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Abstract: Several methods solve linear fractional partial diffei@néquations. In this paper, it is presented a fractionatleh@f

the liquid-film mass transfer equation to compare numesodition between fractional and simple model of the equafidhen the
approximate of the generalized differential transformhodtis compared with the exact solution of the equation iaget orders.
Furthermore, the approximates will be obtained in the foaet orders by limiting the intervals of the coefficient avatiables. The
results show that we can achieve the same result with thegeofractional model and the method has a high accuracy.
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1 Introduction

In recent years, the study of stability and numerical mestafdractional differential equations by using various hosts
is helped to improve engineering and physit[3,4,5,6,7,8,9]. There are definitions of the fractional derivative and
integral, such as Grunwald- Letnikov, Riemann-LiouvilledaCaputo. The Caputo fractional derivative of ordeis
defined as follow t
1
DYf(t) = 7/ t— 1) 0tm1§(M()dr, 1
0= Farm b7 (1) 1)

wherem—1 < a <mme Z*. For more study sedlp,11,12]. One of these methods is the differential transform method
[13,14]. The differential transform of functiofi is

k
F(x) = k_l,% Ix=xo (2)

wheref is the original function ané (k) is the transformed function. The differential inverse sfanm ofF (k) is

f(x)= Y XF(K). (3)

Substituting 2) into (3), we get

2 X< dkf(x)
2.k ak
But, this method has developed itH]. They have presented the generalized differential tansdf functionf as follow
oK) = =i (DMK (0he ©)
“ r(ak+1) o
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where 0< a < 1 and(D%)X=D?.D?. ... .DY(k —times. The differential inverse transform &% (k) is defined by

[ee]

F) = Fa(k)(x—x0) . (6)
K=0
Substituting §) into (6), we get
2 (x=x)% g

Using theorem (4) in16], we will obtain an approximate functiof(x) from the finite series as

n

F) = S Fa (k) (x—x0) . (8)

k=0

In casea = 1, the generalized differential transfor) changes to the differential transform. Also, GDTM is présel
for solving the linear fractional partial differential eafions fL7]. Many equations have been studied by using fractional
methods. The liquid-film mass transfer equation with thertolaury conditionsX0) is as

dw d°w
(1_y2)ﬁ_ad—yz’ 9)
w
w=0,x=0,0<y<1);w=1y=0,(x>0); — =0,y=1,(x>0). (10)

ay

wherew, is a dimensionless temperatuxegndy are dimensionless measured coordinates, respectiuel% wherePeis
the Peclet numbedB,19,20,21,22,23,24]. Mixed boundary conditions are commonly encountered atfical purposes.
The solution of 9) is given by

w(x,y) =1— % A exp(—ar2x) Fm(y), (11)
m=1

(Y) y eXF( my2 %)\m, g;)\myz), (12)

where the functiori, and the coefficients, and )\m are mdependent of the parame&erThe eigenvalues ok, for
m=1,2, ... are solutions of the transcendental equation:

3 1 3 1, 1

)\mCD(4 4)\m, ,)\m) (4 4)\m7 ,)\m) =0, (13)
wherep(M,N;Z) =1+ 51 % % - The series coefficients, are calculated as follows
A= —J0 1= Y)Fm(y)dy m=12,--. (14)

Jo (1= y2)(Fm(y))2dy’

Table () shows the first ten eigenvalugdg and coefficientg\,[18].
The organization of this paper is followed by: In Section 2, described GDTM for linear PDEs. In Section 3, the
approximate of the fractional modd)(is compared with11). In Section 4 we conclude our work.

2 Generalized Two-Dimensional Differential Transform M ethod

In this section, we provide some important definitions arebtems of GDTM for linear PDEs. First, we consider the
function of two variablesi(x,y). Also, suppose that(x,y) = f(x)g(y). According to P5,26], the functionu(x,y) can be
represented as

S Ua (k) (x—x0)* (y—yo)", (15)
0h=0

M8

V)= 3 Fallx—30) 3 Gylh)(y—yo)"
k=0 h=0 k
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Table 1: EigenvalueA, and coefficientd\y, in Equation (1).
Am Am
2.2631 | 1.3382
6.2977 | -0.5455
10.3077| 0.3589
14.3128| -0.2721
18.3159| 0.2211
22.3181| -0.1873
26.3197| 0.1631
30.3209| -0.1449
34.3219| 0.1306
38.3227| -0.1191

Boo~N~ooh~wN w3

wherea >0 andB < 1.U, g(k,h) = Fy (K)Gg(h) is the spectrum afi(x,y). The generalized two-dimensional differential
transform ofu(x,y) is as follows

1
(ak+1)r (Bh+1)

Ug p(k,h) = (D) (D) (X, Y)]x.56- (16)

According to (L5) and (L6), the following results obtain.
Theorem 2.1. Suppose thatl, g(k,h),Vq g(k h), andW, g(k h) are the differential transformations afx,y), v(x,y),

andw(x,y), respectively:

@) if U(x,y) = V(x,y) £W(x,y), thenUg g(k,h) =V, g(k,h) =Wy gk, h),
(b) if u(x,y) = cv(x,y),c € R, thenUg (k. h) _cvc,p(k h),

(©) if u(xy) = v y)W(xy), thenUq g(k,h) = T 5 31 oVa g (K, )Wy g (K, h),
(d) if u(x,y) = (x—%0)"(y — Yo)™, thenUg g(k,h) = 5(k—n)d(h—m),

(&) if u(x,y) = DEV(xY), 0< a < 1, thenUg g(k,h) = ZECDEDUG 5(k+ 1, h).

Theorem 2.2. If u(x,y) = f(x)g(y) and the functionf (x) = x*h(x), whereA > —1, h(x) has the generalized’s series
expansio(x) = S iv_oan(X — %)% [16], and

() B < A +1anda is arbitrary, or

(I B> A +1 ais arbitrary anda, forn=10,1,2,--- ,m—1, wherem— 1 < 3 < m. Then the generalized differential

transform (6) becomes 1

Theorem 2.3.If v(x,y) = f(x)g(y), the functionf (x) satisfies the conditions of theorem 2.2 arid y) = DY v(x,y), then

Moak+1)+ y)

Ug gk h) = Fak+ 1) Vq B(k+ ,h). (18)

The proofs and the convergence of GDTM maybe found §347).

3 Numerical Results

In this section, first we introduce the fractional liquid¥imass transfer equation. Then by using the mentioned defisit
and theorems, we compare an approximate of GDTM with thetesaation in the integer and fractional orders cases.
We consider the fractional liquid-film mass transfer equatiith following boundary conditions

(1-y?)Df w = aD}w, (19)

©(0,y) = 0,w(x,0) = 1, 2%

(x,1) = —437.11+ 2.9130 10ax— 1.4271 16ax?, (20)
ay
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where O< a < 1,1 < y< 2, anda= 1. It can be obtained an ordinary system by sitting- 1, 3 = 1, andy = 2. The
generalized dlfferennal transform af9) is as follows

k h
Q11(kh+2)= m[(k—k 1)Qq1(k+1,h) — Z) 20(5(k— No(s—2)(k—r+1)Qui(k—r+1)). (21)

Also, we can write the generalized differential transforfthe boundary condition() as
Q(k,0) =1, Q(k,1) = —437.11+2.9130165(k— 1)5(h) — 1.4271165(k— 2)3(h). (22)
Therefore, we have the solutien(x,y) up toO(x*8) as follows:

X2 X2
w(x,y) =1-437. 11X+ % 72. 85166667£ + (1 437. 11X+ — — 145703333 + > (23)

y2
2
(1 437.11x+ 2— - 2185550006‘— + 502 ) AR (1 437.11x+ 2— - 2914066667X— + 2z ) yP

2
(1 437. 1lx+2— — 3642583333\f + ) e+ (1 437 1lx+3— _ 437 11)(3 + ZX;) y10

7x2 4x? 35x*
(1 437 11x+2i - 50996166678 n —) Y21 (1 437 11x+i - 5828133333 + > 2) y

9x2 5x2
(1 437.11x+ zl - 655665000(}— + —) o+ (1 — 43711x+ % - 7285166667% + 2_a2) y'8

Figures (1a) and (1b) show the exact solution and approgiofafl9), respectively. Also, the intervalin figure (1a)
and (1b) ig0, 1] and[0.6,0.8], respectively. As we see, the approximate is compared hétlexact solution by modifying
in the intervala.

a=1.0000

Fig. 1: The solutionw(x,y) of (19) and R0). (a) exact solution and € [0, 1]. (b) approximate solution whem =3 =1, y= 2, and
ac[0.6,0.8].

Now, we suppose = 0.5, B = 1, andy = 2. The generalized differential transform agj is

r(0.5h+1) I (0.5k+1.5)
al (0.5k+ 2.5)[ r(0.5k+1)
k h
-3 3 ok-ne(s-2) st Py Qosalk—r+1.9). (24)
Also, the transformed boundary conditio28) is
Q(k,0) = 5(k),Q(k,1) = —437.115(k) +2.9130105 (k — 2) — 1.4271165(k — 4),

Q(k,2) = 0,Q(k,3) = 10.1385(k) — 337.58ad (k — 2) + 8688225 (k — 4). (25)

Therefore, we have the soluti@a(x,y) up toO(x8).

-QO.S,l(k7 h+ 4) = Qo,s’l(k-l- 1, h)

2 5
w(xy) =1—-43711x°°+10.138x*° + (1456500— — 84.3950000055)y?

+(2913000x>° — 337.58ax%)y* + (—9514000002? + 2896ax>°)y®

+(—14271000x°5 + 8688a%x-%)yE. (26)

It should be noted that increasing more components of thesssolution results in increasing error and changes the
solution. Althoughg is decreased but the approximate will be obtained by ligitmthe intervals,y, anda. Figure (2)
shows the comparison of the exact solution and GDTM appratém
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a=1.0000

Fig. 2: The solutionw(x,y) of (19) and Q0). (a) exact solution and € [0, 1]. (b) approximate solution when
a=05p8=1y=2ac[6-10°8-1079, andx, y< [0,84].

Finally, in the last case, we suppose that 0.5, § = 1, andy = 1.5. The transform ofX9) is

k h
Qosa(kh+4) = ar,_((oj,:kilz)) [r,_((()f:;f'l?) Qosalk+ L) - 3 5 8(k-1)3(s-2)

I (0.5(k—r)+15)
r(05(k—r)+1)

Sincea = 0.5, therefore, we obtain the solutiea(x,y) up toO(x8) with the transformed boundary conditior2s).
w(x,y) = 1—437.11x*5+ 10.138x° + (109565617 1x%° — 1523672955 °)y-5 4 (291300005

.Qo_5,1(k—|'+ 1, S)] (27)

2.5
—337.58ax'%)y% + (—1431386587% +52284577103°)y*° + (—1427100000x°°

+8688a%x°)yP. (28)

The last case is shown in figure (3b). As we see, both ordedemnreased and GDTM approximate obtains with smaller
intervals than the previous cases.

4= 10000 a=6.10"

Fig. 3: The solutionw(x,y) of (19) and Q0). (a) exact solutiona € [0, 1] andx,y € [0,10]. (b) approximate solution when
a=05pB=1y=15ac[6-101,8-1071}, andx, y € [0, 6.4].
4 Conclusion
In this work, we introduced the fractional model of the liddilm mass transfer equation. The generalized differéntia
transform method is powerful tool in order to solve linearB2DIt was used for solving the mentioned equation. In the

first case, the interva has been limiteds andy are fixed. This action makes approximates even if the ordefisbtional.
As we have seen, when both of orders were decreased, thediisteecame limited.
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