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Abstract: This paper carries out the integration of the resonant nonlineab8iciger’s equation in presence of perturbation terms that
are considered with full nonlinearity. The three types of nonlinear media are studied. They are the cubic nonlinearity, power law and
log law nonlinearity. The semi-inverse variational principle is applied to extract the analytical soliton solution.
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1 Introduction nonlinearity. While in the first two types of nonlinearity, it
is the soliton solution that will be obtained, the third law

Th l Sclidi , ti NLSE) ol nonl!n_earlty W|II_ give Ga}us_son solutlons._ The
e noniinear Sclidingers equation ( ) plays a semi-inverse variational principle (SVP) will be

vital role in various areas of STEM disciplines [1-20]. It . | tod t tract th lit 4G luti
appears in the study of nonlinear optics, plasma physics!TP!eémentea to extract the Soiiton and >ausson solutions

mathematical biosciences, quantum mechanics, quii)0 Fhe" perturbed res%rrant NLSE'hThiS principle is
dynamics and several other disciplines. The main featur&@S!cally an INnverse probiem approach.

of the NLSE is that it supports soliton solution which

makes it very widely applicable. Solitons are stable

nonlinear waves or pulses and is the outcome of a delicat¢ GOVERNING EQUATION

balance between dispersion and nonlinearity. Therefore

these solitons are the essential fabrics that dictate oufN€ Perturbed resonant NLSE with full nonlinearity that is

daily lives. For example, these waves are stable pulse§°ing to studied in this paper by the SVP is given by
that transport information through optical fibers over (o] 2
trans-continental and trans-oceanic distances in a matter 'Ot +aq><><+b( ql )q+cF (lal)a
of a few femto-seconds. Other examples of solitons in our

daily lives are in Bose-Einstein condensateshelix = = iagx+iA (Iqlzmq) +iv (Iqlzm) q
proteins in clinical sciences, nuclear physics and several q*x X
others. +i6|q\2qu+aﬁq2 (1)

Therefore it is imperative to focus deeply into the Here in (1), on the left hand side, the first term represents
integrability aspects of the NLSE that will reveal soliton the linear evolution of the soliton pulse. The coefficient of
solutions. This paper will study the extended as well asa is the group velocity dispersion while the coefficient of
the generalized version of the NLSE with a few c is the nonlinear term. The coefficient df is the
Hamiltonian perturbation terms that are going to be takenquantum or Bohm potential that appears in the context of
into consideration with full nonlinearity. There are three chiral solitons in quantum Hall effect [5,7,10,13]. It is
types of nonlinearity that will be addressed. They are thealso seen in the context of Madelung fluid in quantum
cubic NLSE, power law nonlinearity and the log law mechanics [17]. For the perturbation terms on the right
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hand side, the coefficient ofx is the inter-modal and
dispersion that shows up in nonlinear optics. Then, the om
coefficient of A is the self-steepening term that is also (v+2aK +a) +{(2m+1)A +2mv + 8} g™ =0 (7)
studied in nonlinear optics in order to avoid the formation respectively. Setting the coefficients of the linearly
of shock waves during soliton transmission throughindependent functions in (7) to zero yields the soliton
optical fibers. The coefficients of and 8 are due to  velocity as

nonlinear dispersions. Finally, theterm is from plasma V= —a — 2aK @8)
physics for solitons in relativistic plasmas [1,9,14]. The
index m represents the full nonlinearity parameter. The aﬂd the constraint conditions between the parameters is
independent variables areandt that represent spatial given by

and temporal variables respectively. The dependenipm 1A +2mv+6 =0 9)
variable isq(x,t) that is the complex valued wave profile ] )

for the perturbed resonant NLSE. The functiorial It needs to be noted that the velocity of the soliton as well
represents the general form of nonlinear media and®S the constraint condition holds irrespective of the type of

F (/g12) qis k times continuously differentiable, so that nonlinearity in question. Now, multiplying both sides of
the real part equation (6) iy and integrating leads to

F(la?)ae [J C((=nn)x (—mm);R?). ) (a+b—0)(¢)° — (w— ak +ak?) ¢
mn=1 g2m—§—2 2
In order to look into a brief history of this problem, it — (A +0)K m 1 +2C/F (g°) gdg=K (10)

must be noted that several special cases of this proble
have been studied in the past. In particular, the specia]
case withb = 0 = 8 = 0, for cubic and power law
nonlinearity, was covered in 2009 [12,16]. Additionally, j _ /°° Kds (11)
the case of log-law nonlinearity with the same special —o0

values of the parameters was addressed in 2011 [4]. Th@nhich therefore is

here K represents the integration constant. Then, the
tationary integral is defined to be

case with right hand side equation set to zero but with ® )

chiral nonlinearity was addressed on several occasions] = {(a—kb— 0)(9) — (w—ak+ak?) g?

namely during 2011 and 2012 [5,7,10]. The exact bright - mi2

and dark soliton solutions by the ansatz method was also g / 2

obtained in 2012 [17]. Thus, this paper is thus going to (A+6)k m+1 tcfF (g )gdg} ds (12)

address equation (1) on the most generalized setting sp: enli . .

far, and the tool of integration is going to be the SVP. ﬁlnally, the 1-soliton solution hypothesis is taken to be
g(s) = Af [seci{Bs)], (13)
or

2.1 SEMI-INVERSE VARIATIONAL 9(s) _ A B (14)

PRINCIPLE _ . . . .
whereA is the amplitude and® is the inverse width of

In order to apply the SVP to (1), the starting hypothesis isthe soliton or Gausson. The functioniain (13) depends

the traveling wave solution that is given by on cubic or power law nonlinearity. Then SVP states that

_ the amplitude can be retrieved from the coupled system of
q(x,t) = g(s)e?, (3)  equations given by
whereg(s) represents the shape of the wave profile and  9J -0 (15)
S=X—W, (4) oA

and

with v being the velocity of the wave. The phase j;
componentp(x,t) is defined as = (16)

oB

@ = —KX+ wt + 0. (5)

where Kk represents the soliton frequency aadis the 3 APPLICATIONS
soliton wave number whilegy represent the phase

constant. Therefore, substituting this hypothesis into (1)The SVP that was developed in the previous section will
and decomposing into real and imaginary parts yield thenow be applied to the three types of nonlinearity that will
following two equations be detailed in the following three subsections. The
explicit value of the soliton amplitudA and the inverse
width B are going to be determined for each of these
— (A +0)kg*™ ™ +cF (g?) g=0 (6)  nonlinear cases.

(a+b—0)g’ - (w—ak +ak?)g
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3.1 CUBIC NONLINEARITY

In this caseF (u) = u and this is commonly referred to as
the cubic Schidinger's equation and in the context of
nonlinear optics this is referred to Kerr law nonlinearity.
This type of cubic NLSE is very commonly studied in
plasma physics, solitons due ta-helix proteins in

mathematical biosciences, deep water waves in fluid

dynamics as well as nonlinear optics. With cubic
nonlinearity, the governing equation (1) reduces to

|Cllxx
[¢]

= iag+iA (") +iv (1aP") g

iqt+aqxx+b( ) q+clal®q

*
Oxx 2

+ i6|q|2qu+ UM?Q (17)

so that the corresponding stationary integral is
J= / [(a+ b—0)(¢)° - (w—ak +ax?) gz} ds
cg'

2m--2
g9 g
T

a /_0; {()\ KT

ds (18)

the amplitudeéA is available, the widtlB can be recovered

from the realation
1
2

! 3m(3m+2)(A + 8)kA2m I (m)T (3) 2
B—zm (m+1)(2m+1) r(m+3) ~SoATi2d)

that can be obtained from (21) and (22). Equation (24)
immediately poses a restriction

at+b>o (25)
Therefore the 1-soliton solution to (17) is given by

a(x,t) = AsechB(x — vt)]g(-Kx+wt+0o) (26)
where the amplitudé and the widthB are respectively
given by (23) and (24) and the velocity of the soliton is

given by (8). This solution is valid as long as the constraint
conditions given by (9) and (25) hold.

3.2 POWER LAW NONLINEARITY

In this subsection, the perturbed resonant NLSE will be
studied with power law nonlinearity. In this case,
F(u) = u". Power law nonlinearity is also studied in the
context of nonlinear optics where special case of optical
fibers are designed with soliton transmission in mind [2].

For the cubic NLSE, the 1-soliton solution hypothesis is !N this case, equation (1) modifies to

(17]

g(s) = Asech{Bs) (19)

_ : 2m : 2m
Substituting this hypothesis into (18) and carrying out the — lag+iA (|Q| q)x+|v (|q| )Xq

integration reduces the stationary integral to

2 2 o A?
J=3(@t+b-o)A B—2(w—ak+ax )E
_ 2mA+6)k AP™2T (M) (3) | 2cA (20)
(m+1)(2m+1) B T (m+3) 3B

Then equations (15) and (16) in this case, aftern7'é2

simplification, are respectively given by

(a+b—0)B?— (w—ak +ak?)

_3MAFOKATT (M (5) |
D T ok +2cA?=0 (21)
(a+b—0)B%+3(w—ak+ax?)
M+ ORA™ (M (3) o (22)

(m+1)(2m+1) T (m+3)

ic +aGoc+b ( |T(|;|X) q-+cla*'q
+ ielqlzquwlleéqz (27)
where the restriction is
O<n<?2 (28)
to avoid soliton collapse and in particular
(29)

in order to eliminate self-focussing singularity in nonlinear
optics [11]. This leads to the stationary integral being

J :/0; {(a+b—a) (¢)*- (w—aK+aK2)g2] ds

o0 092n+2
a /Hx, {(A TR Tt T } ds

For power law nonlinearity, the 1-soliton solution ansatz is
[17]

g(s) = Asechr (Bs) (31)
Substituting this hypothesis into (30) and carrying out the

2m+2
g

+

(30)

Solving the coupled system of equations (21) and (22)integration reduces the stationary integral to

leads to the polynomial equation for the amplituslas

atb-g ’B— (w— 0K +ak?)

{

3m(m+2)(A + KA (M) (3) ep? n(n+2) B
(Mm+1)@m+1) T (m+3) N 2c A2“+2} rdr)
+4(w—ak+ak?) =0 (23) (n+1)(n+2) B [ r(i+1)
From (23), it can be easily seen that the soliton amplitude (A +8)k A2™2 1 (TH) [ (3) (32)
A can be explicitely obtained provided= 1, 2 or 3. Once m+1 B (Ml
(@© 2013 NSP
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Then equations (15) and (16) in this case, afterNow, choosing the Gausson ansatz given by (14), the

simplification, are respectively given by stationary integral (39) reduces to
at+b-o_, 2 A2
BZ— _ _ _ 2 _ _ 2\ ™
GER) (w—ak +ak?) J=2(a+b-0)ABy/— (w— aKk +aK®) B\/ﬁ
r(my i1 A 4 )k A2m+2 CA2
~ (A +@)kA2™ (1" ) mﬁff i) 2 o _g (33 - AEOKATE o VA nA-3)vE (40)
rr(fr+z) n+2 4v/2(m+1)3 48
and Then, equation (15) and (16), in this case gives
a?nt:__Z)UBZ (w—ak+ak?) 2(a+b—0)B?V/I— (w—ak +ak?)
A+ 0)kAZ™ C
A+0)k ol (B (243) LJr\fl AoV (41)
meL T TR (R ) /2Am+ 13
_ 2c A0 (34) and
(n+H(n+2)° 2(a+b—0)B?V/TT+ (w— ak +ak?)
Equations (33) and (34) leads to the polynomial equatlon (A + 9)KA2m 3v2¢
for the soliton amplitudé as S —V2cInA= - (42)
m+1 1,1 4\f(m+ 1)
(m+2)(A + Q)KAZmr (IT) r E+ E) respectively. Solving this coupled system yields the
2(m+1) rHr(=ty3) amplitude of the Gausson as
€ o _ 2\ _
n+1A + (w—ak+ak?) =0 (35) A exp{—;nw {_Zr:cl eXp(zT%)}Jrzs} 43)
Again from (32) and (33), the soliton width widt can 2 2 2
be recovered from where
1 A+0)k
M(A 4+ 6)K yom 2nc on | |2 CL= _ATOK (44)
B=|F{ OGN g
[ { m+1 S T DmT2) (36) 4V2(m+1)?
_ 42 o F()r(+3) -
whereF = ;20 55, G= ¢ Tt ) co=2V2¢ (45)
Therefore, the 1-soliton solution to (27) is given b
(@Nisg Y cs=2(w—ak+ak?) +v2c (46)

_ 1 _ i (—KX+wt+0p)
a(xt) = Asecht [B(x—vi)le (37) andW(x) is the Lambert'®V/-function that is defined to be
where the amplitudé and the widthB are respectively the inverse of
given by (35) and (36) and the velocity of the soliton is still

given by (8). This solution is valid as long as the constraint F(x) = xe (47)
conditions given by (9) and (25) hold. Equation (43) introduces the constraint condition, from the
definition of Lambert’s function, as
4 LOG LAW NONLINEARITY exp{ CZ“”‘C?’} < © (48)
(03 2meg
In the case of log law nonlinearit¥, (u) = Inu, and thus  Once the amplitude of the Gausson is available, the width
the perturbed resonant NLSE is given by can be obtained from
1
iqt+aq,<x+b<|q(|;|(x> q+2cqing B 1 (M+2)(A +6)KA™  2V/2c|* 49)
: : 2m : 2m 2vat+b-o 4\/§(m_|_1)% 4
—iagc+iA (™) +iv (1a"") g | |
X which can be recovered from (41) and (42). Hence, finally,
Lig ‘q|2m qx; ¢ (38) the Gausson solution of (38) is given by
. [¢] ' o A1) = A B0 W2 (—rocratroo) (50)
so that the stationary integral in this case transforms to ) ) )
- where the Gausson amplitude and the inverse width can be
J= / [(a+ b— o) (g’)z —(w—ak+ aK2) o obtained from (43) and (49) respectively. Besides (25), the
—o - additional constraint condition in this case is given by (48)
gmt that must also hold in order for the Gaussons to exist. The
— A0k + o’ (2Ing-1) | ds (39 velocity is again seen in (8) along with the restriction (9).
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5 CONCLUSIONS method”.Romanian Reports in Physicgolume 64, Number
2, 357-366. (2012).
This paper addressed the perturbed resonant NLSE whel€] Z. Z. Ganji, D. D. Ganji & M. Esmaeilpour. “Study
the perturbation terms are considered with full  on nonlinear Jeffery-Hamel flow by He's semi-analytical
nonlinearity. The SVP is applied to carry out the  methods and comparison with numerical resul@mputers
integration of the perturbed resonant NLSE. Thus the and Mathematics with Application¥/olume 58, Issues 11-
soliton solutions were obtained. There are three types of _12,2107-2116. (2009). _ _ _
nonlinearity that are discussed in this paper. They are thé’] L. Hadzievski, M. S. Jovanovic, M. M. Skoric & K. Mima.
cubic nonlinearity, power-law nonlinearity and finally the Stability of one-dimensional electromagnetic solitons in
log law nonlinearity. This SVP is essentially an inverse rl\?latl\ésng I;:gé gg"?;"agcigys'cs of Plasmasvolume 9,
problem mechanism that integrates the perturbed NLSE{felO]:mG ejor;npillai- A Yi-l(girim 8)L'A Biswas. "Chiral solitons
The solutions are obtained and the soliton parameters a o L . : - i
in terms of gamma functions and Lambel\ﬂzfunction with Bohm potential by Lie group analysis and traveling
. " . ’ wave hypothesis"Romanian Journal of Physic¥olume 57,
Several constraint conditions automatically fell out from Numbe);sp 3-4, 545-554. (2012). 4
the mathematical structure of the solution parameters. [11] R. Kohl A.’Biswas D. Milovic, & E. Zerrad. “Optical
This paper encompassed several studies that were gojiton perturbation in a non-Kerr law mediaQptics and
conducted in the past. The special cases of the results of | aser Technologyolume 40, Issue 4, 647-662. (2008).

the paper were already obtained before as indicated12] R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Optical
Thus, the application of the NLSE in nonlinear optics,  solitons by He's variational principle in a non-Kerr law
plasma physics, chiral solitons in nuclear physics and media”. Journal of Infrared, Millimeter and Terrahertz
mathematical biosciences are all collectively studied in  WavesVolume 30, Number 5, 526-537. (2009).

this paper. Therefore, these generalized results are goind3] J-H. Lee, C-K. Lin, O. K. Pashev. “Shock waves, chiral
to serve as the starting point for further investigation of  solitons and semi-classical limit of one-dimensional anyons”.
the NLSE in this direction. Thus, the future of this area of = Chaos, Solitons & FractalsVolume 19, Issue 1, 109-128.
research stands on a strong footing. One immediate (2004).

expansion of this research is to look into several otherl14] A. Mancic, L. Hadzievski, & M. M. Skoric. “Dynamics of
forms of nonlinear media, such as the parabolic law electromagnetic solitons in relativistic plasmaPBhysics of
nonlinearity, polynomial law nonlinearity, dual and triple __PlasmasVolume 13.052309. (2006). -
power law nonlinearity as well as the saturable law [15] S.  Shwetanshumala. “Temporal solitons of modified

nonlinearity, just to name a few. This is just the tip of the ~ COMPlex  Ginzburg-Landau ~ Equation”. Progress i
iceberg Y] J P Electromagnetic Research Lettersvolume 3, 17-24.

(2008).

[16] E. Topkara, D. Milovic, A. K. Sarma, F. Majid & A.
Biswas. "A study of optical solitons with Kerr and power law
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