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Abstract: We have analytically explored the quantum phenomenon of particle scattering by quantum scatterers in restricted geometries.
We have considered short ranged (Fermi-Huangδ 3

p [1]) interactions among the incident particle and the scatterers with no interactions
among the scatterers, and the scatterers as (i) particle(s)in a 1-D box, (ii) particles(s) in an array of 1-D boxes, (iii)particle(s) in a 2-D
rectangular box, etc. Coherent scattering even by a single boson/fermion in a finite geometry gives rise to rich physics specially for the
interference between the scattering due to the aperture andthat due to the scatterers in the aperture. We also have explored temperature
dependence of differential scattering cross-sections forthe above cases with ideal Bose and Fermi scatterers.
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1 Introduction

In the existing literature, quantum scattering is discussed
mostly for classical scatterers which are either fixed in
space or having classical motions in space. There is
hardly any theoretical discussion on particle scattering by
an unfixed quantum scatterer bounded in a region of
space except some cases with harmonic oscillators [2,3,4,
5,6,7]. ‘Particle’1 can be scattered coherently from each
and every point of a finite region of space of a quantum
scatterer if it is fired onto the restricted region (aperture),
and can further interfere constructively and destructively
with the particle scattering by the aperture. Thus, we
naturally take up discussion on quantum scattering, for a
wide class of quantum scatters, to introduce quantum
scattering with quantized motions of the scatterers in
restricted geometries as probe, for the Fermi-Huangδ 3

p
[1] interactions (among the ‘incident’ particle and the
scatterers), which although are easy to deal with have
huge applications in the field of ultra-cold atoms [8].

If a plane wave (eikz) associated with a free particle
(‘particle’) of a fixed momentum (p = h̄kk̂) is scattered by
a fixed scatterer (situated atr = 0) with an interacting

1 Here, by ‘particle’, we mean, the wave associated with the
particle.

Fig. 1: Intensity distribution, i.e. the total differential scattering
cross-sectionD1,1(θ ,φ) in units of nm2, along a line parallel
to the x-axis, for scattering of a ‘particle’ (eikz) by a quantum
scatterer in its ground state in the 2-D box. Plot follows from
Eqn.(29) for the parametersL = 20 nm, D = 1 nm, kL = 10,
as/L = 0.5, andM = mass of87Rb. Direction of the positivex-
axis is represented byφ = 0, and that of the negativex-axis is
represented byφ = π.
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potential (Vint(r)), then spherical wave (eikr

r ) goes out of
the scatter with a scattering amplitude (f (θ ,φ)) to a
particular direction (θ and φ ) with respect to the initial
direction (̂k). Now, if the scatterer is not fixed, say, the
scatterer is a particle in a 1-D box (−L/2 < x0 < L/2),
then the ‘particle’ would be scattered coherently from all

the positions ({x0}) with probability density|ψ(p)
n (x0)|

2

where ψ(p)
n (x0) =

√

2
L cos(nπx0

L ) (for odd n = 1,3,5...,

and
√

2
L sin(nπx0

L ) for even n = 2,4,6, ...) is the
normalized energy eigenstate of the scatterer. In this

situation, spherical waves (eikr′

r ′ ) will go out after
scattering form all the source (of scattering) points ({x0}).
To a particular direction (θ ,φ ) at a distancer = x0 + r′

from the center of the box, all the outgoing spherical

waves ({ eikr′

r ′ }) interfere with different phases and give

rise to coherent scattering amplitudef (p)n (θ ,φ) which

now depends on the quantum state (|ψ(p)
n >) of the

scatterer.
This article is organized as follows. In section2, we

have revisited the quantum scattering theory for a
classical scatterer, and have calculated the scattering
amplitude (f (p)(θ ,φ)) for the Fermi-Huang potential (i.e.
regularizedδ 3 potential:Vint(r) = gδ 3

p(r) = gδ 3(r) ∂
∂ r r).

Section3 has been devoted to the generalization of the
quantum scattering theory for quantum scatterers, in
particular, for (i) particle(s) in a 1-D box, (ii) particles(s)
in an array of 1-D boxes, (ii) particle(s) in a 2-D
rectangular box, etc. In the same section, we also have
revisited the phenomenon of diffraction of the ‘particle’
as a problem of quantum scattering specially when it
passes through an aperture [9], and have calculated the
corresponding aperture scattering amplitude (f (a)(θ ,φ))
for all the above cases. We have calculated the total
scattering amplitudefn(θ ,φ) = f (p)n (θ ,φ) + f (a)(θ ,φ),
and have plotted the total differential scattering
cross-section (Dn(θ ,φ) = | fn(θ ,φ)|2) for all the cases.
We also have explored temperature dependence of
differential scattering cross-sections for the above cases
with ideal Bose and Fermi scatterers. Finally, we have
summarized our results in the concluding section4.

2 Quantum scattering for a classical scatterer

In quantum scattering theory, time independent
Schrodinger equation is dealt with by the following form
of wave function [10]

ψ(r) = ψ(r,θ ,φ) ≃ A

[

eikz+ f (p)(θ ,φ)
eikr

r

]

, (1)

where the first term represents a incident ‘particle’,
second term represents a outgoing spherical wave in the
radiation zone with the scattering amplitudef (p)(θ ,φ)
along a particular direction (θ ,φ in usual convention)

with respect to the initial direction of incidencêk, and
|A|2 is proportional to the intensity of the incident
‘particle’. Scattering amplitude in Eqn.(1), takes the form,
within the first order Born approximation, as [10]

f (p)(θ ,φ)≃−
m

2π h̄2

∫

Vint(r0)e
i(k−k′)·r0d3r0, (2)

wherem is the mass of the incident particle,r0 represents
a source of scattering point,|k′| = |k| = k, and
k′ = k[sin(θ )cos(φ)î + sin(θ )sin(φ) ĵ + cos(θ )k̂].
However, inclusion of all orders of the Born series,
modifies Eqn.(2), for the regularized δ 3 (i.e.
Vint(r) = gδ 3(r) ∂

∂ r r) potential, as [11,12,8]

f (p)(θ ,φ) =−
mg

2π h̄2(1+ ik mg
2π h̄2 )

, (3)

where the coupling constant (g) can be connected with the

s-wave scattering length (as) asg= 2π h̄2as
m [8]. In Eqn.(3),

we have considered the scatterer to be fixed. If it is not
fixed rather having a relative motion, and if the interacting
potential still remains the same, then the scattering
amplitude would be modified to

f (p)(θ ,φ) =−
µ̄g

2π h̄2(1+ ik µ̄g
2π h̄2 )

, (4)

whereµ̄ = mM
m+M is the reduced mass andM is the mass

of the scatterer. Eventually, the coupling constant, for this

case, would beg= 2π h̄2as
µ̄ [8].

In Eqn.(4), although we have considered relative
motion for the scatterer, yet the scatterer is still classical
as we have not quantized motion of the scatterer.
Quantum scattering of the ‘particle’ for (both the first and
the second) quantized motions of the scatterers was not
surprisingly been studied before for scatterer(s) in a box
geometry. In the following section, we are going to study
the same for scatterers as (i) particle(s) in a 1-D box, (ii)
particles(s) in an array of 1-D boxes, (iii) particle(s) in a
2-D rectangular box,etc with further consideration, that,
motions of the scatterers are unaltered (which is possible
if m

M ≪ 1 or if µ̄ → m) in the course of scattering.

3 Quantum scattering for quantum scatterers

3.1 Quantum scatterers in a 1-D box

Let M be the mass andx0î be the position of a particle-
scatterer in a 1-D box of lengthL, such that,−L/2< x0 <
L/2. If we quantize ([x̂0, p̂0] = ih̄1) motion of the scatterer,
then we get an orthonormal and complete set of quantized
energy eigenstates, for the Dirichlet boundary condition,
as

ψ(p)
n (x0) =

{

√

2
L cos(nπx0

L ) for n= 1,3,5, ...
√

2
L sin(nπx0

L ) for n= 2,4,6, ... .
(5)
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Energy eigenvalues corresponding to the states{ψ(p)
n (x0)}

are given by{En =
π2h̄2n2

2ML2 }.
Let us now consider a ‘particle’, i.e. a plane wave

Aeikz associated with a particle of massm and momentum
h̄kk̂, be incident perpendicularly on the box as well as on
the scatterer. In this situation, form≪ M (or for µ̄ → m),
quantized motion of the scatterer will not be altered,
rather, the ‘particle’ will be scattered from all the points
−L/2 < x0 < L/2 in the box simultaneously2 with

probability density{|ψ(p)
n (x0)|

2} if |ψ(p)
n > be the initial

state of the scatterer. The set-up is similar to that in FIG.1
except consideration of motion of the quantum scatterer
along they-axis.

3.1.1 Contribution of the particle-scatterer to the quantum
scattering

If r be the position of the incident particle such that,r = 0,
the centre of the box, is the origin, then theδ 3

p interaction,
as we have expressed before, between the incident particle
at r and the scatterer atx0î, can be expressed as

Vint(r) = gδ 3
p(r− x0î). (6)

Eqn.(4) can be recast, using Eqn.(6), for this problem, as

f (p)(θ ,φ) =−
mgk

2π h̄2 ei(k−k′)·x0 î =−
mgk

2π h̄2 e−ik′·x0î (7)

wheregk =
g

1+ikas
. However, the quantum scattering has

happened from all the points−L/2 < x0 < L/2
simultaneously with respective probability density

{|ψ(p)
n (x0)|

2}. Thus, the particle-scattering amplitude for

the scatterer in the quantum state|ψ(p)
n >, can be written,

using Eqns.(5) and (7), as

f (p)n (θ ,φ) = −
mgk

2π h̄2

∫ L/2

−L/2
e−ik′·x0î |ψ(p)

n (x0)|
2dx0

= −
mgk

2π h̄2 sinc(qxL)
1

1− (qxL
nπ )2

, (8)

whereqx = ksin(θ )cos(φ)/2. We are calling it particle-
scattering3 amplitude instead of scattering amplitude, as
because, it is the result due to the particle-scatterer only.
Eqn.(8) is our desired particle-scattering amplitude for the
quantized motion of the scatterer in a 1-D box.

It is also possible to obtain result for the classical
scatterer in a 1-D box from the same equation (Eqn.(8)).
The scatterer must be fixed forL → 0. Thus, putting
L → 0 in Eqn.(8) we get back the same result

( f (p)n (θ ,φ) = − mgk
2π h̄2 ) as that obtained in Eqn.(3) for the

classical fixed scatterer.

2 As because, we are not detecting position of the scatterer.
3 While particle scattering means scattering of particle(s),

particle-scattering means scattering by particle(s).

3.1.2 Contribution of the aperture to the quantum
scattering

In the previous subsection, we have considered
contribution of the particle-scatterer only to the quantum
scattering. But, even an empty box can scatter a ‘particle’
(wave: Aeikz) when incident on it, almost like the
phenomenon of single slit diffraction.

According to Fresnel-Kirchoff formalism for scalar
diffraction, if ψin = Aeikz be the scalar field (wave)
incident with an angleθ0 on a plane surfaceS of an
aperture, then due to diffraction through the aperture, the
scalar field at the pointP far away from the aperture, is
given by [9]

ψP =
−ik
2π

∫

S
dŜ·

( k̂+ r̂ ′

2

)eikr ′

r ′
ψin

=
−ik
2π

∫

S
dS

(cos(θ0)+ cos(θ ′)

2

)eikr ′

r ′
ψin, (9)

wherer′ is the distance of the pointP from an arbitrary
point on the surface of the aperture, andθ ′ is the angle of
r′ with the normal ˆn of the surface. For normal incidence
(θ0 = 0), and for the Fraunhofer diffraction in the radiation
zone, we recast Eqn.(9), as

ψp ≃
−ik
2π

A
(1+ cos(θ )

2

)eikr

r

∫∫

e−i(kxx0+kyy0)dx0dy0 (10)

wherer = r0 + r′ is the position of the pointP from the
centre of the surface of the aperture,r0 is a point on the
surface,r ≫ r0, z= 0 on the surface,x0 and y0 are the
respectivelyx andy coordinates of a point on the surface.
From Eqn.(9) for we get the aperture-scattering
amplitude, comparing with the form ofψout in Eqn.(1),
for a rectangular aperture (−L/2 < x0 < L/2;
−D/2< y0 < D/2) of areaĀ= LD, as

f (a)(θ ,φ) =
−ik[1+ cos(θ )]

4π

∫ L/2

−L/2
e−ikxx0

∫ D/2

−D/2
e−ikyy0

=
e−iπ/2kĀ[1+ cos(θ )]

4π
sinc(qxL) sinc(qyD),(11)

where qy = ksin(θ )sin(φ)/2. We are calling it
aperture-scattering amplitude instead of scattering
amplitude, as because, it is the result due to the aperture
only.

Eqn.(11) is a result for a 2-D rectangular aperture. We
can reach our desired 1-D result from here. To get the
result for the 1-D aperture (box) as already mentioned in
the previous sub-subsection, we have to putL/D ≪ 1 and
kD ≫ 1 keeping Ā = DL nonzero finite constant in
Eqn.(11). As Dk ≫ 1, sinc(qyD) → 0, except
(sinc(qyD) → 1) for two nontrivial cases, we haveφ = 0
(+ve x-axis) and φ = π (-ve x-axis). Thus,
aperture-scattering amplitude for the 1-D aperture, can be
obtained from Eqn.(11), as

f (a)(θ ,φ) =
e−iπ/2kĀ[1+ cos(θ )]

4π
sinc(kLsin(θ )/2)

×[δφ ,0+ δφ ,π ]. (12)
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3.1.3 Total scattering amplitude for the quantum scatterer
in the 1-D box

Total scattering amplitude for the scatterer in the 1-D box,
is given by the superposition of the contributions in
Eqns.(8) and (12), as

fn(θ ,φ) = f (p)n (θ ,φ)+ f (a)(θ ,φ)

= −
mgk

2π h̄2sinc(
kLsinθ cosφ

2
)

1

1− ( kLsinθ cosφ
2πn )2

−
ikĀ[1+ cos(θ )]

4π
sinc(

kLsinθ
2

)[δφ ,0+ δφ ,π ],(13)

and the total differential cross-section, as
Dn(θ ,φ) = | fn(θ ,φ)|2

=

∣

∣

∣

∣

aksinc(
πLsinθ cosφ

λ
)

1

1− (Lsinθ cosφ
nλ )2

+

iĀ[1+ cos(θ )]
2λ

sinc(
πLsinθ

λ
)[δφ ,0+ δφ ,π ]

∣

∣

∣

∣

2

,(14)

whereak = as/(1+ ikas). Total scattering cross-section, of
course, is given byσn =

∫ π
θ=0

∫ 2π
φ=0Dn(θ ,φ)sin(θ )dθdφ .

It is interesting to note from Eqn.(14), that, the
differential scattering cross-section due to the particleand
that due to the aperture are comparable ifĀ∼ λ |as| which
is possible in nano-length scale, in particular, for quantum
dots. In this situation, the diffraction pattern would be
greatly modified due to presence of even a single particle
in the 1-D box. We plot the total differential cross-section
(intensity distribution) in FIG.2 and in the inset of FIG.3
for relevant values of parameters for the scatterer(s) in the
1-D box. This intensity distribution is experimentally
observable. It is interesting to note, that, the sub-principal
maxima in FIG. 3 (inset) is occurring at
nλ sinθ cosφ = L, specially when integral multiple of the
wavelength matches with the length of the 1-D box for
the scattering to the perpendicular direction
(θ = π/2, φ = 0,π). From the positions of these maxima
in the plot one can determine the energy eigenstate

|ψ(p)
n > of the scatterer if occupies a pure state. For

forward scattering (θ = 0) and repulsive (as > 0) or
attractive (as < 0) interactions, height of the peak (or dip
along a particular line) of the intensity distribution would
be maximum (or minimum) according to the suitable
values ofas, k, andL as already have shown for 2-D box
in FIG. 1. The peak (or dip), of course, happens for
constructive (or destructive) interference, along some
particular directions, between the scattering due to the
aperture and that due to the scatterer in the aperture.
Thus, just by adjusting wavelength and length of the 1-D
box, one can determine s-wave scattering length of the
scattered particle.

3.1.4 Temperature dependence of the scattering amplitude

Let us now consider the situation, that, the scatterer in the
1-D box be a subsystem, and it is in thermal equilibrium

0.5 1.0 1.5
θ

20

40

60

80

D3(θ,0)

(a): For a scatterer in a 1-D single box

0.5 1.0 1.5
θ

5

10

15

20

DT(θ,0)

(c): For a scatterer in a 1-D single box

0.5 1.0 1.5
θ

100

200

300

D3,3(θ,0)

(d): For 2 scatterers in a 1-D double box

Fig. 2: Total differential scattering cross-section in units of nm2

for quantum scatterer(s) in 1-D box geometry with the secondas
3-D spherical polar plots. For all the figures, we have considered
the following: L = 10 nm,kL = 2πL/λ = 1.5, as/L = 1, Ā =
10× 40 nm2, and M = mass of87Rb. In FIG 2.(a): the dotted
line represents aperture-scattering (diffraction), the dashed line
represents particle-scattering, and the solid line, whichrepresents
superposition of the two, follows Eqn.(14). FIG 2.(b) represents
3-D spherical polar plot of the case in FIG.2 (a) more with theφ
dependence. In this figure, the top-face middle point corresponds
to θ = 0, and right-face middle point corresponds toφ = 0.
Particle-scattering part in the solid, dotted, and dashed lines in the
FIG 2.(c) follow from Eqn.(15) for T = 10−2K, T → 0, andT →
∞ respectively. In FIG2.(d): the dotted line represents aperture-
scattering, the dashed line represents particle-scattering, and the
solid line represents superposition of the two which followfrom
Eqn.(26) for n̄ j = δ j,3, N′ = 2 andb/L = 2. Vertically upward
direction in the figures representsz direction, the horizontal axis
(from the left to the right) representsx-axis, and the axis into the
page represents they-axis for the spherical polar plot.

with its surroundings at temperatureT. In this situation,
aperture-scattering amplitudef (a)(θ ,φ) would be
unchanged as it is. Modification would be there only in

the particle-scattering amplitude partf (p)n (θ ,φ). In this
situation, the scatterer would be in a mixed state except
for T → 0. In the mixed state, the energy eigenstate

|ψ(p)
n > has probabilityPn =

e−En/kBT

Z , whereEn =
π2h̄2n2

2ML2 ,

andZ = ∑∞
n=1e−En/kBT is the canonical partition function.

While for T → 0, we havePn = δn,1; for T → ∞, we have
Pn = constant ∀n. However, in thermal equilibrium,

c© 2017 NSP
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average scattering amplitude, due to the particle, would be

f̄ (p)T (θ ,φ) =
∞

∑
n=1

f (p)n (θ ,φ)Pn

= −aksinc(
πLsinθ cosφ

λ
)

∞

∑
n=1

Pn

1− (Lsinθ cosφ
nλ )2

,(15)

which, forT → 0, would become

f̄ (p)T→0(θ ,φ) =−aksinc(
πLsinθ cosφ

λ
)

1

1− (Lsinθ cosφ
λ )2

.(16)

On the other hand, forT → ∞, scatterer behaves
classically, so that, we can conveniently taken → ∞ in
Eqn.(8). Thus we can read Eqn.(15), for T → ∞, as

f̄ (p)T→∞(θ ,φ) =−ak sinc(
πLsinθ cosφ

λ
). (17)

Eventually, we can replacef (p)n (θ ,φ) by f̄ (p)T (θ ,φ) (as in
Eqn.(15)) everywhere, specially in Eqns.(13) and (14), to
get the temperature dependence of the average coherent
scattering amplitude and that of the differential scattering
cross-section respectively.

3.1.5 Quantum scattering for many quantum scatters in
the 1-D box

Let us now consider two noninteracting particle-scatters in
the 1-D box, and both of them interact similarly with the
incident ‘particle’ with the interacting potentialVint(r) =
g[δ 3

p(r−x1î)+δ 3
p(r−x2î)] wherex1î andx2î are positions

of the two scatterers in the box. If their positions are fixed,
then particle-scattering amplitude, for these two scatterers,
can be generalized from Eqn.(7), as

f (p)(θ ,φ) =−
mgk

2π h̄2 [e
−ik′·x1 î +e−ik′·x2 î ]. (18)

However, our interest is not in the fixed scatterers, rather
in two unfixed quantum scatterers. If the two scatterers are
distinguishable, then, their energy eigenstates can be given
by

ψ(p)
n, j (x1,x2) =

{

2
L cos(nπx1

L )cos( jπx2
L ) for n, j = odd

2
L sin(nπx1

L )sin( jπx2
L ) for n, j = even,

(19)

and, for oddn even j, and vice-versa,

ψ(p)
n, j (x1,x2) =

{

2
L cos(nπx1

L )sin( jπx2
L )

2
L sin(nπx1

L )cos( jπx2
L ). (19a)

Thus, contribution of the two distinguishable scatterers to
the particle-scattering amplitude would be generalized
from Eqn.(8) to

f (p)n, j (θ ,φ) = −
mgk

2π h̄2

∫ L/2

−L/2

∫ L/2

−L/2
[e−ik′·x1î +e−ik′·x2î ]

×|ψ(p)
n, j (x1,x2)|

2dx1dx2

= −
mgk

2π h̄2 sinc(qxL)

[

1

1− (qxL
nπ )2

+
1

1− (qxL
jπ )2

]

.(20)

0.5 1.0 1.5
θ

1000

2000

3000

4000

5000

DT→0
(p)

(θ,0)

For ideal Bose, Fermi , and classical scatterers in a 1- D box

0.5 1.0 1.5
θ

10

20

30

40

50

D3
(p)
(θ,0)

For a single scatterer

Fig. 3: Particle-scattering part of the differential scattering cross-
section in units of nm2 for N = 10 scatterers in 1-D box with
other parametersL = 250 nm,kL = 2πL/λ = 25, as/L = 0.04,
Ā = 250× 1

3 nm2 and M = mass of87Rb. Solid, dotted and
dashed lines correspond to Bose, Fermi and classical scatterers,
and represent modulus squared of right hand sides of Eqns. (23),
(24) and (25) respectively. Inset represents particle scattering part
of Eqn.(14) for the same parameters.

From Eqn.(20), we can generalize expression of the total
differential scattering cross-section in Eqn.(14) for the
two distinguishable scatters keeping the aperture
scattering part unchanged.

Above expression in Eqn.(20) can be similarly
generalized for many (N) identical and distinguishable
noninteracting scatterers in the 1-D box, as

f (p)n1,n2,...,nN(θ ,φ) =−
mgk

2π h̄2 sinc(qxL)
N

∑
j=1

1

1− ( qxL
n jπ )

2
. (21)

It is quite natural to expect, that, the expression in
Eqn.(21) would be different forN ideal Bose or Fermi
scatterers (of same spin component) in the 1-D box. But,
it is not the case here. Surprisingly, all the exchange terms
in the quantum many scatterers’ (bosons or fermions)

state (|ψ(p)
n1,n2,...,nN >) when integrated with the

exponentials, like those in Eqn.(20), are zero; e.g. for two
Bose or Fermi scatterers an integration with the exchange
terms would be
± 22

L2

∫ L/2
−L/2e−ik′·x1î cos[nπx1/L]cos[ jπx1/L]dx1×

∫ L/2
−L/2cos[nπx2/L]cos[ jπx2/L]dx2 = 0, due to

orthogonality of the single particle eigenstates for odd
n 6= j. Thus, Eqn.(21) is also the result of the
particle-scattering amplitude, forN Bose or Fermi

scatterers, having energyEn1,n2,...nN = ∑N
j=1

π2h̄2n2
j

2ML2 .
Eqn.(21) must not be the result for fermions (of the same
spin component) ifni = n j asni = n j is not allowed for
fermions.

However, in thermodynamic equilibrium with a heat
and particle bath at temperatureT and chemical potential
µ , energy distribution is different for different types
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(distinguishable, boson, fermion) of scatterers. Thus,
particle-scattering amplitude would be different for
identical bosons, fermions and distinguishable particlesin
thermodynamic equilibrium. Average particle-scattering
amplitude, for our system of interest, can now be
generalized from Eqn.(15), replacing one-scatterer
probability by average no. of scatterers ¯n j in

single-scatterer state|ψ(p)
j >, as

f̄ (p)T (θ ,φ) =
∞

∑
j=1

n̄ j f (p)j (θ ,φ)

= −aksinc(
πLsinθ cosφ

λ
)

∞

∑
j=1

n̄ j

1− (Lsinθ cosφ
jλ )2

,

(22)

where n̄ j =
1

e(Ej −µ)/kBT
∓1

for Bose (−) or Fermi (+)

scatterers, andE j = π2h̄2 j2

2ML2 . Interparticle interactions
among the scatterers would further perturbatively modify
Eqn.(22) for dilute case, and modification can be done by
recasting ¯n j keeping its form unaltered within the
Hartree-Fock approximation [8,13,14].

However, low and high temperature limits of Eqn.(22)
can be easily taken from Eqn.(21). For the Bose scatterers,
at T → 0 (and alsoµ → E1 for fixed N̄ = ∑ j n̄ j → N),
all the scatterers occupy the single-particle ground state
(n̄1 = N). Hence, for this case, Eqn.(22) would take the
form

f̄ (s,b)T→0(θ ,φ) =−Naksinc(
πLsinθ cosφ

λ
)

1

1− (Lsinθ cosφ
λ )2

.(23)

For Fermi scatterers, atT → 0 (and alsoµ = EF = π2h̄2N2

2ML2

for fixed N̄ → N), only the firstN single-particle states
from the ground state onward would be occupied, i.e. ¯n j =
1 for j ≤ N and n̄ j = 0 otherwise). Thus, for this case,
Eqn.(22) would take the form

f̄ (s, f )T→0(θ ,φ) =− aksinc(
πLsinθ cosφ

λ
)

N

∑
j=1

1

1− (Lsinθ cosφ
λ j )2

=− Naksinc(
πLsinθ cosφ

λ
)
(

1+
1

2N

−
Lsinθ cosφ

2Nλ
[

π cot(
πLsinθ cosφ

λ
)

+hn(N+
Lsinθ cosφ

λ
)

−hn(N−
Lsinθ cosφ

λ
)
])

, (24)

where hn(x) is a harmonic number, and
hn(N + x)− hn(N − x) vanishes as 1/N for largeN. On
the other hand, forT → ∞, the scatterers behave
classically, so that, we can conveniently take the limit
j → ∞ in Eqn.(21) as well as in Eqn.(22). Thus, for this
case, Eqn.(22) would take the form

f̄ (p,c)T→∞(θ ,φ) =−Naksinc(
πLsinθ cosφ

λ
). (25)

This equation is applicable for identical classical
scatterers. Eqns.(23), (24), and (25) clearly say how
scattering amplitude is different for different types of
scatterers in a 1-D box or single slit. We compare
particle-scattering part of the differential cross-section for
Bose, Fermi, and classical scatterers in FIG.3.

Above results can be generalized in the similar spirit
for quantum scatterers in many 1-D boxes, e.g. scatterers
in a double 1-D box, scatterers in a 1-D grating,etc by
further considering interference of the outgoing spherical
wave coming out of the 1-D boxes. We have shown such
a result for two (1+ 1) scatterers in a 1-D double box in
FIG. 2 (d) specially for the spacing (b4) of the two 1-D
identical boxes as twice of the length an individual box.
Temperature dependence of the total differential scattering
cross-section for ideal gas of scatterers inN′ 1-D identical
boxes, in an array with spacingb = jL ( j = 0,1,2,3...),
can be obtained by generalizing Eqns.(14) and (22), as

D̄T(θ ,φ) = | f̄ (p)T (θ ,φ)+ f (a)(θ ,φ)|2

=

∣

∣

∣

∣

aksinc(
πLsinθ cosφ

λ
)

[ ∞

∑
j=1

n̄ j

1− (Lsinθ cosφ
jλ )2

]

×

[

sin
(

N′ π(b+L)sin(θ)cos(φ)
λ

)

sin
(π(b+L)sin(θ)cos(φ)

λ
)

]

+
iĀ[1+ cos(θ )]

2λ
sinc(

πLsinθ
λ

)[δφ ,0+ δφ ,π ]

×

[

sin
(

N′ π(b+L)sin(θ)
λ

)

sin
(π(b+L)sin(θ)

λ
)

]
∣

∣

∣

∣

2

. (26)

Substitutingb = 0, N′ = 1 and n̄ j = δ j , j ′ , we get back
Eqn.(14) from the above for a single scatterer in a 1-D

box in the state|ψ(p)
j ′ >. SubstitutingN′ = 2, n̄ j = δ j , j ′ ,

we get result for two (1+ 1) scatterers in a double 1-D

box in the state|ψ(p)
j ′, j ′ >.

3.2 Quantum scatterers in a 2-D rectangular
box

In the previous subsections we have considered 1-D box
(single slit) of lengthL as a limiting case of a 2-D
rectangular box of lengthL along x-axis and heightD
alongy axis such thatL ≪ D andkD≫ 1 keeping areāA
of the aperture as nonzero finite constant. Let us now
consider the general case of the 2-D rectangular box
(rectangular aperture) of sizēA= LD and a scatterer in it.
The scatterer scatters the incident ‘particle’Aeikz, as
stated before, by the interacting potential
Vint(r) = gδ 3

p(r− r⊥), wherer⊥ = x0î + y0 ĵ is position of
the scatterer in the rectangular aperture such that
−L/2 < x0 < L/2 and −D/2 < y0 < D/2.

4 The spacing is considered from the middle points of the
individual boxes.

c© 2017 NSP
Natural Sciences Publishing Cor.



Quant. Phys. Lett.6, No. 1, 5-12 (2017) /www.naturalspublishing.com/Journals.asp 11

Particle-scattering amplitude, if the scatterer is fixed at
r = r⊥, can be generalized from Eqn.(7) as
f (p)(θ ,φ) = − mgk

2π h̄2 e−ik′·(x0î+y0 ĵ). Eigenstate of the
scatterer can be written as

ψ(p)
nx,ny(x0,y0) =

{

√

22

LD cos(nxπx0
L )cos(nyπy0

D )
√

22

LD sin(nxπx0
L )sin(nyπy0

D )
(27)

for nx,ny = 1,3,5, ... and nx,ny = 2,4,6, ... respectively,
and

ψ(p)
nx,ny(x0,y0) =

{

√

22

LD cos(nxπx0
L )sin(nyπy0

D )
√

22

LD sin(nxπx0
L )cos(nyπy0

D ) (27a)

for the odd-even combination. Energy eigenvalues
corresponding to the above states are given by
Enx,ny =

π2h̄2

2ML2 (n
2
x +n2

y). Thus, for the quantized motion of
the scatterer, particle-scattering amplitude can now be
generalized from Eqn.(8), as

f (p)nx,ny(θ ,φ) = −
mgk

2π h̄2

∫ L/2

−L/2

∫ D/2

−D/2
e−ik′·(x0 î+y0 ĵ)

×|ψ(p)
nx,ny(x0,y0)|

2dx0dy0

= −
mgk

2π h̄2

sinc(qxL)

1− ( qxL
nxπ )

2

sinc(qyD)

1− (
qyD
nyπ )

2
, (28)

whereqx = ksin(θ )cos(φ)/2 andqy = ksin(θ )sin(φ)/2
as defined before. Here we see thatqx andqy parts in the
particle-scattering amplitude appear in separable form as
motions of the scatterer are independent alongx and y
direction. On the other hand, aperture-scattering
amplitude (f (a)(θ ,φ)), for this case, has already been
calculated in Eqn.(11), so that, total differential
cross-section can be generalized from Eqn.(14), as

Dnx,ny(θ ,φ) = | f (p)nx,ny(θ ,φ)+ f (a)(θ ,φ)|2

=

∣

∣

∣

∣

ak
sinc(πLsinθ cosφ

λ )

1− (Lsinθ cosφ
nxλ )2

sinc(πDsinθ sinφ
λ )

1− (Dsinθ sinφ
nyλ )2

+
iĀ[1+ cos(θ )]

2λ
sinc(

πLsinθ cosφ
λ

)

×sinc(
πDsinθ sinφ

λ
)

∣

∣

∣

∣

2

. (29)

We plot the total differential cross-section in FIG.4 for
relevant values of parameters for the scatterer(s) in the
2-D box. We also show that the total forward scattering
cross-sectionDn,m(0,φ) becomes minimum in FIG.1 for
a different set of parameters. Thus by tuning the set of
parameters, e.g.k andL keeping others constant, we can
determine the value of s-wave scattering length from the
height of the maximum or minimum of the total
differential cross-section in the forward direction.

Temperature dependence and other aspects of the total
differential scattering cross-section for one and many
quantum scatterers in a rectangular aperture can be
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1.5

D3,3(θ,0)

(a): For a scatterer in a 2-D box
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0.30

DT(θ,0)

(c): For a scatterer in a 2-D box
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θ

1

2
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4
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7

D3,3;3,3(θ,0)

(d): For 2 scatterers in a 2-D double box

Fig. 4: Total differential scattering cross-section in units of nm2

for quantum scatterer(s) in 2-D box geometry for the parameters
L= 25 nm,D= 1/3 nm,kL= 2πL/λ = 25,as/L= 0.4, andM =
mass of87Rb. FIG4.(a) and (b) follow Eqn.(29). Solid, dotted,
and dashed lines in FIG.4 (c) correspond toT = 10−3 K, T → 0,
andT → ∞ respectively; andb/L = 2 for FIG.4 (d). All the plots
in FIG.4 correspond to the same plots drawn respectively in FIG.
2.

similarly obtained by multiplying they dependent part of
the scattering amplitude, like that in Eqn.(29), in the right
hand sides of Eqns.(15) to (25). Similar generalization is
also possible for scatterers in a 2-D double rectangular
slits, 2-D grating, etc. We have shown such a result for
two (1+ 1) scatterers in a 2-D double box in FIG.4
specially for spacing of the two 1-D identical boxes as
twice of the length an individual box. Temperature
dependence of the total differential scattering
cross-sections for 2-D cases can also be obtained in the
similar way as prescribed for the 1-D cases.

4 Conclusions

In this article, we have presented a quantum theory of
particle scattering for scatterer(s) in quantized bound
states in different types of box geometries, e.g.
scatterer(s) in a 1-D box, array of 1-D boxes, 2-D
rectangular box, etc. Particle scattering by the quantum
scatterer(s) in these types of restricted geometries
(apertures), which a general reader would find interesting
specially for the interference with the scattering by the
apertures, has not surprisingly been investigated before.
Due to the competition between the aperture-scattering
and particle-scattering, usual diffraction pattern can be
significantly changed as shown in FIGs.1, 2, and4. Due
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to the competition, in some situations intensity minimum
can appear even for the forward scattering (θ = 0) with
φ = 0 or π as shown in FIG.1, and in some situations,
back scattering can dominate over the forward scattering
as shown in FIG.4 (b). From the position of the
sub-principal maxima, as shown in FIGs.3 (inset) and4
(a), one can determine energy eigenstate of a scatterer in a
1-D or 2-D box, as explained in the last paragraph of the
section3.1.3.

Temperature dependence of differential scattering
cross-sections, for ideal gas of Bose and Fermi scatterers
in the box geometries, as obtained in Eqn. (22) and shown
in FIG. 3, was also not investigated before. Our results on
differential scattering cross-section would be important
for quantum scattering in nano-length scale, in particular,
for particle scattering by quantum dot(s), as also
explained in the last paragraph of the section3.1.3.
Temperature dependence of the differential scattering
cross-section, on the other hand, would be important
within 10−2K to 10−3K as clear from the FIGs.2 (c) and
4 (c).

All the calculations have been done within the scope
of general readers, as because, most of the calculations
involve Fourier transformations of the probability
amplitudes of the quantum scatterers. Calculations are
simple and straightforward, because we did not consider
interaction among the quantum scatterers. Simplification
also has happened due the Fermi-Huangδ 3

p [1]
interactions (among the ‘incident’ particle and the
scatterers), which although are easy to deal with have
huge applications in the field of ultra-cold atoms [8].

General readers can further study quantum scattering
for scatterers in harmonically trapped geometry [6] with
further consideration of weakly interacting scatterers
within perturbation formalism. They can also extend our
results on the box geometries for scatterers in other
geometries, e.g. circular geometry, cylindrical geometry,
etc.
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