J. Stat. Appl. Pro6, No. 1, 169-183 (2017) %N =) 169

Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/060114

Exponentiated Inverse Flexible Weibull Extension
Distribution

M. EI-Morshedy*, A. H. El-Bassiouny and A. EI-Gohary

Department of Mathematics, College of Science, Mansouiigdusity, Mansoura 35516, Egypt.

Received: 24 Sep. 2016, Revised: 22 Jan. 2017, Accepted. 26&7
Published online: 1 Mar. 2017

Abstract: A new two parameter distribution is recently propoesd bysBhary et al.§], called as the inverse flexible Weibull extension
distribution. In this paper, we propose a new three paramebelel by exponentiating the inverse flexible Weibull esien distribution
[8]. We called it the exponentiated inverse flexible Weibuliemsion (EIFW) distribution. Several properties of thistdbution have
been discussed such as the probability density functiestivival function, the failure rate function and the moisemhe maximum
likelihood estimators of the parameters are derived. Tvab data sets are analyzed using the new model, which showhbatew
model fits the data better than some other very well known iisode
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1 Introduction

Many statisticians are interested in finding a new lifetiristributions, which have some properties that enable tlhamsé
these new lifetime distributions in predicting and desagtthe lifetime of some devices. The Weibull distributidi®] is
always used in modeling the lifetimes of physical systemgjrezering applications and many different fields. Thenefo
the attention of many researchers in previous years turpsawided many extensions for the Weibull distribution and
studied it. The exponentiated Weibull distribution is ppepd by Mudholkar and et alL{]. Sarhan et al.15] introduced

a four parameter distribution and called it the exponeadahodified Weibull extension distribution. The exponeetia
generalized Weibull- Gompertz distribution is proposedbyBassiouny and et al5]. Many authors discussed the inverse
Weibull distribution which is the reciprocal of a randomiadle has Weibull distribution such that Mudholkar and kol
[13], Jiang et al. 10] and Drapellaf]. Bebbington et al.Z] has defined a new two parameter distribution referred to as a
flexible Weibull extension distribution, which has a fa#duunction that can be decreasing, increasing or bathtytesha
El-Gohary et al. T] introduced a three parameter distribution and referreil &s the exponentiated flexible Weibull
extension distribution. Recently, the inverse flexible Budli extension distribution is proposed by El-Gohary ef 8],
which is the reciprocal of a random variable has flexible \WWkibxtension distribution. The inverse flexible Weibull
extension distribution has cumulative distribution fuont(CDF) given by

GxX)=e "™ a,p>0,x>0, 1)

and the probability density function (pdf) takes the foliog/form
g(x) = (B+ %)e"/xfﬁxe*en/xfﬁx; a, B>0, x>0. )

The aim of this paper is to propose and studing a new thresapeter distribution by exponentiating the inverse flexible
Weibull extension distributiond]. We referred to it by the exponentiated inverse flexible b#iextension distribution
(EIFW).

The paper is organized as follows. In Section 2, we presentHiF\W distribution, and provide its cumulative
distribution function, the probability density functiotme reliability function, the failure rate function and theversed
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failure rate function. Sum statistical properties suchhasuantile, the median, the mode and the moments are othtaine
in Section 3. Section 4 obtains the parameter estimatiomgusILE method. In Section 5, a numerical results are

obtained by using two real data. Finally, a conclusion fermbsults is given in Section 6.

2 Exponentiated inverse flexible Weibull extension distrilation

2.1 EIFW specifications

A non-negative random variablé¢ ~ EIFW distribution with three paramete®@ = (a,,A), sayEIFW(Q) if its
cumulative distribution function is given by the followiigrm

F(x)=e ¥ ™ q B, A>0,x>0. 3)

The two parameters andf are scale parameters buts the shape parameter. The density function corresponalif®)
is

f(X) = A (B + %)e“/x—ﬁXe—Ae"/ P q B, A>0, x> 0. @)

The inverse flexible Weibull extension distribution can leeiekd by putting the paramet&requals one. Plots of the pdf
for theEIFW distribution at various values of, 3 andA are given in Figure 1. From this figure, it is clear that the qidf
the EIFW distribution can be right skewed or unimodal.
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Fig. 1: The pdf of theEIFW distribution at various values af, 8 andA.

2.2 Reliability analysis
If X ~ EIFW(Q), then the reliability function oX is

RX) =1-F(x)=1-e" " g1 >0, x>0, (5)
while its failure rate function is given by

f()  A(B+g)e/x Prghe ¥
RY) — 1-erer P

;a,B,A>0,x>0. (6)
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Also, the reversed failure rate functionXfis given by

g = F00 _ AB+ F) PR
TR e AP

=MB+%WW*‘ (7)

Plots of the failure rate function of tHelFW distribution for various values of its parameters are giveRigure 2.
From this figure, it is clear that the failure rate functiortloé EIFW distribution can take different shapes based on the
values ofa, 8 andA, which makes the new model more flexible to fit different life¢ data sets.
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Fig. 2: The failure rate function of thEIFW distribution at various values @f, 8 andA.

3 Characteristics of EIFW

3.1 Quantile function and median

The quantilex, of the EIFW distribution can be easily given by

m:-5{—m@5mm»+¢bm—lmmwz+mw} 0<g<1 (8)
28 A A ’ '
Sittingq = % in (8), we get the median d&IFW distribution as
2
Medxrzf%{—MN—%"N;)+VTM—%"N§ﬂ +4aﬁ}. )
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3.2 The mode

We will derive the mode of th&IFW distribution by derivative4) with respect tok and equate it to zero. The mode is
the solution the following nonlinear equation with respect

20
ax-+pBx3

(%+BNMWFW—Q— (10)

In the general case, it is not possible to get an explicittBmiun x to (10). So, we must use numerical methods such as
bisection or fixed-point to find the solution df@).

3.3 The moment

In this subsection, we will derive th& moment of theEIFW distribution as infinite series expansion.

Theorem 1.1f X ~ EIFW(Q), then ther™ moment ofX is given by

© (=1)IAtlakr(r—k—1) [(r—K)(r—k+1) . 2
Z)z k! J' Br k— 1( _|_1)r 2k+1[ B +a(1+1) : (11)
Proof: Ther™ moment of the postive random variat{ewith pdf f (x) is given by
M”:/%meﬁjﬂx (12)
0
Substituting from 4) into (12), we get
IJ(r) :/ XA (B_’_%)ea/xfﬁxef)\e“/x’ﬁxdx
= )\B/ e?/xPre ’\ea/xfﬁxdx+/\a/xr‘ze"’/x‘ﬁxe"‘ea/xfﬁxdx
0
Let . .
I, = /Xrea/xfﬁxef)\ea/x—ﬂxdxﬂ Iy = /erzea/xfﬁxef)\eﬂ/X—Bde’
0 0
then
=ABli+Aal,. (13)
Using the series expansionef ¢ * one gets
© CNAL R e
w5 S el
= J 0
Using the series expansion@f1?/X we have
[1 = o - ( J)‘Ja k ooxr k _Hlﬁxdx
1= j! k'

0
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Using the substitutiog = (j 4+ 1)Bx in the previous integral, then we can get

DA akr (r—k+1)

Zo kl J| Bri(j 1 1) 2k (14)

Similary, we obtain
DIATakr (r—k—1)

ZOZ kl J| BrkI(j41)2&1°
Substituting from 14) and (L5) into (13) we find (L1), which completes the proof.

(15)

3.4 Moment generating function

In this subsection, we derived the moment generating fancf EIFW distribution as infinite series expansion according
to the following theorem.

Theorem 2.1f X ~ EIFW(Q), then the moment generating functibk () is given by

© 2 2 ()AL (r— k- )t {(f—k)(f—“l) a(j+1)?|. (16)

EOEOZHM |Brk1(J+1)r 2k+1 B

Proof: We start with the well-known definition of the moment geniexgfunction given by
t) = /e"tf(x;a,B,)\)dx
0

Using the series expansion@f, we have

© ¢

Mx (t) = Z):—!/x’f(x;a,ﬁ,)\)dx= i%um. (17)

=0

Substituting from 11) into (17), we find (L6), which completes the proof.

4 Estimation and inference

In this section, we discuss the estimation of the model patars by using the method of maximum likelihood. Also, the
asymptotic confidence intervals of these parameters willdreved.

4.1 Maximum likelihood estimators

We will derive the maximum likelihood estimators (MLES) bEtunknown parametets, 3 andA. Let Xy, Xo, ..., Xy be
a random sample of sizefrom EIFW(Q), then the likelihood functiom of this sample for the vector of parameters

=(a,B,A)is
I:_rlf(xi;a,B,)\). (18)

Substituting from 4) into (18), we get

- { /5 BigAd f‘*n}.

;:I
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The log-likelihood functiorL = In(l) can be written as

L=nIn(A)+ ai% - Bim —A .ie"/yﬂ—ﬁm +_§1In(ﬁ + %). (19)

The log-likelihood function can be maximized either ditgatr by solving the normal equations &f The normal
equations can be obtained by setting the first partial deresmof (L9) with respect toa, 3 andA to zero’s. The first
partial derivatives of19) with respect tax, 8 andA are obtained as follows

oL n & a/x—px
= § /B
A A i;

oL 21 Ze/hi o

1
%:i;;'_)\i: Xi +i;BXi2+a

and

s C o g0/% B | % X
_i;Xj—F/\i;Xie +i;Bxi2-|—a'

The normal equations take the following form:

n_o 0/% Bx _
x = (20)
T2
AN eé/xl BX| n 1
Z A + =0 (21)
zlx' Zl i; E;Xinra
and
SIVIE R IV MR B
SS X AHA S xed P =0. (22)
i; i; iZ\ﬁXiZ_HQ

The normal equations do not have explicit solutions and thmye to be obtained numerically. Froi20{ we can be

A
obtained the MLE ofA for a givenoAr andp as the following form

y___n (23)

R

n »
> el /% —BXi

Substituting from 23) into (21) and @2), we get the MLEs ofr andf by solving the following system of two non-linear
equations:

b /x—B

n A N X —BX; n

211_)\ e +21A ! =0, (24)
ax TN e

- Q - a /% lA?Xi - X 0 (25)
— Y X+AY xRNy =0
i; i; iZ\ﬁXiZ_HQ

Therefore, we have to use mathematical package such as MARREHCAD, MATLAB and MATHEMATICA to get
the MLEs of the unknown parameters.
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4.2 Asymptotic confidence bounds

In this subsection, we derive the asymptotic confidencevate of the unknown parameters 3 andA whena, 3, A >0

AN
[3]. The simplest large sample approach is to assume that thIesI(/fL B,A) are approximately multivariate normal with

mean(a, 3,A) and covariance matribgl, see [L2], wherelo‘1 is the inverse of the observed information matrix which
defined by

2 L LN [ var(6) Cov@.B) Cow@.A)
|0—1:_ a%zaLa 3;2;5 a%zaL/\ = Cov(LA%,oAr) Var LA?) CO\/(LA%,X) : (26)
aizal'a af\zal'ﬁ %Ii Cov(ﬁ,oAr) Cov(ﬁ,ﬁ) Var(ﬁ)
The second partial derivatives includel grare given as follows
a%L n a%L n e/ %—Px
A2 A% dda T 2 x

d°L N /% —Bx
v = a0 /Xi—BXi
EYYS i;x.e ’

PL_ e D 1

gar  TH X ABEF+a)?
2L 2
— G/XI Bx _ X
dadp =A Zl Z (B2 + a)?
and 2L x4
- = /Xl Bx _ .
op? Z Z (B¢ +a)?

We can derive th¢l — 5)100% confidence intervals of the parameter$8 andA by using variance covariance matrix

as in the following forms
aizg Var Biza\/Var andAiZa\/Var

whereZ; is the uppe(g)th percentile of the standard normal distribution.
2

5 Data analysis

In this section we analyze two real data sets to illustraté¢ the EIFW can be a good lifetime model comparing
with many known distributions such as flexible Weibutiverse flexible Weibullinverse Weibull, generalized inverse
Weibull[9] and exponentiated generalized inverse Weillitifistributions EW, IFW, IW, GIW, EGIW). We have fitted
all selected distributions in each example. We calculatedkiolmogorov Smirnov (K-S) distance test statistic and its
corresponding p-value, the log-likeihood (L), Akaike infmation criterion (AIC), correct Akaike information criien
(CAIC) and Bayesian information criterion (BIC) values.

Example 6.1.The data set in Table 1, gives the lifetimes of 50 devices et provided by (Aarset, 1987])[ The
MLEs of the unknown parameters and the Kolmogorov-Smirke8] test statistic with its corresponding p-value for the
six tested models are given in Table 2. The fitted survivalfaildre rate functions are shown in Figure 3 and Figure 4
respectively. The K-S test statistic value EIF-W model is 01575 and the corresponding p-value i46275 Depending
on the K-S test statistic values and its corresponding peglwhich given in Table 2, we can deduce tligtboth the
IW andFW distributions are rejected at any level of significadce 6 x 10~2, (ii) the GIW distribution must be rejected
atd > 3.8 x 107>, (iii ) both thelFW andEGIW distributions are rejected &t> 2.5 x 10~3, (iv) the EIFW distribution

is accepted ad < 0.155 and (v) the EIFW model has the lowest K-S value and the highest p-value amibriigea
models used here to fit the current data set, which meansheatew model fits the data better than &/, IW,
GIW, EGIW andIFW models. The log-likeihood, Akaike information criteriamgrrect Akaike information criterion and
Bayesian information criterion values for the six testediels are given in Table 3. From Table 3 we find that, EhEW
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distribution has the lowest L, AIC, CAIC and BIC values. Thanfirms that thé& IFW model fits the data better than all
models used here to fit the current data set.

Table 1.
Life time of 50 devices, see Aarset(1981)[

61 62 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18
18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67
72 75 79 82 82 83 84 84 84 8 85 85 85 85 86 86

Table 2.

The MLEs, K-S and p-values for Aarset data.

The model MLE of the parameters K-Svalue p-value
FW & = 0.0122 B = 0.7002 04386  429x10°°
W 8{ = 1.O43,LA3 =0.397 Q435 595x 107°
GIW a— 0.59(;@ =0.274, 0-1273 Q324 372x 1075
EGIW a—= 1.00&% = 0.6178 = 2.14273 =075 0254 247x 1073
IFW 8 = 0.165523 =0.024 Q276 738x 104
EIFW (/3\( = 0.0988% = 0.029633\\ =2.1872 0.157 01528

Fig. 3: The empirical and fitted survival functions of selected niedier Aarset data.
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Table 3.

The log-likelihood, AIC, CAIC and BIC values for Aarset data

The model L AIC CAIC BIC
W —-28107 56614 566396 569964
GIW —287.48 580951 581473 586687
EGIW —254.92 517839 518727 525487
FW —-25081 505620 50588 509448
IFW —24257 488914 489169 492738
EIFW —23352 473029 473551 478765

Substituting the MLESs of the unknown parameters ir6) (we get estimation of the variance covariance matrix as the
following:

—0.000026 00000139 (00061
—0.00495 000061 013745

. ( 0.000998 —0.000026—0.00495)
lot=

The approximate 95% two sided confidence intervals of thenawk parametera, 8 andA are given respectively as
[0.0369190.160760, [0.0223260.036926 and[1.4604962.913823. The profiles of the log-likelihood function af,

0.05

007

0.06

0.0z

Fig. 4: The fitted hazard functions of selected models for Aarset.dat

B andA for Aarset data are ploted in Figure 5, Figure 6 and Figurespaetively. From the plots of the profiles of the
log-likelihood function ofa, B andA, we show that the likelihood equations have a unigue solution

Example 6.2.Table 4, gives the data set corresponding to remission t{masonths) of 128 bladder cancer patients
reported in Lee and Wang (2003})]. The fitted survival and failure rate functions are showrrigure 8 and Figure 9
respectively. From Figure 8 we can observed thatEHeW distribution fits the data set better than all other distidns
considered here, because its fitted curve is closer to th&ieaigurve. The MLEs of the unknown parameters and the K-
S test statistic with its corresponding p-value for the estéd models are given in Table 5. The K-S test statisticavalu
EIFW model and the corresponding p-value are7® and 4312x 10~* respectively. In fact, based on the values of the
K-S test statistic and its corresponding p-values , we cdnckethat{i) thelW, IFW, EGIW, GIW andFW distributions
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Fig. 5: The profile of the log-likelihood function of for Aarset data.
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Fig. 6: The profile of the log-likelihood function @3 for Aarset data.

are rejected at any level of significande> 5.3 x 1013, (ii) the EIFW distribution is accepted a < 4.5 x 10~% and
(iii ) the EIFW model has the lowest K-S value and the highest p-value amibtigeanodels used here to fit the current
data set, which means that the new model fits the data betterttieF\W, IW, GIW, EGIW andIFW models. In fact,
based on the values of the L, AIC, CAIC and BIC given in Table/é observe that the I[FW distribution has the lowest
L, AIC, CAIC and BIC values. Therefore, tielFW model is the best fit for these data among all the models used he
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Fig. 7: The profile of the log-likelihood function of for Aarset data.

Table 4.

Remission times of 128 bladder cancer patiemsise Lee and Wang (2003}].
0.08 209 348 487 694 866 1311 2363 020 223
9.02 1329 040 226 357 506 709 922 1380 2574
509 726 947 1424 2582 051 254 370 517 728
0.81 262 382 532 732 1006 1477 3215 264 388
14.83 3426 090 269 418 534 759 1066 1596 3666
541 762 1075 1662 4301 119 275 426 541 763
283 433 549 766 1125 1714 7905 135 287 562
140 302 434 571 793 1179 1810 146 440 585
176 325 450 625 837 1202 202 1331 451 654
202 336 676 1207 2173 207 336 693 865 1263

352
050
974
532
105
1712
7.87
826
853
2269

498 697
246 364
1476 2631
739 1034
269 423
4612 126
1164 1736
1198 1913
1203 2028

Table 5.
The MLEs, K-S and p-values for Lee and Wang data.

The model MLE of the parameters

FW(a,B) =0.0535 B 0.915

W 16.14, B 0464

GIW 075B 0346 1.79
EGIW 100&3 056 105)\—2
IFW 012&3 0.143

EIFW G — 0.0802 f — 0.1697 A — 2.465

K-S value
0390
0503
0369
0.608
Q333
0.179

p-value
112x 107/
402x 10729
720x 10716
236x 10742
5294x 10713
4312x 1074

Q> Q> Q>
I |

Q>
I

Table 6.
The log-likelihood, AIC, CAIC and BIC values for Lee and Waahata.

The model L AIC CAIC

BIC

FW
W
GIW
EGIW
IFW
EIFW

—52553
—-50012
—49518
—48805
—45361
—42346

105507
100425
996362
98409
91122
852909

105516
100433
99656
98442
91131
853104

106077
100994
100492
9955
91692
86147
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Fig. 9: The fitted hazard functions of selected models for Lee anddvdarte data.

Substituting the MLESs of the unknown parameters ir#6) (we get estimation of the variance covariance matrix as
the following

0.0005871 —0.0001094—-0.003909
I(;l: —0.0001094 (00001639 00023999
—0.003909 00023999 0929777
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The approximate 95% two sided confidence intervals of thenawk parametera, 8 andA are given respectively as
[0.078400.1734,[0.117890.16807 and[1.86753.06279.

—434-
495
432
—430 -

5 The MLE of o = 0.0802
434
_436
432
—447
EII o IEI.Ililjl o IEI.III:II o IEI.Iljl o II:I.IEEI

]

Fig. 10: The profile of the log-likelihood function of for Lee and Wang data.

- 500 1 /_’G\
—@00
=00
The MLE of p = 0.1697
~ 200 H
=500
|:I| I Ufl . D.IE . |:|T3 I |:|T4

B

Fig. 11: The profile of the log-likelihood function @ffor Lee and Wang data.

To show that the likelihood equations have a unique soluti@nplot the profiles of the log-likelihood function of,
B andA for Lee and Wang data. in Figure 10, Figure 11 and Figure Jiecwvely.

6 Conclusions

In this paper, we propose a new three parameter model weddaltbe exponentiated inverse flexible Weibull
extension distribution. Some statistical properties @ thstribution have been derived and discussed. The deanti
median, mode and the moments BfFW are derived in closed forms. The maximum likelihood estoratof the
parameters are derived and we obtained the observed Figbemation matrix. Two real data sets are analyzed using
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-500
—A00 ~
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=1100 4
1] 1 2
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2

Fig. 12: The profile of the log-likelihood function of for Lee and Wang data.

the new distribution and it is compared with flexible Weibutiverse flexible Weibullinverse Weibull, generalized
inverse Weibull and exponentiated generalized inversédilledistributions. It is evident from the comparisons tiz
new distribution is the best distribution for fitting thessta sets compared to other distributions considered here.
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