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Abstract: This paper carries out the integration of the resonant nonlinear Schrödinger’s equation in presence of perturbation terms that
are considered with full nonlinearity. The three types of nonlinear media are studied. They are the cubic nonlinearity, power law and
log law nonlinearity. The semi-inverse variational principle is applied to extract the analytical soliton solution.
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1 Introduction

The nonlinear Schrödinger’s equation (NLSE) plays a
vital role in various areas of STEM disciplines [1–20]. It
appears in the study of nonlinear optics, plasma physics,
mathematical biosciences, quantum mechanics, fluid
dynamics and several other disciplines. The main feature
of the NLSE is that it supports soliton solution which
makes it very widely applicable. Solitons are stable
nonlinear waves or pulses and is the outcome of a delicate
balance between dispersion and nonlinearity. Therefore,
these solitons are the essential fabrics that dictate our
daily lives. For example, these waves are stable pulses
that transport information through optical fibers over
trans-continental and trans-oceanic distances in a matter
of a few femto-seconds. Other examples of solitons in our
daily lives are in Bose-Einstein condensates,α-helix
proteins in clinical sciences, nuclear physics and several
others.

Therefore it is imperative to focus deeply into the
integrability aspects of the NLSE that will reveal soliton
solutions. This paper will study the extended as well as
the generalized version of the NLSE with a few
Hamiltonian perturbation terms that are going to be taken
into consideration with full nonlinearity. There are three
types of nonlinearity that will be addressed. They are the
cubic NLSE, power law nonlinearity and the log law

nonlinearity. While in the first two types of nonlinearity, it
is the soliton solution that will be obtained, the third law
nonlinearity will give Gausson solutions. The
semi-inverse variational principle (SVP) will be
implemented to extract the soliton and Gausson solutions
to the perturbed resonant NLSE. This principle is
basically an inverse problem approach.

2 GOVERNING EQUATION

The perturbed resonant NLSE with full nonlinearity that is
going to studied in this paper by the SVP is given by

iqt +aqxx+b

( |q|xx

|q|
)

q+cF
(|q|2)q

= iαqx + iλ
(
|q|2mq

)
x
+ iν

(
|q|2m

)
x
q

+iθ |q|2mqx +σ
q∗xx

|q|2 q2 (1)

Here in (1), on the left hand side, the first term represents
the linear evolution of the soliton pulse. The coefficient of
a is the group velocity dispersion while the coefficient of
c is the nonlinear term. The coefficient ofb is the
quantum or Bohm potential that appears in the context of
chiral solitons in quantum Hall effect [5,7,10,13]. It is
also seen in the context of Madelung fluid in quantum
mechanics [17]. For the perturbation terms on the right
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hand side, the coefficient ofα is the inter-modal
dispersion that shows up in nonlinear optics. Then, the
coefficient of λ is the self-steepening term that is also
studied in nonlinear optics in order to avoid the formation
of shock waves during soliton transmission through
optical fibers. The coefficients ofν and θ are due to
nonlinear dispersions. Finally, theσ -term is from plasma
physics for solitons in relativistic plasmas [1,9,14]. The
index m represents the full nonlinearity parameter. The
independent variables arex and t that represent spatial
and temporal variables respectively. The dependent
variable isq(x, t) that is the complex valued wave profile
for the perturbed resonant NLSE. The functionalF
represents the general form of nonlinear media and
F

(|q|2)q is k times continuously differentiable, so that

F
(|q|2)q∈

∞⋃

m,n=1

Ck(
(−n,n)× (−m,m);R2) . (2)

In order to look into a brief history of this problem, it
must be noted that several special cases of this problem
have been studied in the past. In particular, the special
case with b = σ = θ = 0, for cubic and power law
nonlinearity, was covered in 2009 [12,16]. Additionally,
the case of log-law nonlinearity with the same special
values of the parameters was addressed in 2011 [4]. The
case with right hand side equation set to zero but with
chiral nonlinearity was addressed on several occasions,
namely during 2011 and 2012 [5,7,10]. The exact bright
and dark soliton solutions by the ansatz method was also
obtained in 2012 [17]. Thus, this paper is thus going to
address equation (1) on the most generalized setting so
far, and the tool of integration is going to be the SVP.

2.1 SEMI-INVERSE VARIATIONAL
PRINCIPLE

In order to apply the SVP to (1), the starting hypothesis is
the traveling wave solution that is given by

q(x, t) = g(s)eiφ , (3)

whereg(s) represents the shape of the wave profile and

s= x−vt, (4)

with v being the velocity of the wave. The phase
componentφ(x, t) is defined as

φ =−κx+ωt +σ0. (5)

where κ represents the soliton frequency andω is the
soliton wave number whileσ0 represent the phase
constant. Therefore, substituting this hypothesis into (1)
and decomposing into real and imaginary parts yield the
following two equations

(a+b−σ)g′′− (
ω−ακ +aκ2)g

− (λ +θ)κg2m+1 +cF
(
g2)g = 0 (6)

and

(v+2aκ +α)+{(2m+1)λ +2mν +θ}g2m = 0 (7)

respectively. Setting the coefficients of the linearly
independent functions in (7) to zero yields the soliton
velocity as

v =−α−2aκ (8)

and the constraint conditions between the parameters is
given by

(2m+1)λ +2mν +θ = 0 (9)

It needs to be noted that the velocity of the soliton as well
as the constraint condition holds irrespective of the type of
nonlinearity in question. Now, multiplying both sides of
the real part equation (6) byg′ and integrating leads to

(a+b−σ)
(
g′

)2− (
ω−ακ +aκ2)g2

− (λ +θ)κ
g2m+2

m+1
+2c

∫
F

(
g2)gdg= K (10)

where K represents the integration constant. Then, the
stationary integralJ is defined to be

J =
∫ ∞

−∞
Kds (11)

which therefore is

J =
∫ ∞

−∞

[
(a+b−σ)

(
g′

)2− (
ω−ακ +aκ2)g2

− (λ +θ)κ
g2m+2

m+1
+2c

∫
F

(
g2)gdg

]
ds (12)

Finally, the 1-soliton solution hypothesis is taken to be

g(s) = A f [sech(Bs)] , (13)

or

g(s) = Ae−B2s2
(14)

whereA is the amplitude andB is the inverse width of
the soliton or Gausson. The functionalf in (13) depends
on cubic or power law nonlinearity. Then SVP states that
the amplitude can be retrieved from the coupled system of
equations given by

∂J
∂A

= 0 (15)

and
∂J
∂B

= 0. (16)

3 APPLICATIONS

The SVP that was developed in the previous section will
now be applied to the three types of nonlinearity that will
be detailed in the following three subsections. The
explicit value of the soliton amplitudeA and the inverse
width B are going to be determined for each of these
nonlinear cases.
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3.1 CUBIC NONLINEARITY

In this case,F(u) = u and this is commonly referred to as
the cubic Schr̈odinger’s equation and in the context of
nonlinear optics this is referred to Kerr law nonlinearity.
This type of cubic NLSE is very commonly studied in
plasma physics, solitons due toα-helix proteins in
mathematical biosciences, deep water waves in fluid
dynamics as well as nonlinear optics. With cubic
nonlinearity, the governing equation (1) reduces to

iqt +aqxx+b

( |q|xx

|q|
)

q+c|q|2q

= iαqx + iλ
(
|q|2mq

)
x
+ iν

(
|q|2m

)
x
q

+ iθ |q|2mqx +σ
q∗xx

|q|2 q2 (17)

so that the corresponding stationary integral is

J =
∫ ∞

−∞

[
(a+b−σ)

(
g′

)2− (
ω−ακ +aκ2)g2

]
ds

−
∫ ∞

−∞

[
(λ +θ)κ

g2m+2

m+1
+

cg4

2

]
ds (18)

For the cubic NLSE, the 1-soliton solution hypothesis is
[17]

g(s) = Asech(Bs) (19)

Substituting this hypothesis into (18) and carrying out the
integration reduces the stationary integral to

J =
2
3
(a+b−σ)A2B−2

(
ω−ακ +aκ2) A2

B

− 2m(λ +θ)κ
(m+1)(2m+1)

A2m+2

B

Γ (m)Γ
(

1
2

)

Γ
(
m+ 1

2

) +
2cA4

3B
(20)

Then equations (15) and (16) in this case, after
simplification, are respectively given by

(a+b−σ)B2− (
ω−ακ +aκ2)

− 3m(λ +θ)κA2m

(2m+1)
Γ (m)Γ

(
1
2

)

Γ
(
m+ 1

2

) +2cA2 = 0 (21)

(a+b−σ)B2 +3
(
ω−ακ +aκ2)

+
3m(λ +θ)κA2m

(m+1)(2m+1)
Γ (m)Γ

(
1
2

)

Γ
(
m+ 1

2

) −cA2 = 0 (22)

Solving the coupled system of equations (21) and (22)
leads to the polynomial equation for the amplitudeA as

3m(m+2)(λ +θ)κA2m

(m+1)(2m+1)
Γ (m)Γ

(
1
2

)

Γ
(
m+ 1

2

) −3cA2

+ 4
(
ω−ακ +aκ2) = 0 (23)

From (23), it can be easily seen that the soliton amplitude
A can be explicitely obtained providedm= 1, 2 or 3. Once

the amplitudeA is available, the widthB can be recovered
from the realation

B =
1

2
√

a+b−σ

[
3m(3m+2)(λ +θ)κA2m

(m+1)(2m+1)
Γ (m)Γ

(
1
2

)

Γ
(
m+ 1

2

) −5cA2

] 1
2

(24)

that can be obtained from (21) and (22). Equation (24)
immediately poses a restriction

a+b > σ (25)

Therefore the 1-soliton solution to (17) is given by

q(x, t) = Asech[B(x−vt)]ei(−κx+ωt+σ0) (26)

where the amplitudeA and the widthB are respectively
given by (23) and (24) and the velocity of the soliton is
given by (8). This solution is valid as long as the constraint
conditions given by (9) and (25) hold.

3.2 POWER LAW NONLINEARITY

In this subsection, the perturbed resonant NLSE will be
studied with power law nonlinearity. In this case,
F(u) = un. Power law nonlinearity is also studied in the
context of nonlinear optics where special case of optical
fibers are designed with soliton transmission in mind [2].
In this case, equation (1) modifies to

iqt +aqxx+b

( |q|xx

|q|
)

q+c|q|2nq

= iαqx + iλ
(
|q|2mq

)
x
+ iν

(
|q|2m

)
x
q

+ iθ |q|2mqx +σ
q∗xx

|q|2 q2 (27)

where the restriction is

0 < n < 2 (28)

to avoid soliton collapse and in particular

n 6= 2 (29)

in order to eliminate self-focussing singularity in nonlinear
optics [11]. This leads to the stationary integral being

J =
∫ ∞

−∞

[
(a+b−σ)

(
g′

)2− (
ω−ακ +aκ2)g2

]
ds

−
∫ ∞

−∞

[
(λ +θ)κ

g2m+2

m+1
+

cg2n+2

n+1

]
ds (30)

For power law nonlinearity, the 1-soliton solution ansatz is
[17]

g(s) = Asech
1
n (Bs) (31)

Substituting this hypothesis into (30) and carrying out the
integration reduces the stationary integral to

J =
{

a+b−σ
n(n+2)

A2B− (
ω−ακ +aκ2) A2

B

+
2c

(n+1)(n+2)
A2n+2

B

}
Γ

(
1
n

)
Γ

(
1
2

)

Γ
(

1
n + 1

2

)

− (λ +θ)κ
m+1

A2m+2

B

Γ
(

m+1
n

)
Γ

(
1
2

)

Γ
(

m+1
n + 1

2

) (32)
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Then equations (15) and (16) in this case, after
simplification, are respectively given by

a+b−σ
n(n+2)

B2− (
ω−ακ +aκ2)

− (λ +θ)κA2mΓ
(

m+1
n

)
Γ

(
1
n + 1

2

)

Γ
(

1
n

)
Γ

(
m+1

n + 1
2

) +
2c

n+2
A2n = 0 (33)

and
a+b−σ
n(n+2)

B2 +
(
ω−ακ +aκ2)

+
(λ +θ)κ

m+1
A2mΓ

(
m+1

n

)
Γ

(
1
n + 1

2

)

Γ
(

1
n

)
Γ

(
m+1

n + 1
2

)

− 2c
(n+1)(n+2)

A2n = 0 (34)

Equations (33) and (34) leads to the polynomial equation
for the soliton amplitudeA as

(m+2)(λ +θ)κ
2(m+1)

A2mΓ
(

m+1
n

)
Γ

(
1
n + 1

2

)

Γ
(

1
n

)
Γ

(
m+1

n + 1
2

)

− c
n+1

A2n +
(
ω−ακ +aκ2) = 0 (35)

Again from (32) and (33), the soliton width widthB can
be recovered from

B =
[
F

{
m(λ +θ)κ

m+1
A2mG− 2nc

(n+1)(n+2)
A2n

}] 1
2

(36)

whereF = n(n+2)
2(a+b−σ) , G =

Γ (m+1
n )Γ ( 1

n+ 1
2)

Γ ( 1
n)Γ (m+1

n + 1
2)

.

Therefore, the 1-soliton solution to (27) is given by

q(x, t) = Asech
1
n [B(x−vt)]ei(−κx+ωt+σ0) (37)

where the amplitudeA and the widthB are respectively
given by (35) and (36) and the velocity of the soliton is still
given by (8). This solution is valid as long as the constraint
conditions given by (9) and (25) hold.

4 LOG LAW NONLINEARITY

In the case of log law nonlinearity,F(u) = lnu, and thus
the perturbed resonant NLSE is given by

iqt +aqxx+b

( |q|xx

|q|
)

q+2cqlnq

= iαqx + iλ
(
|q|2mq

)
x
+ iν

(
|q|2m

)
x
q

+ iθ |q|2mqx +σ
q∗xx

|q|2 q2 (38)

so that the stationary integral in this case transforms to

J =
∫ ∞

−∞

[
(a+b−σ)

(
g′

)2− (
ω−ακ +aκ2)g2

− (λ +θ)κ
g2m+2

m+1
+cg2 (2lng−1)

]
ds (39)

Now, choosing the Gausson ansatz given by (14), the
stationary integral (39) reduces to

J = 2(a+b−σ)A2B
√

π− (
ω−ακ +aκ2) A2

B

√
π

− (λ +θ)κA2m+2

4
√

2(m+1)
5
2

√
π +

√
2cA2

4B
(4lnA−3)

√
π (40)

Then, equation (15) and (16), in this case gives

2(a+b−σ)B2√π− (
ω−ακ +aκ2)

− (λ +θ)κA2m

4
√

2(m+1)
3
2

+
√

2clnA =
√

2c
4

(41)

and

2(a+b−σ)B2√π +
(
ω−ακ +aκ2)

− (λ +θ)κA2m

4
√

2(m+1)
5
2

−
√

2clnA =−3
√

2c
4

(42)

respectively. Solving this coupled system yields the
amplitude of the Gausson as

A = exp

{
− 1

2m
W

[
−2mc1

c2
exp

(
2mc3

c2

)]
+

c3

c2

}
(43)

where

c1 =
(λ +θ)κ

4
√

2(m+1)
5
2

(44)

c2 = 2
√

2c (45)

c3 = 2
(
ω−ακ +aκ2)+

√
2c (46)

andW(x) is the Lambert’sW-function that is defined to be
the inverse of

f (x) = xex (47)

Equation (43) introduces the constraint condition, from the
definition of Lambert’s function, as

exp

{
c2 +2mc3

c2

}
≤ c2

2mc1
(48)

Once the amplitude of the Gausson is available, the width
can be obtained from

B =
1

2
√

a+b−σ

[
(m+2)(λ +θ)κA2m

4
√

2(m+1)
5
2

− 2
√

2c
4

] 1
2

(49)

which can be recovered from (41) and (42). Hence, finally,
the Gausson solution of (38) is given by

q(x, t) = Ae−B2(x−vt)2
ei(−κx+ωt+σ0) (50)

where the Gausson amplitude and the inverse width can be
obtained from (43) and (49) respectively. Besides (25), the
additional constraint condition in this case is given by (48)
that must also hold in order for the Gaussons to exist. The
velocity is again seen in (8) along with the restriction (9).
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5 CONCLUSIONS

This paper addressed the perturbed resonant NLSE where
the perturbation terms are considered with full
nonlinearity. The SVP is applied to carry out the
integration of the perturbed resonant NLSE. Thus the
soliton solutions were obtained. There are three types of
nonlinearity that are discussed in this paper. They are the
cubic nonlinearity, power-law nonlinearity and finally the
log law nonlinearity. This SVP is essentially an inverse
problem mechanism that integrates the perturbed NLSE.
The solutions are obtained and the soliton parameters are
in terms of gamma functions and Lambert’sW-function.
Several constraint conditions automatically fell out from
the mathematical structure of the solution parameters.

This paper encompassed several studies that were
conducted in the past. The special cases of the results of
the paper were already obtained before as indicated.
Thus, the application of the NLSE in nonlinear optics,
plasma physics, chiral solitons in nuclear physics and
mathematical biosciences are all collectively studied in
this paper. Therefore, these generalized results are going
to serve as the starting point for further investigation of
the NLSE in this direction. Thus, the future of this area of
research stands on a strong footing. One immediate
expansion of this research is to look into several other
forms of nonlinear media, such as the parabolic law
nonlinearity, polynomial law nonlinearity, dual and triple
power law nonlinearity as well as the saturable law
nonlinearity, just to name a few. This is just the tip of the
iceberg.
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