
P(X1,X2) = S(1+ BX1)(1— e PX2) — B(sX — 1)(1—e¥%),

and define the symmetric kernel

NI =

W(X1,%2) = 5[ 9(X1,X2) + @(Xz , X1)]

This leads tadin(s, B) is equivalent to U- statistic
1

Un=—< Y o(X . Xj).
Bk

2

The next result summarizes the asymptotic normalitﬁlgts,ﬁ).

Theorem 2.1As n— o ,\/ﬁ(&n(s,ﬁ) — &1(s,B)) is asymptotically normal with mean 0 and variancefsgiven in(2.5).
Under Hy , the variance is reduced {@.6).

ProofLet
M%) = E[@(X1 , Xz) [X1]
2.2
:%(1+BX1)+%(SX1—1), 22)
and
N2(X2) = E[@(X1 , X2) [Xz] 2.3)
=s(B+1)(1—ePX)—B(s—1)(1—€%). '
Considering (X) = n1(X1) + N2(X2), gives
_ sB(B+s) |, BX (1 aesx___SB(B+S)
n(x)_{i(lJrB)(l—s)X s(1+pB)e B(1-s)€ 7(1+B)(1—S)+B+S}' (2.4)
In view of (2.4), the variance is
2_ sB(B+s) ., “BX (1 _ < eSX
o _Var{i(lJrB)(l—s)x s(1+pB)e B(1—s)e } (2.5)
UnderHq it is easy to prove thaty = E[n(X)] = 0 and the variance? reduces to
o2 — SB%(B+9)2(28°B2+ B —s+1) 2.6)

(1+B)%(1—952(1+2B)(1—25)(1+B—59)

3 The Pitman Asymptotic Efficiencies (PAES)

To judge on the quality of this procedures, we evaluate i@ asymptotic efficiencies (PAEs) for some commonly
used distributions in reliability, these are:

1.Linear failure rate family (LFR)Fg(x) = exp(—x— 9x?) ,x > 0,6 > 0.
2.Makeham familyFg(x) = exp(—x+ 6(x+€e*—1)) ,x> 0,6 > 0.
3.Weibull family: Fg(x) = exp(—x%) ,x> 0,6 > 0.

The PAE is defined by
dde(s,B)
de

)

PAE(S(s,B)) = oio ’ ot
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Table 1: Pitman asymptotic efficiencies for various values ahdf3

5(s.B) U | & | o7
s | =03 | p=04 | p=06 | p=08
0.02 | 0.97862 | 0.96574 | 0.93787 | 0.90982
0.12 | 0.99753 | 0.99315 | 0.98106 | 0.96734
LFR 0.22 | 0.99113 | 0.99381 | 0.99431 | 0.99145 | 0.433| 0.408 | 0.217
0.32 | 0.93223 | 0.93966 | 0.94809 | 0.95152
0.42 | 0.74232 | 0.75062 | 0.76055 | 0.76515
0.02 | 0.27296 | 0.27772 | 0.28397 | 0.28720
0.12 | 0.25933 | 0.264968| 0.273106| 0.278336
Makeham| 0.22 | 0.23788 | 0.24376 | 0.25250 | 0.25839 | 0.144 | 0.039 | 0.144
0.32 | 0.20393 | 0.20928 | 0.21714 | 0.22236
0.42 | 0.14540 | 0.14918 | 0.15452 | 0.15786
0.02 1.0975 1.12052 | 1.15531 | 1.11797
0.12 | 1.04136 | 1.06662 | 1.10625 | 1.13569
Weibull 0.22 | 0.956637| 0.981852| 1.02153 | 1.05103 | 0.132| 0.170| 0.05
0.32 | 0.82440 | 0.84672 | 0.88104 | 0.90566
0.42 | 0.59395 | 0.60951 | 0.63236 | 0.64763

where
(s, B) = s(BHg +1)(1— @p(B)) — B(ste — 1)(1— ¢p(—9)).
ThePAE(d(s,3)) can be written as,
PAE(S(s,B),F) = oio |SBHg(99(—S) — @o(B)) — S(BHe +1)¢5(B) + B(ste — 1) ¢(—9)|.

whereg, (B) = [ e PXdF;(x) anduy = [o Fh(x)dx
After some mathematical calculations we get

PAE(5(s, B),LFR) :Uio B(i(isﬁﬁzl()l(f :) ? i
_ 1 Bs(Bs+2)(B+5)
PAEO(s.B). Makeham = & | s B2+ B)1- 929 oo

and

s(B+1) /°° (x— 1)ef(l+ﬁ)x|nxdx_|_ B(1—s) /m (X— 1)e—(l—s)x| nxd
PAE(5(s, ), Weibull) = — 0 0

0o SB(S+ B) /oo —X
- xe *Inxdx— (s+
(1-9)(1+pB)Jo (s+P)
Table 1 gives the efficiencies of our proposed @& 3) for various values o§, 3 comparing with the tests given by

Kango [26]Un), Mugdadi and Ahmad3?] (d3) and Mahmoud and Abdul Alim3Q] (6,§n2>).
One can note that our test is more efficient for all used altares.

61

4 Monte Carlo Null Distribution Critical Points

In practice, simulated percentiles are commonly used byiegpptatisticians and reliability analyst. Next, we siue!

the Monte Carlo null distribution critical points f@x,(s, 3) in (2.1) based on 10000 simulated samp(&)50 from the
standard exponential distributions. Table 2 gives thesegpdile points of the StatiStiQ%_n(S, B) ats=0.12 andB = 0.8.

In view of Table 2, it is noticed that the critical values anerieasing as the confidence level increasing and is almost
decreasing as the sample size increasing.
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Table 2: Critical values of statistiéln(sﬁ) ats=0.12 andB =0.8

0.01 0.05 0.10 0.90 0.95 0.99 n 0.01 0.05 0.10 0.90 0.95 0.99
-0.029 -0.017 -0.008 0.028 0.031 0.03627 | -0.020 -0.012 -0.008 0.010 0.012 0.01
-0.034 -0.016 -0.009 0.024 0.027 0.03228 | -0.017 -0.012 -0.008 0.009 0.011 0.0%
-0.032 -0.016 -0.009 0.022 0.024 0.02829 | -0.021 -0.012 -0.008 0.010 0.012 0.0%
-0.038 -0.017 -0.010 0.019 0.022 0.03530 | -0.019 -0.011 -0.008 0.009 0.011 0.0%
-0.038 -0.017 -0.010 0.019 0.021 0.024531 | -0.016 -0.011 -0.008 0.009 0.011 0.0%
-0.032 -0.017 -0.010 0.018 0.021 0.024532 | -0.017 -0.011 -0.008 0.009 0.011 0.0%
-0.032 -0.016 -0.009 0.017 0.020 0.024533 | -0.016 -0.012 -0.008 0.009 0.011 0.0%
-0.028 -0.015 -0.009 0.016 0.019 0.03334 | -0.016 -0.011 -0.007 0.009 0.011 0.0%
-0.026 -0.016 -0.010 0.015 0.018 0.03335 | -0.017 -0.011 -0.007 0.009 0.010 0.0%
-0.025 -0.013 -0.008 0.015 0.016 0.04136 | -0.015 -0.010 -0.007 0.009 0.010 0.0%
-0.028 -0.015 -0.009 0.014 0.016 0.04137 | -0.015 -0.010 -0.007 0.008 0.010 0.0%
-0.024 -0.013 -0.009 0.014 0.016 0.04038 | -0.015 -0.010 -0.007 0.009 0.010 0.0%
-0.024 -0.015 -0.009 0.013 0.015 0.01939 | -0.016 -0.010 -0.007 0.008 0.010 0.0%
0.01940 | -0.016 -0.009 -0.007 0.008 0.010 0.0%
-0.026 -0.013 -0.009 0.012 0.015 0.01841 | -0.015 -0.010 -0.007 0.008 0.010 0.0%
-0.022 -0.013 -0.008 0.012 0.014 0.01742 | -0.015 -0.010 -0.006 0.008 0.010 0.01
-0.021  -0.013 -0.009 0.012 0.014 0.034743 | -0.015 -0.010 -0.007 0.008 0.010 0.0%
-0.021  -0.013 -0.008 0.012 0.013 0.034744 | -0.016 -0.009 -0.007 0.008 0.009 0.0%
-0.020 -0.012 -0.008 0.011 0.013 0.034745 | -0.014 -0.009 -0.007 0.008 0.009 0.0%
-0.019 -0.012 -0.009 0.011 0.013 0.01746 | -0.016 -0.009 -0.006 0.008 0.009 0.01
-0.021 -0.012 -0.008 0.011 0.013 0.01647 | -0.014 -0.008 -0.006 0.008 0.009 0.01
-0.019 -0.012 -0.009 0.010 0.013 0.01648 | -0.016 -0.009 -0.006 0.008 0.009 0.0%
-0.018 -0.012 -0.008 0.010 0.012 0.01549 | -0.014 -0.009 -0.006 0.007 0.009 0.0%
-0.018 -0.012 -0.008 0.010 0.012 0.034550 | -0.014 -0.009 -0.007 0.007 0.009 0.01
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4.1 The Power Estimates

The powers estimate of the test statiS:ﬁG(s,B) are shown in Tables 3 and 4 at the significant lewels: 0.05 and
o = 0.01 respectively. These powers estimated for LFR, Makeham/gibull distributions based on 10000 simulated
samples for sizes = 10,20 and 30.

Table 3: Powers estimates at= 0.05 Table 4: Powers estimates at= 0.01

n|6=2]06=3[]0=4 n [ 6=2106=3]060=4

LFR 10 | 0.255| 0.510]| 0.591 LFR 10 | 0.180| 0.273 ] 0.339
20| 0.412| 0.754| 0.824 20| 0.410| 0.567 | 0.663

30| 0.586| 0.902| 0.933 30| 0.613| 0.766 | 0.845

Makeham| 10 | 0.910| 0.900| 0.915 Makeham| 10 | 0.808| 0.820| 0.826
20| 0.992 | 0.992 | 0.989 20| 0.981| 0.977| 0.970

30| 1.000| 1.000| 1.000 30| 0.997| 1.000| 0.997

Weibull | 10 | 0.755] 0.993| 1.000 Weibull | 10 | 0.352| 0.915]| 0.993
20| 0.980| 1.000| 1.000 20| 0.917| 1.000| 1.000

30| 0.999| 1.000| 1.000 30| 0.991| 1.000| 1.000

It is clear from Tables 3 and 4 that our test has good powersladkeham and weibull distributions and acceptance
powers for LFR distributions. The powers estimate increasthe the sample size increases. The powers are getting as
greater as the class departs the exponential distribution.

5 Numerical Examples

Example 5.1Consider the data given in Attia et alL ], these data represent 39 liver cancers patients taken ttmminia
cancer center Ministry of Health - Egypt.

Itis easily to show thadin(s, ) = 0.0167and this value exceeds the tabulated critical value in T&bleis evident that
at the significant level 0.05 this data set has Egkproperty.

Example 5.Zonsider the data, which represent the remission timeshptacebo of 21 patients (Lawless [29], p.5):
It was found thadn (s, 8) = 0.0131which is greater than the tabulated critical value in TableThen we reject bwhich
states that the data set has exponential property.
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6 Discussion

Testing exponentiality is becoming increasingly poputatifetime analysis and reliability studies, in this papee w
introduced a new test for testing exponentiality versugptmential Better than Used in moment generating function
ordering class” based on Laplace transform. The Pitman pmtio efficiency of this test is calculated for some
alternative distributions and compared with other testsefcponentiality. The critical values and the powers of the
proposed test are calculated. Finally, the proposed tegtpbed to some real data.
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