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Abstract: We have analytically explored the quantum phenomenon titf@scattering by quantum scatterers in restricted géoese

We have considered short ranged (Fermi-Huéglgl]) interactions among the incident particle and the scatsawith no interactions
among the scatterers, and the scatterers as (i) partioleds)-D box, (ii) particles(s) in an array of 1-D boxes, (particle(s) in a 2-D
rectangular box, etc. Coherent scattering even by a siragleriifermion in a finite geometry gives rise to rich physjpscsally for the

interference between the scattering due to the aperturthahdue to the scatterers in the aperture. We also haveregemperature
dependence of differential scattering cross-sectionthiabove cases with ideal Bose and Fermi scatterers.

Keywords: Quantum scattering, diffraction, unfixed scatterers, beongetries, particles in array of boxes, Bose and Fermieseas,
temperature dependence of differential scattering csestion

1 Introduction

In the existing literature, quantum scattering is discdsse

mostly for classical scatterers which are either fixed in

space or having classical motions in space. There it

hardly any theoretical discussion on particle scatteriyng b (1/2,-D/2)
an unfixed quantum scatterer bounded in a region of

space except some cases with harmonic oscilla®)84,

5,6,7]. ‘Particle’l can be scattered coherently from each {-1/2,+D/2) "AA

and every point of a finite region of space of a quantum .\
scatterer if it is fired onto the restricted region (apefture /7/7 /2,-0/2)
and can further interfere constructively and destrucyivel o

with the particle scattering by the aperture. Thus, we

naturally take up discussion on quantum scattering, for ¢ L2, +0/2)
wide class of quantum scatters, to introduce quantun

scattering with quantized motions of the scatterers in

restricted geometries as probe, for the Fe!'m"HUEBg Fig. 1: Intensity distribution, i.e. the total differential saaing
[1] interactions (among the ‘incident’ particle and the cross-sectiorD 1(8, @) in units of nn?, along a line parallel
scatterers), which although are easy to deal with havgq the x-axis, for scattering of a ‘particle’ #) by a quantum
huge applications in the field of ultra-cold ator@ [~ scatterer in its ground state in the 2-D box. Plot followsniro

If a plane wave (&) associated with a free particle Eqn.@9) for the parameters = 20 nm,D = 1 nm, kL = 10,
(‘particle’) of a fixed momentumy= hkK) is scattered by  as/L = 0.5, andM = mass off’Rb. Direction of the positive-
a fixed scatterer (situated at= 0) with an interacting axis is represented by = 0, and that of the negativeaxis is
represented by = .

1 Here, by ‘particle’, we mean, the wave associated with the
particle.
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potential ¥int(r)), then spherical wavegz) goes out of  with respect to the initial direction of incidende and
the scatter with a scattering amplitudé(@,¢)) to a  |A]? is proportional to the intensity of the incident
particular direction @ and ) with respect to the initial  ‘particle’. Scattering amplitude in Eqi), takes the form,
direction ). Now, if the scatterer is not fixed, say, the Wwithin the first order Born approximation, ak(]
scatterer is a particle in a 1-D box-[[/2 < Xy < L/2), m o
then the ‘particle’ would be scattered coherently from all f* (6, ¢) ~ _2—nﬁz/vim(ro)el(k_k JTory, )

it i i sl (P 2
the posr?;;ns o) V\gth prnobab|l|ty densitygn™ ()] wherem is the mass of the incident particle), represents
where g™ (Xo) = \/ECOS(T"XO) (for oddn=135., a source of scattering pointjk’| = |k| = k, and

2 iy N _ : k' = K[sin(8)cog@)i + sin(8)sin()] + cogB)K.
and \/,ESIH(T) for. even n = 2,4,6,...) is the _However,[ in(cIL)Jsiosr(1 i)f all or(de)rs E)f)the Borsr(1 ée]ries,
normalized energy e|gensta_tke/ of the scatterer. In thig,gifies Eqn®), for the regularized 53 (i.e.
situation, spherical waves %é) will go out after Viu(r)= 963(r)%r) potential, as{1,12,8]
scattering form all the source (of scattering) poifts§).
To a particular directiond, ¢) at a distance =xo+r1"  (P/(6,¢) = — — mg m
from the center of the box, all the outgoing spherical 2mh*(1+ ik %)

jkr’ . . . .
waves (%-}) interfere with different phases and give where the coupling constarg)(can be connected with the

rise to coherent scattering amplitudg® (6, ) which  s-wave scattering lengtia) asg = imzas [8]. In Eqn.@),

now depends on the quantum Stathjrg@ >) of the we have considered the scatterer to be fixed. If it is not

scatterer. fixed rather having a relative motion, and if the interacting
This article is organized as follows. In sectignwe ~ Potential still remains the same, then the scattering

have revisited the quantum scattering theory for a@mplitude would be modified to

classical scatterer, and have calculated the scatterin " Hg

amplitude ¢(P) (8, @)) for the Fermi-Huang potential (i.e. (6,9) = _2nﬁ2(1+ ik F9)’ (4)

regularizedd® potential:Vini(r) = g83(r) = g&%(r) &1). 2rit

Section3 has be'en devoted to the generalization of th.ewherelj: m—I\I/\I/I is the reduced mass am is the mass

quantum scattering theory for quantum scatterers, irof the scatterer. Eventually, the coupling constant, i th

particular, for (i) particle(s) in a 1-D box, (ii) particles __ 2nfPag

! .. : ; case, would bg = === [§].

in an array of 1-D boxes, (ii) particle(s) in a 2-D n E ith H h h idered relati

rectangular box, etc. In the same section, we also have N Edn-@), although we have considered relative

revisited the phenomenon of diffraction of the ‘particle’ motion for the scatterer, yet the scatterer is still cladsic

as a problem of quantum scattering specially when t2S We have not quantized motion of the scatterer.
passes through an apertu@, [and have calculated the Quantum scattering of the ‘particle’ for (both the first and

corresponding aperture scattering amplitud€)(6, @) the second) quantized motions of the scatterers was not
for all the above cases. We have calculated ’the totagurprlsmgly been studp d befqr e for scatterer(s) in a box
; i _ (P (a) : ;

scattering amplitudefa(6, @) — H )(6 o) + 136, 9) eometry. In the following section, we are going to stud'y
and have plotted nthe’z totaln différential scé\tte'ring the same fo.r scatterers as (i) partlcle(s_). n a l.'D bO).(’ (i)

. 5 particles(s) in an array of 1-D boxes, (iii) particle(s) in a
cross-section @, (6, @) = |fn(0,9)|°) for all the cases : d :
We also haven e;<plored nte;nperature dependencé O%-D rectangular boxetc with further consideration, that,

differential scattering cross-sections for the above $asem°t'°ns of the scatterers are unaltered (which is possible

£ m . . .
with ideal Bose and Fermi scatterers. Finally, we haveIf w << Lorif i — m)in the course of scattering.

summarized our results in the concluding sectlon

®3)

3 Quantum scattering for quantum scatterers

2 Quantum scattering for a classical scatterer )
3.1 Quantum scatterers in a 1-D box

In quantum scattering theory, time independent R - _
Schrodinger equation is dealt with by the following form Let M be the mass angyi be the position of a particle-

of wave function 0] scatterer in a 1-D box of length such that;-L/2 < xp <
ok L/2. If we quantize Ko, po] = ih1l) motion of the scatterer,
W(r)=Y(r,8,9) ~A dkz ¢ f<p>(97¢)_ 7 (1) then we get an orthonormal and complete set of quantized
r energy eigenstates, for the Dirichlet boundary condition,
, as

where the first term represents a incident ‘particle’,

second term represents a outgoing spherical wave in the \/Zcos(m) forn—1.3.5. ..
radiation zone with the scattering amplitudé” (6,9)  ¢\” (xo) :{ L L e (5)
along a particular direction8( ¢ in usual convention) \/gsin(@) forn=2,4,6,....
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Energy eigenvalues corresponding to the stalm(é” (%0)} 3.1.2 Contribution of the aperture to the quantum

are given by(Eq = 2017} scattering
_Let us now consider a ‘particle’, i.e. a plane wave In
A(—:JAkz associated with a particle of massand momentum
hkk, be incident perpendicularly on the box as well as on
the scatterer. In this situation, far< M (or for g — m),
quantized motion of the scatterer will not be altered
rather, the ‘particle’ yvill be scattergd from all the points According to Fresnel-Kirchoff formalism for scalar
—L/2 < % < L/2 in the box simultaneouslywith gittraction, if Win = AE¥ be the scalar field (wave)
probability density{|¢i\” (x0)[2} if | > be the initial  incident with an anglef, on a plane surfacs of an
state of the scatterer. The set-up is similar to thatin BIG. aperture, then due to diffraction through the aperture, the
except consideration of motion of the quantum scatterescalar field at the poin® far away from the aperture, is

the previous subsection, we have considered
contribution of the particle-scatterer only to the quantum
scattering. But, even an empty box can scatter a ‘particle’
(wave: A€¥%) when incident on it, almost like the

' phenomenon of single slit diffraction.

along they-axis. given by ]
—ik [ o kP EN
Yp = Z—H/ds-( 5 )T‘I—’in
3.1.1 Contribution of the particle-scatterer to the quantu ) S ik
scattering _ ik ds(cos(60)+cos(6 ))é—llf )
T 2m s 2 oo

If r be the position of the incident particle such thia 0, ~ wherer' is the distance of the poirR from an arbitrary
the centre of the box, is the origin, then #ginteraction,  point on the surface of the aperture, a#ids the angle of
as we have expressed before, between the incident particlé with the normain’of the surface. For normal incidence

atr and the scatterer i, can be expressed as (6o = 0), and for the Fraunhofer diffraction in the radiation
3 . zone, we recast Eq), as
Vint(1) = 985 (r — Xol ). (6) —ik 1+ cog0)

eikr .
Yo o A(———)— //efwkxxﬁkym)dxod)’o (10)

, . . wherer =rq+1’ is the position of the poinP from the
tP(6,¢) = —%e'(k_k/>'xo' = —%e_'k/'x"' (7) centre of thoe surface ofpthe apertur@,ispa point on the
surface,r > rg, z= 0 on the surfacexy andyy are the
wheregy = %kas_ However, the quantum scattering has respectivelyx andy coordinates of a point on the surfape.
happened from all the points-L/2 < xo < L/2 From Eqn.9) for. we get the aperture-scattering
simultaneously with respective probability density @mplitude, comparing with the form afoy: in Eqn.CL),.
{|wr(1p)(xo)|2}. Thus, the particle-scattering amplitude for for a rectangular aperure —(/2 < % < L/2;

. . —D/2<yg<D/2)ofaresA=LD, as
the scatterer in the quantum stmué.p) >, can be written, / /

Eqgn.@) can be recast, using Eg6)( for this problem, as

using Eqns%) and (7), as @ (9, ) = W /L/Z ko /D/Z e ikyyo
—L/2 -D/2
L2, . o
iP g @) = — MK —iK' X0l [ 1,(P) 24 e 1T/2kA[1 + cog )] . _
n ( ,(0) 27Tﬁ2 —L/Ze |l1Un (X0)| X0 — [47_[ i )] SlnquL) S|ndeD)(11)
= M Ginggel) _r @) Where dy = ksin(6)sin(¢)/2. We are calling it
2nh? 1—(%)2 aperture-scattering amplitude instead of scattering

] o . amplitude, as because, it is the result due to the aperture

wheregy = ksin(8) cos(¢) /2. We are calling it particle-  gnly.
scattering amplitude instead of scattering amplitude, as  Eqn.@1) is a result for a 2-D rectangular aperture. We
because, itis the result due to the par“CIe'Scatterer. Onlycan reach our desired 1-D resu't from here_ To get the
Eqn.@) is our desired particle-scattering amplitude for the result for the 1-D aperture (box) as already mentioned in
quantized motion of the scatterer in a 1-D box. ~the previous sub-subsection, we have tolp(® < 1 and

It is also possible to obtain result for the classical kD > 1 keeping A = DL nonzero finite constant in
scatterer in a 1-D box from the same equation (E)h.( Eqn.@1). As Dk > 1, sindg,D) — 0, except
The scatterer must be fixed fdr — 0. Thus, putting (sindgyD) — 1) for two nontrivial cases, we hawg= 0
L — 0 in Egn.@) we get back the same result (+ve x-axis) and @ = m (-ve x-axis). Thus,
(\P(0, ) = — 2% as that obtained in Eqi) for the  aperture-scattering amplitude for the 1-D aperture, can be

classical fixed scatterer. obtained from EqnX(1), as

e '/2kA[1+ cog 6
2 As because, we are not detecting position of the scatterer. (@ (8,90) = [4 +cog0)]
3 While particle scattering means scattering of particle(s) T
particle-scattering means scattering by particle(s). *[8p.0+ Bp.n- (12)

sindkLsin(0)/2)
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3.1.3 Total scattering amplitude for the quantum scatteret (o): 3-D spherical polar plot of (@)
in the 1-D box

. . ) (a): For a scatterer in a 1-D single box
Total scattering amplitude for the scatterer in the 1-D box,| b:©.0)
is given by the superposition of the contributions in
Egns.B) and (L2), as
fn(6,9) = 11" (6,0) + (6, 9)

mg . kLsinBcosgp 1

= sing ) _ 0
2 KLsin@ cosp
2nf 2 1— (T)z
ikA[1+4cog6)] . _kLsinf
MAL IO i KT 50+ Bpr13)
. 4”_ 2 __(c): For a scatterer in a 1-D single box (d): For 2 scatterers in a 1- D double box
and the total differential cross-section, as Br(6,0) Ds3(6.0)
Dn(6,9) = |fn(6,9)? '
. mLsinBcosp 1
= |a&sing A )1_ (Lsinecosm)z +
nA
iAl1+cog6)] .  misin@ 2 ‘ ‘ — "‘ )
[ +2)\ 5( )] SInC( )\ )[6(p70+5(p1n] (14) 0.5 1.0 15 0.5 1.0 1.5

whereay = as/(1+ikas). Total scattering cross-section, of Fig. 2: Total differential scattering cross-section in units ofnm
course, is given by, = [, fq%go Dn(8, @) sin(6)dode. for quantum scatterer(s) in 1-D box geometry with the se@md

3-D spherical polar plots. For all the figures, we have carsid
the following: L = 10 nm,kL=21L/A =15, a5/L =1, A=

10 x 40 nn?, andM = mass of’Rb. In FIG 2.(a): the dotted
line represents aperture-scattering (diffraction), thshed line

Ids Ft)osf"bltﬁ.'n nilnot—llengiu scgt_lf(fa, |nt_part|Cl{[Itar, for qu%mtl: represents particle-scattering, and the solid line, wiéphesents
ots. In this situation, the diliraction paftern wou € superposition of the two, follows Eqi4). FIG 2.(b) represents

greatly modified due to presence _of even a single par.ticleg_D spherical polar plot of the case in FEYa) more with thep
in the 1-D box. We plot the total differential cross-section gependence. In this figure, the top-face middle point cpoess

(intensity distribution) in FIG2 and in the inset of FIG3 {5 9 = 0, and right-face middle point corresponds go= 0.
for relevant values of parameters for the scatterer(s)en th particle-scattering partin the solid, dotted, and dasimes in the
1-D box. This intensity distribution is experimentally FiG 2.(c) follow from Eqn.@5) for T = 102K, T — 0, andT —
observable. It is interesting to note, that, the sub-ppaki  « respectively. In FIG.(d): the dotted line represents aperture-
maxima in FIG. 3 (inset) is occurring at scattering, the dashed line represents particle-saagteaind the
nA sinB cosp = L, specially when integral multiple of the solid line represents superposition of the two which folfoam
wavelength matches with the length of the 1-D box for Eqn.@6) for nj = &; 3, N’ = 2 andb/L = 2. Vertically upward
the scattering to the perpendicular direction direction in the figures represertslirection, the horizontal axis
(6 = /2, @ = 0, m). From the positions of these maxima (from the left to the right) representsaxis, and the axis into the
in the plot one can determine the energy eigenstatéage represents tiyeaxis for the spherical polar plot.

|¢,§P> > of the scatterer if occupies a pure state. For
forward scattering § = 0) and repulsive & > 0) or
attractive &s < 0) interactions, height of the peak (or dip
along a particular line) of the intensity distribution wdul
be maximum (or minimum) according to the suitable
values ofag, k, andL as already have shown for 2-D box
in FIG. 1. The peak (or dip), of course, happens for

constructive (or destructive) interference, along SOMEpith its surroundings at temperatufe In this situation,

particular directions, between the scattering due to the ; tteri litudef @ (0 d b
aperture and that due to the scatterer in the aperturéPeriure-scattering  amplitudef'®(6,¢) wou N

Thus, just by adjusting wavelength and length of the 1.pUnchanged as it is. Modification would be there only in
box, one can determine s-wave scattering length of thdhe particle-scattering amplitude pait” (6, ¢). In this

It is interesting to note from Eqri§), that, the
differential scattering cross-section due to the partcld
that due to the aperture are comparabk i A |as| which

scattered particle. situation, the scatterer would be in a mixed state except
for T — 0. In the mixed state, the energy eigenstate
(p) h - - efEn/kBT - n252n2
. . as probability?, = , Wherek, = 25
3.1.4 Temperature dependence of the scattering amphtud'eqjn - P ¥h z N oML

andzZ = y»_, e B/k8T is the canonical partition function.
Let us now consider the situation, that, the scatterer in théVhile for T — 0, we haveP, = &, 1; for T — o, we have
1-D box be a subsystem, and it is in thermal equilibriumP, = constant¥n. However, in thermal equilibrium,

(@© 2017 NSP
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For ideal Bose, Fermi , and classical scatterers in a 1- D box

average scattering amplitude, due to the particle, would b%%plo(e 0

f_'cl'p)(e7 (0) = z frgp) (6’ (p) Pn 2000 For a single scatterer
i mLsin@ 0 P, 4000 ofe.0)
B . sin@ cosyp 50
= —&sing A ) z 1 _ (Lsinfcosp)> (15) 40
n=1 (=™ )? 3000 20
which, forT — 0, would become 20
. mLsinBcosp 1 2000 10
P (@ —asin : 16
T20(6,9) = q A )1_ (LS'H§COS¢)2( ) 1000 ‘ 05 1.0 i
On the other hand, forT — o, scatterer behaves
classically, so that, we can conveniently take+ o in - = -
Eqn.@). Thus we can read Eqi%), for T — o, as ' ' '
. nLsinBco Fig. 3: Particle-scattering part of the differential scatteringss-
f_-(rioo(e,qo) =—a smqup). (17)  section in units of nrh for N = 10 scatterers in 1-D box with

other parameters = 250 nm,kL = 2rL /A = 25, as/L = 0.04,
Eventually, we can rep|acép)(67q0) by f__(l_p)(e’(p) (asin A = 250 x % nm? and M = mass of’Rb. Solid, dotted and
Eqn.(L5) everywhere, specially in Eqnd3) and (L4), to dashed lines correspond to Bose, Fermi and classical saratte
get the temperature dependence of the average coherefftd represent modulus squared of right hand sides of E2)s. (

scattering amplitude and that of the differential scatigri (24) and @5) respectively. Inset represents particle scattering part
cross-section respectively. of Eqn.([4) for the same parameters.

3.1.5 Quantum scattering for many quantum scatters in ) .
the 1-D box From Eqn.R0), we can generalize expression of the total

differential scattering cross-section in Ed) for the

Let us now consider two noninteracting particle-scatters j two distinguishable  scatters keeping the aperture

the 1-D box, and both of them interact similarly with the Scattering part unchanged.

incident partlcle with the interacting potenti®n(r) = Above expression in Eqr2Q) can be similarly
g[33( r—x1|)+5 (r —le)] wherex,i andx,i are positions generalized for manyN) identical and distinguishable

oft e two scattérers in the box. If their positions are fixed, Noninteracting scatterers in the 1-D box, as

then particle-scattering amplitude, for these two scater

can be generalized from Eq@){as f,gf,)nZ,,_,,nN(e,(p) —%smc(qu Z qu) . (21
P(6,¢) = — g e T 1 o) as R
2 It is quite natural to expect, that, the expression in

However, our interest is not in the fixed scatterers, rathefeqn.@1) would be different forN ideal Bose or Fermi
in two unfixed quantum scatterers. If the two scatterers arescatterers (of same spin component) in the 1-D box. But,
distinguishable, then, their energy eigenstates can lemgiv it is not the case here. Surprisingly, all the exchange terms
by in the quantum many scatterers’ (bosons or fermions)
® hen i d with th
cod ™1 cog 12 for n,j = odd state (L,l/'n17n27,,',7nN >) when integrated  wit e
wﬁf?(xl,Xz) = { j cosrhcos- %) I= (19)  exponentials, like those in EqQ), are zero; e.qg. for two

nﬂxl J7TX2
L sm( )sin(T2) forn, j = even Bose or Fermi scatterers an integration with the exchange

and, for odch evenj, and vice-versa, term L2 i would be
—ik’-xql ;
0P ) — Lcos(“"xl)sm(J”XZ) f L/2€ " cognrxy /L] cogjrrxy /L]dxg x
nj \M172) = 2 sin( ") cog 172, (1%) _L/zcos[nnxz/L]cos[Jnxz/L]dxz = 0, due to

Thus, contribution of the two distinguishable scatterers t orthogonality of the single particle eigenstates for odd

i : . ol # j. Thus, EqnZl) is also the result of the
:Fc)empé‘;?]cg tsc;:atterlng amplitude would be generallzeolparticle—scattering amplitude, foN Bose or Fermi

N szﬁznz
L/2 ,L/2 , scatterers, having energ¥En n, .ny = Y-
f,ﬂ )(6 Q) = 2 / [e 'k il | gk’ X2'] Eqn.@21) must not be the result for ferm|ons (oft 5 same
2nﬁ —L/2J-L2 spin component) ifi = n; asn; = n; is not allowed for
><|‘l’n,j (X1, %2) | 2dx1 dxo fermions.

However, in thermodynamic equilibrium with a heat
= —%sino(qXL) [ 1 + 1 }20) and particle bath at temperatufeand chemical potential
2nh? _(qu)z —(‘}X—}T‘ 2 U, energy distribution is different for different types

nr
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(distinguishable, boson, fermion) of scatterers. Thus,This equation is applicable for identical classical
particle-scattering amplitude would be different for scatterers. Eqn28), (24), and @5 clearly say how
identical bosons, fermions and distinguishable particles scattering amplitude is different for different types of
thermodynamic equilibrium. Average particle-scattering scatterers in a 1-D box or single slit. We compare
amplitude, for our system of interest, can now be particle-scattering part of the differential cross-seetior
generalized from Eqnlf), replacing one-scatterer Bose, Fermi, and classical scatterers in B3G.
probability by average no. of scatterers; ‘in Above results can be generalized in the similar spirit
single-scatterer stafey|” >, as for quantum scatterers in many 1-D boxes, e.g. scatterers
in a double 1-D box, scatterers in a 1-D gratieg; by
further considering interference of the outgoing sphérica
wave coming out of the 1-D boxes. We have shown such
" _ a result for two (4 1) scatterers in a 1-D double box in
anrnecosrp FIG. 2 (d) specially for the spacingsf) of the two 1-D
121 1— LS'“QCOS‘P) identical boxes as twice of the length an individual box.
Temperature dependence of the total differential scatjeri
(22) cross-section for ideal gas of scattererdlirl-D identical
where n; = W for Bose () or Fermi () boxes, in an array with spacifg= jL (j =0,1,2,3...),

n2ﬁ2'2 can be obtained by generalizing Eqdd)(and @2), as
scatterers, anck; 2MLJ2 . Interparticle interactions

among the scatterers would further perturbatively modifyDr (6, @) = |f_(p (8,0)+ f@(8,9)
Eqgn.Q2) for dilute case, and modification can be done by ’ anrnGcoscp
asing ) [

{(P)(Q’(p) _ < rTJf(P)
T ng j

= —asing

recasting n; keeping its form unaltered within the
Hartree-Fock approximatio®]13,14].

However, low and high temperature limits of Eq22
can be easily taken from Eq@1). For the Bose scatterers,
atT — 0 (and alsou — E; for fixed N = y;nj — N),
all the scatterers occupy the single-particle ground state

nj
Zl 1-— (Lsinecosrp)z

= i
sin (N’ ni(b+L) si;\t(@)cod(p))
x Sin(n(b-t-L)si;\t(S)cos((p))

]Sﬁl = N). Hence, for this case, Eq@2) would take the +IA[1+2§\OS(6)] ing m‘i' e)[5<p,o+ 0,1
orm
. f (b+L)sin(6) 2
. mLsinfcosp 1 sin(N/Z25202)
f1sP g —Nagsin : (23 { - (26)
T%O( qo) & d ) )1_ (LS'niCOS‘P)Z\ ) sin(rr(bJrL)?sm(G))
For Fermi scatterers, @t — 0 (and alsqu = Er = i Substitutingb = 0, N' = 1 andn; = &, we get back

for fixed N — N), only the firstN single-particle states

from the ground state onward would be occupiedfije=

Eqgn.@4) from the above for a single scatterer in a 1-D
box in the statett[ff,p> >. SubstitutingN’ = 2, nj = &; j,

1 for j < N andnj = 0 otherwise). Thus, for this case, we get result for two (- 1) scatterers in a double 1-D

Eqgn.22) would take the form

box in the stateq,rj(,pj?, >

. ancho
f_T(ifO(e (0) aksmc( Sqo Z 1 Lsrn9cos<p
o 3.2 Quantum scatterers in a 2-D rectangular
_ . TmiLsinBcosp 1 box
= — Nasind 3 )(1 N
_ Lsinfcosp [rcot( anrnGcosqo) In the previous subsections we have considered 1-D box
2NA A (single slit) of lengthL as a limiting case of a 2-D
h (N Lsin6 cosp rectangular box of length. along x-axis and heighD
+hn(N -+ A ) alongy axis such that. <« D andkD > 1 keeping are&
Lsin@cosp of the aperture as nonzero finite constant. Let us now
_hn(N_T)])a (24) consider the general case of the 2-D rectangular box
. . (rectangular aperture) of size= LD and a scatterer in it.
where hp(x) is a harmonic number, and

hn(N +x) — ha(N — x) vanishes as /IN for largeN. On
the other hand, forT — oo,

case, Eqn42) would take the form

miLsinB cosg

f1P.C)
(6,9) = 3

ft oo —Nasing ). (25)

the scatterers behave
classically, so that, we can convenrently take the limit
j — o in Eqn.Q1) as well as in Eqn32). Thus, for this

The scatterer scatters the incident ‘partick&™?, as

stated before, by the interacting potential

Vint(r) = 963(r —r ), wherer | = Xgl +Yo] is position of

the scatterer in the rectangular aperture such that
-L/2 < x < L/2 and -D/2 < yo < D/2.

4 The spacing is considered from the middle points of the
individual boxes.
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Particle-scattering amplitude, if the scatterer is fixed at (6): 3-D spherical polar plot of (a)
r = r,, can be generalized from EqA( as
A . _ _
f(p)(e’qo) — _zrn_n%(z-e ik (XOIJFYOJ)_ E|genstate of the DBYB(B’(Oa))Forascattererln a 2-D box
scatterer can be written as
150,
0 v ﬁcos(”*”“)cos(”y"yf’) o
lIJnx,ny(Xo,)'o) = n YTy, (27) \
\/ &5 sin( 0 ) sin( o) osf
% SN
for ny,ny = 1,3,5,... andny,ny = 2,46, ... respectively, BT 10 5 °
and

\/ & cog X0 sjn( o)

\/ & sin( ™) cog M0y (27a)
for the odd-even combination. Energy eigenvalueg,
corresponding to the above states are given byo.

Eneny = TP (nx+n§) Thus, for the quantized motion of
the scatterer, particle-scattering amplitude can now bef
generalized from Eqr8}, as

(d): For 2 scatterers in a 2- D double box
D33:33(6,0)

WiPh, (%0,Y0) = {

Fig. 4: Total differential scattering cross-section in units offnm

fnxp,ny(e, Q) = 2 / k(i +yol) for quantum scatterer(s) in 2-D box geometry for the paramset
Z"H -L/2/-b/2 L =25nm,D=1/3 nm,kL= 27 /A = 25,as/L = 0.4, andV =
X W’nx, (Xo, yo)|2dx0dy0 mass of’Rb. FIG4.(a) and (b) follow EqnZ9). Solid, dotted,
and dashed lines in FI@&.(c) correspond td =10 3K, T — 0,
_ M sindaxL) sind(gyD) ’ (28) andT — « respectively; anth/L = 2 for FIG.4 (d). All the plots
2mh? 1 — (%‘T)2 1— (?}yy—IDT)Z in FIG. 4 correspond to the same plots drawn respectively in FIG.
2.

wheredy = ksin(8) cog¢)/2 andqgy = ksin(8) sin(¢)/2

as defined before. Here we see thatanday parts in the

particle-scattering amplitude appear in separable form as

motions of the scatterer are independent alenandy  similarly obtained by multiplying thg dependent part of
direction. On the other hand, aperture-scatteringthe scattering amplitude, like that in Eq2gj, in the right
amplitude ¢®(8,¢)), for this case, has already been hand sides of EqndF) to (25). Similar generalization is
calculated in Eqgnil), so that, total differential also possible for scatterers in a 2-D double rectangular

cross-section can be generalized from Et#),(as slits, 2-D grating, etc. We have shown such a result for
(p) (@ ) two (1+ 1) scatterers in a 2-D double box in FI@.

Dryny (6, 9) = [fren, (6, 9) + F19(6, )| specially for spacing of the two 1-D identical boxes as

Sino(m-sinecosq)) S-no(nDsinesinrp) twice of the length an individual box. Temperature

= |ak —2 dependence of the total differential scattering

1 (Lsmecoqu)zl (Dsmesm(p)z

) nyA cross-sections for 2-D cases can also be obtained in the

similar way as prescribed for the 1-D cases.

A[1+cog8)] .  misin@cosy
2 sing 3 )
. . 2
xsind%esmq)) : (29) 4 Conclusions

We plot the total differential cross-section in FI& for In this article, we have presented a quantum theory of
relevant values of parameters for the scatterer(s) in thearticle scattering for scatterer(s) in quantized bound
2-D box. We also show that the total forward scatteringstates in different types of box geometries, e.g.
cross-sectionm(0, ¢) becomes minimum in FIGL for ~ scatterer(s) in a 1-D box, array of 1-D boxes, 2-D
a different set of parameters. Thus by tuning the set ofrectangular box, etc. Particle scattering by the quantum
parameters, e.k andL keeping others constant, we can scatterer(s) in these types of restricted geometries
determine the value of s-wave scattering length from the(apertures), which a general reader would find interesting
height of the maximum or minimum of the total specially for the interference with the scattering by the
differential cross-section in the forward direction. apertures, has not surprisingly been investigated before.
Temperature dependence and other aspects of the totBlue to the competition between the aperture-scattering
differential scattering cross-section for one and manyand particle-scattering, usual diffraction pattern can be
guantum scatterers in a rectangular aperture can bsignificantly changed as shown in FIGs.2, and4. Due
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to the competition, in some situations intensity minimum [2] Z. Idziaszek, K. Rzazewski, and M. Wilkens,
can appear even for the forward scatteriig= 0) with J. Phys. B: At. Mol. Opt. Phys2, L205 (1999)

¢@ = 0 or mas shown in FIG1, and in some situations, [3] For experimental data, see, A. P. Chikkatur, A. Gorlitz,
back scattering can dominate over the forward scattering D. M. S.-Kurn, S. Inouye, S. Gupta, and W. Ketterle,

as shown in FIG.4 (b). From the position of the Phys. Rev. Lett85, 483 (2000)
sub-principal maxima, as shown in FIG&(inset) and4 [4] H.-J. Wang and W. Jh&hys. Rev. 466, 023610 (2002)
(a), one can determine energy eigenstate of a scattererin &JJ- ~ Brand, I~ Haring, ~and  J-M.  Rost,

1-D or 2-D box, as explained in the last paragraph of the __ Phys. Rev. Lett91, 070403 (2003)

section3.1.3. [6] A. Bhgttacharya gnd S. Blsme|v:1§06.02804v3 (2016)
Temperature dependence of differential scattering [/1 7" light scattering by a harmonically trapped BEC,

cross-sections, for ideal gas of Bose and Fermi scatterers ;ies E:Q'EVZ%A 323(5120(‘)2%’16)3 - Ye, and A. M. Rey,

in the box geometries, as obtained in Edt®)(@and shown ys. L

. . . [8] L. Pitaevskii and S. StringarBose-Einstein Condensation
in FIG. 3, was also not investigated before. Our results on ™~ 5 ¢, Sc. Pub. (2003)

differential scattering cross-section would be important [9] S. Dutta Gupta, A. Banerjee, and N. Gholtlave Optics:
for quantum scattering in nano-length scale, in particular ~ * gagic Concepts and Contemporary TrendEaylor &

for particle scattering by quantum dot(s), as also  Francis, New York (2016)

explained in the last paragraph of the sect®d.3.  [10]D.J. Griffiths,Introduction to Quantum Mechanicgnd ed.,

Temperature dependence of the differential scattering — pearson Education, Singapore (2005)

cross-section, on the other hand, would be importan{i1] C. N. Friedman,J. Functional Analysi40, 346 (1972) R.

within 102K to 103K as clear from the FIGS (c) and M. Cavalcanti, Rev. Bras. Ens. FIi&l, 336 (1999)

4 (c). [12]1. Mitra, A. DasGupta, and B. Dutta-Roy,

All the calculations have been done within the scope Am. J. Phys66, 1101 (1998)
of general readers, as because, most of the calculatiori$3]S.  Giorgini, L. Pitagvskii, and S. Stringari,
involve Fourier transformations of the probability Phys. Rev. A64, R4633 (1996)
amplitudes of the quantum scatterers. Calculations arél4]S. Biswas, D. Jana, and R. K. Manna,
simple and straightforward, because we did not consider ~ Eur. Phys. J. [86, 217 (2012)
interaction among the quantum scatterers. Simplification
also has happened due the Fermi—Hua5§ [1
interactions (among the ‘incident’ particle and the
scatterers), which although are easy to deal with have
huge applications in the field of ultra-cold atong}. [

General readers can further study quantum scattering
for scatterers in harmonically trapped geomes/With
further consideration of weakly interacting scatterers
within perturbation formalism. They can also extend our =
results on the box geometries for scatterers in other §
geometries, e.g. circular geometry, cylindrical geometry
etc.
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