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We introduce a modified model for the problem of a damped harmonic oscillator in

presence of a driving force. The model is treated from the point of view of quantum

mechanics. The wave function in the Schrödinger picture is obtained. The connection

between the quasicoherent state and pseudostationary state is discussed. The constants

of motion are also introduced and the eigenfunctions and the corresponding eigenvalues

for pair of quadratic invariants are obtained. The phenomena of squeezing and the

Poissonian distribution are considered. It is shown that the system is sensitive to the

variation of the damping factor,γ, as well as of the modulation factor,µ.
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1 Introduction

The problem of time-dependent harmonic oscillator has been widely studied since the

middle of the last century, see for example [1–4]. Even so the problem still attracts much

attention nowadays. This is due to the fact that, the existence of the time factor in this

particular problem leads to the appearance of the second harmonic generation and conse-

quently the system is converted to a model for the degenerate parametric amplifier [5, 6].

Also, the realization of the symmetry group for this system gives us the opportunity to con-

sider the Lie algebraic approach of such a problem [7, 8]. However, the key to deal with

any dynamical system is to find either the closed-form solution to the wave function in the

Schr̈odinger picture or to obtain the solution for the equations of motion in the Heisenberg

picture. Therefore most of the attempts during this period were too limited due to the ab-

sence of enough methods in addition to the limitation of number of functions from which

the solution can be obtained in a compact form. In this context there is question which

may arise. This is why does one come back to study such a problem and try to resurrect
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it. The answer is not just a matter to reconsider a certain problem and try to recover some

of the gaps in it. In fact this particular problem has opened the door to consider different

aspects in the classical as well as in the quantum mechanics. For instance the observation

of nonclassical phenomena in the laboratory, particularly the squeezing phenomenon and

its connection to the second harmonic generation, encouraged us to return to the problem.

Doubtless the appearance of the second harmonic generation would lead us to think of the

nonclassical properties for such system. Therefore, as apart of our duty in this context is

to discuss the squeezing phenomenon, however, from the point view of the SU(1, 1) Lie

Algebra [9,10], we extend our discussion to include the correlation function from which we

are able to discuss the Poissonian distribution of the system. Here we may refer to previous

works on the problem of quantizing the damped motion of a particle in a quadratic field.

The problem is usually trated as an oscillator with constant mass and stiffness placed in the

presence of a dissipative forceF = −γẊ, whereγ being constant.

In addition there exists a substantial body of work concerning the study of a classical,

undamped harmonic oscillator with arbitrary dependence in its parameters, see for exam-

ple [1, 10–13]. In the present work we aim at unifying these aspects in order to provide

a treatment of a quantal oscillator in the presence of a dissipation mechanism in the most

general situation in which the mass is time-dependent. Our consideration is extended to

include a time-dependent driving-force which acts on the Hamiltonian model, see for ex-

ample [4,10,14]. In what follows we concentrate on a particular time-dependent mass law

which is given by

M(t) =
m exp (2γt)

(1− µ exp (2γt))2
(1.1)

whereγ is the damping or growth factor depending upon whetherγ has positive or negative

value, respectively,m is a constant mass andµ is an arbitrary parameter. In fact the above

model can be regarded as a modified damping or growth described by a damping constant

multiplied by a certain time-dependent factor. As is well known, the Hamiltonian which

usually describes the time-dependent harmonic oscillator in presence of an external driving

force is given by

Ĥ(t) =
P̂ 2

2M(t)
+

1
2
ω2

0M(t)Q̂2 + G(t)Q̂ (1.2)

whereM(t) is a time-dependent mass andω0 is the oscillator frequency, whileG(t) is

a time-dependent external force.̂P and Q̂ are the momentum and position coordinates

which satisfy the commutation relation
[
Q̂, P̂

]
= i}. Before we go further, we introduce

canonical coordinates, position̂q and momentum̂p such that

q̂ =

√
M(t)

m
Q̂, p̂ =

√
m

M(t)
P̂ , (1.3)

and obey the condition[q̂, p̂] =
[
Q̂, P̂

]
= i}. In this case the Hamiltonian (1.2) takes the
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form

K̂(q̂, p̂, t) =
p̂2

2m
+

mω2
0

2
q̂2 +

ε(t)
2

(q̂p̂ + p̂q̂) + G̃(t)q̂. (1.4)

where we have used the explicity time-dependent generating function and defined

ε(t) = γf(t), f(t) =
(

1 + µ exp (2γt)
1− µ exp (2γt)

)
. (1.5)

We introduce the time-dependent functionG̃(t) through

G̃(t) = (exp (−2γt)− µ exp (2γt))G(t) (1.6)

It is worthwhile to remark that, the present model is especially interesting in the strong

damping regime0 ¿ µ < 1. For small values ofγt the modulation factor becomes arbi-

trary large whenµ increases fromzero to 1 − ε (ε > 0). This can describe an arbitrarily

heavy initial damping (or growth) withoutγ exceeding its critical value ofω0. The case of

a heavy growth could have application in quantum optics for a superradiant cavity. Since

one of our main task is to introduce the solution of the wave function in the Schrödinger

picture, we devote the next section to derive its expression of this function in addition to

the corresponding wave function in the quasicoherent state. In Section3 we introduce

two classes of the quadratic invariants and present the eigenfunction and the corresponding

eigenvalue for each constant. Section4 is devoted to the nonclassical properties where the

phenomena of the squeezing as well as the Poissonian distribution are given. Finally we

give our conclusion in Section5.

2 The wave function

In this section we give the expression for the wave function in the Schrödinger picture

corresponding to the pseudostationary. Also we introduce the accurate definition of the

Dirac operator from which the wave function in the quasicoherent states can be obtained.

In this context we give the connection between pseudostationary and quasicoherent stats.

2.1 Schr̈odinger picture

The time-dependent wave function in the Schrödinger picture is given by the solution

of

K̂ψ(q, t) = i}
∂

∂t
ψ(q, t), (2.1)

whereK̂ is the time-dependent Hamiltonian given by equation (1.4). From equations (1.4)

and (2.1) the wave function satisfies

∂2ψ

∂q2
− m2ω2

0

}2
q2ψ +

imε(t)
}

[
2q

∂

∂q
+ 1

]
ψ − 2mG̃(t)

}2
qψ = −2im

}
∂ψ

∂t
. (2.2)
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In order to solve the above equation we introduce the substitution

q =
(

x

Ω(t)
+ ζ(t)

)
, (2.3)

whereζ(t) is an arbitrary time-dependent function to be determined below whileΩ(t) is

defined by

Ω(t) = ω0

(
ω2 + ε2(t)

)− 1
2 , ω =

√
ω2

0 − γ2. (2.4)

Thenψ(q, t) → φ (x, t) and consequently equation (2.2) becomes

∂2φ

∂x2
− m2ω2

0

}2Ω4(t)
(x + Ω(t)ζ(t))2 φ

+
2im

}
(ε(t)x + v)

∂φ

∂x
− 2mG̃(t)
}Ω3(t)

(x + Ω(t)ζ(t)) φ

= − 2im

}Ω2(t)

(
∂

∂t
+

ε(t)
2

)
φ (2.5)

wherev(t) is the time-dependent function given by

v(t) =
ε(t)ζ(t)− ζ̇(t)

Ω(t)
. (2.6)

We seek a separation of the form

φ(x, t) = X(x) T (t) exp
[
− im

2~
[
ε(t)x2 + 2v(t) x

]]
, (2.7)

then from equations (2.5) and (2.7) we have

1
X

d2X

dx2
− m2ω2

}2
x2 = − 2im

}Ω2(t)
1
T

dT

dt
+

imΩ̇(t)
}Ω3(t)

+
2mG̃(t)
}2Ω2(t)

ζ(t)

−m2

}2
v2 +

m2ω2
0

}2Ω2(t)
ζ2(t),

where we choose the functionζ(t) to satisfy the equation

ζ̈ (t) +
[
ω2

0 − ε2 (t)− ε̇ (t)
]
ζ (t) = − G̃ (t)

m
, (2.8)

After a straightforward calculation we find, withλ a constant of separation, that

d2X

dx2
+

(
λ− m2ω2

~2
x2

)
X = 0, λ > 0, (2.9)

with solution

Xn(x) = Hn

[√
mω

~
x

]
exp

[
−mω

2~
x2

]
, (2.10)



574 M.Sebawe Abdalla and Lamia Thabet

in which we have taken

λ =
m ω

~
(2n + 1) , n = 0, 1, 2, ... (2.11)

Also we find that

Tn(t) = Nn

√
Ω(t) exp

{
−iω

(
n +

1
2

)[
t− 1

ω
tan−1

(
ε (t)
ω

)]
− i

m

2}
I (t)

}
, (2.12)

whereNn is the normalization constant and

I (t) =
∫ t

0

[
2G̃ (t)

m
ζ (t) + ω2

0ζ2 (t)−
(
ε(t)ζ (t)− ζ̇ (t)

)2
]

dt. (2.13)

After simple algebra we can write the general solution for the wave function in its final

form as

ψn(q, t) =
[mω

π}
Ω2 (t)

] 1
4 2−

n
2√

n!
Hn

[√
mω

~
Ω(t) (q − ζ (t))

]

× exp
[
−mω0

2~
Ω(t) (q − ζ (t))2 exp

(
i tan−1

(
ε(t)
ω

))]

× exp
[
− im

~
v(t)Ω(t) (q − ζ (t))

]

× exp
{
−iω

(
n +

1
2

)[
t− 1

ω
tan−1

(
ε (t)
ω

)]
− i

m

2}
I (t)

}
(2.14)

Having obtained the wave function in the number state we are in a position to find the wave

function in the quasicoherent state. This is seen in the next subsection

2.2 Quasi-Coherent State

Here we employ the result obtained in the previous subsection to derive the wave func-

tion in the quasicoherent|α〉 state. To reach our goal we use the time-dependent coherent

sate,|α, t〉 given by

|α, t〉 = exp
(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!
|n, t〉, (2.15)

which leads to

ψα(q, t) = exp
(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!

ψn(q, t). (2.16)
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If we now insert the wave function in the number state given by equation (2.14) into the

above equation and run the sum overn, we obtain

ψα(q, t) =
[mω

π}
Ω2 (t)

] 1
4

exp

(√
2mω

~
Ω(t) (q − ζ (t)) α(t)

)

× exp
(
−1

2
(|α|2 + α2(t)

))
exp

(
− i

2

(
f(t) +

m

}
I (t)

))

× exp
[
−mω0

2~
Ω(t) (q − ζ (t))2 exp

(
i tan−1

(
ε(t)
ω

))]

× exp
[
− im

~
v(t)Ω(t) (q − ζ (t))

]
, (2.17)

where

α(t) = α(0) exp (−if(t)) , f(t) = ω

[
t− 1

ω
tan−1

(
ε(t)
ω

)]
. (2.18)

On the other hand we can reach the same target using a different method. This can be

achieved if we introduce the Dirac operators from which we are able to diagonalize the

Hamiltonian (1.4). To this end we introduce the operator

Â =
(
2mω2

0}ω
)− 1

2
[
mω2

0 q̂(t) + i (ω − iε(t)) p̂(t)− L(t)
]
, (2.19)

which satisfies the commutation relation
[
Â, Â†

]
= 1. The functionL(t) in the above

equation is given by

L(t) =
(
k̇(t) + G̃(t)− iωk(t)

)
−

(
k̇(0) + G̃(0)− iωk(0)

)
e−iωt (2.20)

where

k(t) =
1
ω

∫ t

0

(
ε(τ)G̃(τ)− d

dτ
G̃(τ)

)
sin ω (t− τ) dτ. (2.21)

It is interesting to point out that the operatorÂ is constructed by using the solution for the

equations of motion in the Heisenberg picture. The effect of the operatorÂ on the coherent

state (2.15) gives uŝA|α, t〉 = α|α, t〉 from which we have

αφα (q, t) =
(
2mω2

0}ω
)− 1

2
[
mω2

0 q̂(t) + i (ω − iε(t)) p̂(t)− L(t)
]
φα (q, t) . (2.22)

Using the fact that̂p = −i}∂/∂q we obtain

φα (q, t) = Nα exp

(
−mω0

2}
q2 +

(√
2mω

}
α(t) +

L1(t)
}ω0

)
q

)
Ω(t), (2.23)

whereNα is the normalization constant given by

Nα = 4

√
mωΩ2(t)

π}
exp

(
−1

2
(|α|2 + α2(t)

))

× exp
(
− (L1 + L∗1) α(t)− 1

2
(L2

1 + |L1|2
))

(2.24)
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in whichα(t) is given by equation (2.18) and

L1(t) = L(t) exp
(

i tan−1

(
ε(t)
ω

))
. (2.25)

It should be noted that without loss of generality we have dropped the term
√

2mω2
0}ω as

a multiplier ofL(t). If we use the generating function of the Hermite polynomial

exp
(
2xg − g2

)
=

∞∑
n=0

Hn(x)
n!

gn, (2.26)

together with the coherent state given by equation (2.15), we can write the wave function

in the number state as

φn (q, t) = 4

√
mωΩ2(t)

π}
2−n/2 (n!)−

1
2 Hn

(√
mω

}
Ω(t)q −

√
2ReL1(t)

)

× exp

[
−m

2}
(ω + iε(t))Ω(t)q2 +

√
2mω

}
L1(t)Ω(t)q

]

× exp
(
−1

2
(L2

1(t) + |L1(t)|2
))

× exp
(
−iωn

[
t− 1

ω
tan−1

(
ε (t)
ω

)])
. (2.27)

In absence of the external driving force we can easily show that the wave functions given

by equations (2.14) and (2.27) are identical. However, in the presence of the external force

we have to use the identity

L(t) = m
[
ω2

0ζ (t)− i (ω − iε(t))
(
ε(t)ζ (t)− ζ̇ (t)

)]
, (2.28)

from which we obtain the agreement between the two equations, (2.14) and (2.27).

3 The constants of motion

The use of explicitly time-dependent invariants in applications of quantum theory has

received little attention. Presumably the reason for this lack of attention has been the dearth

of examples in which the use of such quantities was both possible and fruitful. However, a

class of exact invariants for time-dependent harmonic oscillators, both classical and quan-

tum, was reported [15–19]. The simplicity of the rules for constructing these invariants and

the instructive relation of the invariant theory have stimulated an interest in using the in-

variants [20, 21]. In this section we focus upon finding the quadratic invariant from which

we are able to introduce classes of the wave functions constructed on a new definition of

the Dirac operator. In this context we calculate the eigenvalue and corresponding eigen-

function of these invariants. However, we restrict our treatment to the case in which the

driving force is absent.



Nonclassical properties of a model for modulated damping under the .... 577

3.1 Quadratic invariants

We begin by seeking an invariant of the second degree,

Î(2) = λ(t)p̂2(t) + ν(t)q̂2(t) + δ (t) p̂(t)q̂(t), (3.1)

we require that
dÎ(2)

dt
=

∂Î(2)

∂t
+

1
i~

[
Î(2), K̂

]
= 0, (3.2)

From equations (3.1) and (3.2) together with equation (1.4) we find that

λ̇(t)− 2ε (t) λ (t) = −δ (t) /m, ν̇(t) + 2ε (t) ν(t) = mω2
0δ (t) ,

δ̇ (t) + 2ν(t)/m = 2mω2
0λ (t) . (3.3)

After we perform some minor algebra, equations (3.3) give us

λ(t)ν(t) =
δ2(t)

4
+ c (3.4)

wherec is an arbitrary constant. If we now putν(t) = σ2(t) in equations (3.3), then after

some calculations we have

d2

dt2
σ (t) +

[
ω2

0 + ε̇ (t)− ε2 (t)
]
σ (t) =

m2ω4
0c

σ3 (t)
, (3.5)

The nonlinear differential equation above is the Pinney equation and can be solved to take

the form

σ (t) =
√

A + B sin (2ωt + ϕ), B =

√
A2 − c

(mω0

ω

)2

, (3.6)

whereA andϕ are arbitrary constant and phase, respectively. The first class of quadratic

invariants may therefore be expressed in the form

Î(2)
p =

{
σ (t) q̂ +

1
mω2

0

[σ̇ (t) + σ (t) ε (t)] p̂
}2

+
c

σ2 (t)
p̂2 (3.7)

A similar procedure leads to the second family of quadratic invariants. In this case, if

we write λ(t) = ρ2 and eliminate the functionν(t) from equations (3.3), we obtain the

equation
d2

dt2
ρ (t) +

[
ω2

0 − ε̇ (t)− ε2 (t)
]
ρ (t) =

c

ρ3 (t)
, (3.8)

which has the solution

ρ (t) =
1

mω0

[
A +

ε2(t)
ω2

0

{
A + B

(
sin (2ωt + ϕ) +

2ω

ε(t)
cos (2ωt + ϕ)

)}] 1
2

. (3.9)

Consequently the second class of the quadratic invariants can be constructed in the form

Î(2)
q = [ρ (t) p̂ + m (ρ (t) ε (t)− ρ̇ (t)) q̂]2 +

c

ρ2 (t)
q̂2. (3.10)

Having obtained the constants of motion we are in a position to consider the eigenfunctions

and the corresponding eigenvalues of these invariants.
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3.2 The eigenfunctions of the invariants

We devote this subsection to find the eigenfunctions and the corresponding eigenvalues

of the operator̂I(t). We start with its eigenstates [22, 23]. The eigenstates of the invariant

operatorÎ(t) may be found by an operator technique that is completely analogous to the

method introduced by Dirac for diagonalizing the Hamiltonian. In this case we define the

time-dependent canonical lowering operator

B̂ (t) =
(
2}
√

c
)− 1

2

{[ √
c

σ (t)
− i

mω2
0

[σ (t) ε (t) + σ̇ (t)]
]

p̂− iσ (t) q̂

}
, (3.11)

which satisfies with its complex conjugate the canonical relation
[
B̂ (t) , B̂† (t)

]
= 1. This

means that the operator̂B† (t) B̂ (t) is a number operator with nonnegative integer eigenval-

ues. Therefore the invariant operator given by (3.11) can be written in term of the operators

B̂ (t) andB̂† (t) thus

Î(2)
p = 2}

√
c

[
B̂† (t) B̂ (t) +

1
2

]
. (3.12)

The eigenstate of the above invariant can be obtained from the coherent state which has the

propertyB̂ (t) |β, t〉 = β|β, t〉, whereβ is a complex parameter. Similarly we can define

another operator̂C corresponding to the second class of the constant of motionÎ
(2)
q such

that

Ĉ (t) =
(
2}
√

c
)− 1

2

{[ √
c

ρ (t)
+ im [ρ (t) ε (t)− ρ̇ (t)]

]
q̂ + iρ (t) p̂

}
, (3.13)

which also satisfies with its complex conjugate the commutation relation
[
Ĉ (t) , Ĉ† (t)

]
=

1. In this case the invariant operator takes the form

Î(2)
q = 2}

√
c

[
Ĉ† (t) Ĉ (t) +

1
2

]
. (3.14)

The eigenstates can also be obtained from the coherent state|γ〉 which has definition sim-

ilar to that in equation (2.15) and satisfies the conditionĈ (t) |γ, t〉 = γ|γ, t〉. To find the

eigenfunction and the corresponding eigenvalue for the constants of motionÎ
(2)
p and Î

(2)
q

we have to use the operatorŝB (t) andĈ (t) given by equations (3.11) and (3.13), respec-

tively. In terms of the momentum the wave function corresponding to the invariantÎ
(2)
p is

given by

χβ (p, t) =
( √

c

}πσ2 (t)

) 1
4

exp
[
−1

2
(|β|2 + β2

)]
exp

[
β

√
2
√

c

}δ2 (t)
p

]

× exp
{
− 1

2}

[ √
c

σ2 (t)
− i

mω2
0

(
ε (t) +

σ̇(t)
σ (t)

)]
p2

}
. (3.15)
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When one uses the definition of the coherent state, the wave function in the number state

takes the form

χr (p, t) =
( √

c

}πσ2 (t)

) 1
4

2−
r
2

1√
r!

Hr

[√ √
c

2}σ̃2 (t)
p

]

× exp
{
− 1

2}

[ √
c

σ2 (t)
− i

mω2
0

(
ε (t) +

σ̇(t)
σ (t)

)]
p2

}
. (3.16)

The wave function for the second constant of motion corresponding to the coherent state

|γ〉 can be written in terms of the coordinate as

Φγ(q, t) =
( √

c

π}ρ2 (t)

) 1
4

exp
[
−1

2
(|γ|2 + γ2

)]
exp

[
γ

√
2
√

c

}ρ2 (t)
q

]

× exp
[
− 1

2}

{ √
c

ρ2 (t)
+ im

(
ε (t)− ρ̇

ρ(t)

)}
q2

]
(3.17)

while the wave function in the number state is given by

Φs(q, t) =
( √

c

π}ρ2 (t)

) 1
4 2− s

2√
s!

Hs

[√ √
c

2}ρ2 (t)
q

]

× exp
[
− 1

2}

{ √
c

ρ2 (t)
+ im

(
ε (t)− ρ̇

ρ(t)

)}
q2

]
. (3.18)

Here we may remark that the eigenfunction for the quadratic invariant gives us a flexibility

to have classes of wave functions. This in fact is due to the existences of the time-dependent

function which is a solution of a nonlinear differential equation.

4 Nonclassical properties

We devote this section to discuss some statistical properties for the present system,

more precisely the phenomenon of squeezing, however, from the Lie algebra point of view

of the SU(1, 1) [24–26]. This would give us an advantage to use the Perelomove coherent

state when the system acquires fluctuations as result of the existence of the time-dependent

function. For this reason we employ the Casimir operator to describe the Hamiltonian

model given by equation (1.4). On the other hand we extend our discussion to include

the Poissonian distribution and this depends upon the examination of the second-order

correlation function and the use of the number state as a basis. Since the external driving

force in not random, its effect is negligible and consequently we concentrate on the case in

which the driving force is absent. To do so we define the operatorsK̂± andK̂z such that

(
K̂+ − K̂−

)
=

1
2i

(q̂p̂ + p̂q̂), Kz =
1

2ω0

(
p̂2

2m
+

mω2
0

2
q̂2

)
, (4.1)
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where [
K̂+, K̂−

]
= −2K̂z,

[
K̂z, K̂±

]
= ±K̂±. (4.2)

In this case we can write the Hamiltonian (1.4) in the form

Ĥ

}
= 2ω0K̂z − iε (t) (K̂− − K̂+). (4.3)

Therefore the equations of motion in the Heisenberg picture can be written as

dK̂z

dt
= 2ε (t) K̂x,

dK̂x

dt
= −2ω0K̂y (t) + 2ε (t) K̂z (t) ,

dK̂y

dt
= 2ω0K̂x (t) ,

(4.4)

where we have defined̂K± =
(
K̂x ± iK̂y

)
. It should be noted that the set of the genera-

tors
{

K̂x, K̂y, K̂z

}
satisfies the commutation relations

[
K̂x, K̂y

]
= −iK̂z,

[
K̂y, K̂z

]
= iK̂x,

[
K̂z, K̂x

]
= iK̂y, (4.5)

and the associated Heisenberg uncertainty relation regarding to the first commutator takes

the form

〈
(
∆K̂x

)2

〉〈
(
∆K̂y

)2

〉 > 1
4

∣∣∣〈K̂z〉
∣∣∣
2

(4.6)

where

〈
(
∆K̂j

)2

〉 = 〈K̂2
j 〉 − 〈K̂j〉2, j = x, y (4.7)

After some manipulations the general solution for the equations of motion (4.4) is given by



K̂x(t)
K̂y(t)
K̂z(t)


 =




f−(t) f0(t) f+(t)
g−(t) g0(t) g+(t)
h−(t) h0(t) h+(t)







K̂x(0)
K̂y(0)
K̂z(0)


 (4.8)

where we have used the abbreviations

f±(t) =
1
2

[(
e2
3 − e2

1

)± (
e2
4 − e2

2

)]
, f0(t) = (e3e4 − e1e2) ,

g±(t) = (e1e3 ± e2e4) , g0(t) = (e2e3 + e1e4) ,

h±(t) =
1
2

[(
e2
3 + e2

1

)± (
e2
2 + e2

4

)]
, h0(t) = (e1e2 + e3e4) . (4.9)

and defined the time-dependent functionsei(t), i = 1, 2, 3, 4 such that

e1 (t) =
(ω0

ω

)
sin (ωt) ,

e2 (t) =
[
cos (ωt)− ε (0)

ω
sin (ωt)

]
, e3 (t) =

[
cos (ωt) +

ε (t)
ω

sin (ωt)
]

,

e4 (t) =
[(

ε (t)− ε (0)
ω0

)
cos (ωt)−

(
ω

ω0

)[
1 +

ε (t) ε (0)
ω2

]
sin (ωt)

]
. (4.10)

Since we have obtained the explicit time-dependent dynamical operators, we are able

to discuss some statistical properties related to the system.
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4.1 The squeezing phenomenon

As we have previously stated, the present system is explicitly time-dependent and there-

fore it is natural for the appearance of the second harmonic generation to be seen. Con-

sequently this encourages us to consider the phenomenon of squeezing as an example of

the nonclassical effect. To measure the phenomenon of squeezing we have to calculate the

quadrature variances

〈(
∆ K̂j

)2
〉

, j = x, y with respect to a certain suitable state. The

choice of such a state should be consistent with the system under consideration. For the

present case the best state we have to use is the state|m̄; k̃〉, wherem̄ is any nonnegative

integer and̃k is the Bargmann index. However, we may also calculate the quadrature vari-

ances with respect to the Perelomov SU(1, 1) coherent state|ξ1; k̃〉 which can regarded as

a generalization of the coherent state [27,28]. This state is defined by

|ξ1; k̃〉 = (1− |ξ1|2)k̃
∞∑

m̄=0

√
Γ(m̄ + 2k̃)
m̄!Γ(2k̃)

ξm̄
1 |m̄; k̃〉, (4.11)

whereΓ stands for the gamma function and the state|m̄; k̃〉 has the properties

K̂2|m̄; k̃〉 = k̃
(
k̃ − 1

)
|m̄; k̃〉, K̂z|m̄; k̃〉 =

(
m̄ + k̃

)
|m̄; k̃〉,

K̂+|m̄; k̃〉 =
√

(m̄ + 1)
(
m̄ + 2k̃

)
|m̄ + 1; k̃〉,

K̂−|m̄; k̃〉 =
√

m̄
(
m̄ + 2k̃ − 1

)
|m̄− 1; k̃〉. (4.12)

The operatorK̂ is known as a Casimir operator and is given by

K̂2 = K̂2
z −

(
K̂+K̂− + K̂−K̂+

)
, (4.13)

with the commutation relation
[
K̂2, K̂±

]
=

[
K̂2, K̂z

]
= 0. (4.14)

The Bargmann index̃k is either 1
4 (even parity) or34 (odd parity). This means that for

k̃ = 1
4 the basis for the irreducible unitary representation space is a set of states with an

even boson number and fork̃ = 3
4 the basis is a set of states with an odd boson number. To

measure the squeezing we define the functions

Fj = 〈
(
∆ K̂j

)2

〉 − 1
2

∣∣∣〈K̂z〉
∣∣∣ j = x, y. (4.15)

Since squeezing is the phenomenon in which the fluctuation of theK̂x or K̂y components

occurs ifFx < 0 or Fy < 0, respectively, one can find the maximum squeezing is reached

when

〈(
∆ K̂x(t)

)2
〉

= 0, or

〈(
∆ K̂y(t)

)2
〉

= 0. We now employ the Perelomov
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state|ξ1; k̃〉, to calculate the quadrature variances

〈(
∆ K̂j(t)

)2
〉

, j = x, y as well as
〈
K̂z(t)

〉
. In this case we have

〈(
∆K̂x (t

)2
〉

=
k̃

2

[
f2+ (t) +

1
2

(
f2− (t)− f20 (t)

)
cos 2θ + f− (t) f0 (t) sin 2θ

]
sinh2 r

+
k̃

4
(
cosh2 r + 1

) (
f2− (t) + f20 (t)

)

− k̃

2
(f− (t) cos θ + f0 (t) sin θ) f+ (t) sinh 2r

〈(
∆K̂y (t

)2
〉

=
k̃

2

[
g2
+ (t) +

1
2

(
g2
− (t)− g2

0 (t)
)
cos 2θ − g− (t) g0 (t) sin 2θ

]
sinh2 r

+
k̃

4
(
cosh2 r + 1

) (
g2
− (t) + g2

0 (t)
)

+
k̃

4
(g− (t) cos θ − g0 (t) sin θ) g+ (t) sinh 2r

〈
K̂z(t)

〉
= k̃ [h−(t) cos θ − h0(t) sin θ] sinh r + k̃h+(t) cosh r

where we have considered

ξ1 = exp (iθ) tanh
(r

2

)
, |ξ1| ∈ (0, 1) , r ∈ (−∞,∞) , θ ∈ (0, 2π) .

(4.16)

It should be noted that att = 0, the functionsFj , j = x, y, take the forms

Fx(r, θ, t = 0) = 2k̃ sinh2(
r

2
)
[
cos2 θ cosh2(

r

2
)− 1

2

]
,

Fy(r, θ, t = 0) = 2k̃ sinh2(
r

2
)
[
sin 2θ cosh2(

r

2
)− 1

2

]
. (4.17)

Consequently the condition for squeezing att = 0 is

cos θ cosh(
r

2
) < ±

√
2

2
, or sin θ cosh(

r

2
) < ±

√
2

2
. (4.18)

However, to discuss the squeezing fort > 0 we plot some figures to display the behaviour

of the quadrature variancesFx(t) andFy(t). For this reason we have plotted figures (1) for

fixed values ofr = ω0 = 1 andθ = π/4 but for different values of the parametersγ andµ.

For example, when we considerγ = −0.25 andµ = 0.25, the phenomenon of squeezing

is firstly observed in the second quadratureFy(t) (solid line), but it is pronounced in the

first quadratureFx(t) (dashed line). Also there are regular fluctuations in both quadratures

with a symmetry aroundzero, see Fig.(1a). If we decrease the value of the damping factor

and considerγ = −0.5, we can see reduction in the number of the fluctuations in both

quadratures. However, the functionFx(t) decreases its value and this refers to an increase
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Figure 4.1:Fx (dashed line) andFy (solid line) against the timet for r = ω0 = 1 andθ = π/4 (a)

Forγ = −0.25 andµ = 0.25. (b) As (a) but forγ = −0.5. (c) As (a) but forµ = 0.5. (d) As (a) but

for µ = −0.5.

in the amount of squeezing. In the meantime the functionFy(t) increases its value which

refers to reduction in the amount of squeezing in this quadrature, see Fig.(1b). On the other

hand, when we consider the case in whichµ = 0.5, it is easily to realize that the amount of

squeezing in both quadratures is decreased compared with the case displayed in Fig.(1a).

However, there is no change in the behaviour of both quadratures, see Fig.(1c). Finally the

amount of squeezing is increased in both quadratures when we considerµ with a negative

value. In this case and forµ = −0.5 the maximum of the squeezing in the first quadrature

approaches the value∼ −0.42 after a considerable period of the time, see Fig.(1d). Here

we may point out that more squeezing can be seen as long as we increase the negative value

of the parameterµ. However, this increment shows stability when the squeezing reaches



584 M.Sebawe Abdalla and Lamia Thabet

its maximum for the case in whichµ = −2 (not displayed here).

4.2 The Correlation function

In this Subsection we consider another kind of nonclassical effect, that is the Poissonian

distribution. To discuss such a kind of distribution we have to examine the second-order

correlation function which leads to better understanding for the nonclassical behaviour of

the system. In fact the correlation function is usually used to discuss the sub-Poissonian

and super-Poissonian behaviour of the photon distribution from which we can distinguish

between the classical and nonclassical behavior. Therefore to discuss the behaviour of the

system under consideration we use the Glauber second-order correlation function defined

by

g(2)(t) = 1 +
〈(∆n̂ (t)2〉 − 〈n̂(t)〉

〈n̂(t)〉2 , (4.19)

where
〈
(∆n̂ (t)2

〉
and 〈n̂(t)〉 are the variance and the mean photon number att > 0,

respectively. To calculate these quantities we have to find the explicit expression of the

operatorâ(t) which can be obtained from the solution of the equations of motion in the

Heisenberg picture for the Hamiltonian (1.4). After straightforward calculations we can

write the operator̂a(t) in the form

â(t) =
1
2

[(e3 + e2)− i (e1 + e4)] â(0) +
1
2

[(e3 − e2)− i (e1 − e4)] â†(0) (4.20)

whereei, i = 1, 2, 3, 4 are time-dependent functions given by (4.10). Using this equation

together with the Fock state|n〉 we can obtain the required quantities to discuss the cor-

relation function. Since this is a simple task, we turn our attention to plot the correlation

functiong(2)(t) against the timet. In this context we have plotted Figures (2) for a fixed

value of the frequencyω0 = 1 and of the squeeze parameterr = 1, however, for different

values of the other parameters. For instance in Fig.(2a) we plot the correlation function

for γ = −0.25, n = 1 andµ = −1 (solid line) andµ = −2 (dashed line). In both cases

the function shows sub-Poissoian behaviour at all values oft. It increases its value as the

time increases. However, it is faster for the case in whichµ = −2 compared to the case of

µ = −1. To examine the effect of the damping factorγ, we consider two casesγ = −0.5
(solid line) andγ = −0.75 (dashed line) but for a fixed value ofµ = −2. In these two cases

the function starts from zero and increases its maximum to display sub-Poissonian, Pois-

sonian and super-Poissonian behaviours for the case in whichγ = −0.75. However, for

γ = −0.5 the function only exhibits sub-Poissonian behaviour, see Fig.(2b). This means

that under the negative value of theµ-parameter the correlation function is sensitive to the

variation in the damping factor. When we consider the positive value of theµ-parameter,

µ = 2 (solid line) and4 (dashed line) and takeγ = −0.75 andn = 1, the function reaches

its maximum for both cases after the onset of the interaction showing super-Poissonian
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Figure 4.2: The correlation functiong(2) against the timet. (a) Forn = 1, γ = −0.25 andµ = −1

andµ = −2. (b) Forn = 1, µ = −2 andγ = −0.75 andγ = −0.5 . (c) Forn = 1, γ = −0.75

andµ = 2 andµ = 4. (d) Forγ = −0.75, µ = −2 andn = 1 and.n = 5.

behaviour. However it turns to display sub-Poissonian behaviour at the middle of the con-

sidered time just for the case in whichµ = 4. This means that the function is also affected

by the variation in theµ-parameter, see Fig.(2c). Finally we examined the effect of the

photon number for the cases in whichn = 1 and5. This is displayed in Fig.(2d) in which

the function increased its minimum forn = 5 (dashed line). Also we can observe from

this figure that a decrease in the value of the damping parameter leads to an increase in

the function value. This can be realized if one makes a comparison between Fig.(2a) and

Fig.(2d) for the case in whichµ = −2.
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5 Conclusion

In the previous sections of the present paper we have introduced a model for modulated

damping or growth of a harmonic oscillator under the effect of an external driving force.

The model is totally different to those previously introduced in the literature involving two

different parameters. The wave function in the pseudostationary and quasicoherent states

are obtained. Furthermore two classes of quadratic invariants are obtained and the eigen-

function as well as the corresponding eigenvalue for each class are given. Finally we have

considered the phenomenon of squeezing for which we employed the Perelomov SU(1, 1)
coherent state to calculate the quadrature variancesFx(t) andFy(t). The phenomenon

is observed in both quadratures. However, it is more pronounced in the first quadrature

compared with the second quadrature. Also we have realized that the system is sensitive

to variation in the damping factorγ as well as in theµ-parameter. Moreover we have dis-

cussed the behaviour of the correlation function and examined the effect of the damping

factor as well as theµ-parameter in addition to the photon number on its behaviour. It

was shown that theγ factor and theµ-parameter are the most effective parameters on the

function behaviour.
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