
J. Stat. Appl. Pro.6, No. 1, 169-183 (2017) 169

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/060114

Exponentiated Inverse Flexible Weibull Extension
Distribution
M. El-Morshedy∗, A. H. El-Bassiouny and A. El-Gohary

Department of Mathematics, College of Science, Mansoura University, Mansoura 35516, Egypt.

Received: 24 Sep. 2016, Revised: 22 Jan. 2017, Accepted: 9 Feb. 2017
Published online: 1 Mar. 2017

Abstract: A new two parameter distribution is recently propoesd by El-Gohary et al. [8], called as the inverse flexible Weibull extension
distribution. In this paper, we propose a new three parameter model by exponentiating the inverse flexible Weibull extension distribution
[8]. We called it the exponentiated inverse flexible Weibull extension (EIFW) distribution. Several properties of this distribution have
been discussed such as the probability density function, the survival function, the failure rate function and the moments. The maximum
likelihood estimators of the parameters are derived. Two real data sets are analyzed using the new model, which show thatthe new
model fits the data better than some other very well known models.
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1 Introduction

Many statisticians are interested in finding a new lifetime distributions, which have some properties that enable them to use
these new lifetime distributions in predicting and describing the lifetime of some devices. The Weibull distribution [16] is
always used in modeling the lifetimes of physical systems, engineering applications and many different fields. Therefore,
the attention of many researchers in previous years turns toprovided many extensions for the Weibull distribution and
studied it. The exponentiated Weibull distribution is proposed by Mudholkar and et al. [14]. Sarhan et al. [15] introduced
a four parameter distribution and called it the exponentiated modified Weibull extension distribution. The exponentiated
generalized Weibull- Gompertz distribution is proposed byEl-Bassiouny and et al. [5]. Many authors discussed the inverse
Weibull distribution which is the reciprocal of a random variable has Weibull distribution such that Mudholkar and Kollia
[13], Jiang et al. [10] and Drapella [4]. Bebbington et al. [2] has defined a new two parameter distribution referred to as a
flexible Weibull extension distribution, which has a failure function that can be decreasing, increasing or bathtub shaped.
El-Gohary et al. [7] introduced a three parameter distribution and referred toit as the exponentiated flexible Weibull
extension distribution. Recently, the inverse flexible Weibull extension distribution is proposed by El-Gohary et al.[8],
which is the reciprocal of a random variable has flexible Weibull extension distribution. The inverse flexible Weibull
extension distribution has cumulative distribution function (CDF) given by

G(x) = e−eα/x−βx
; α, β > 0, x> 0, (1)

and the probability density function (pdf) takes the following form

g(x) = (β +
α
x2 )e

α/x−β xe−eα/x−βx
; α, β > 0, x> 0. (2)

The aim of this paper is to propose and studing a new three-parameter distribution by exponentiating the inverse flexible
Weibull extension distribution [8]. We referred to it by the exponentiated inverse flexible Weibull extension distribution
(EIFW).

The paper is organized as follows. In Section 2, we present the EIFW distribution, and provide its cumulative
distribution function, the probability density function,the reliability function, the failure rate function and thereversed
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failure rate function. Sum statistical properties such as the quantile, the median, the mode and the moments are obtained
in Section 3. Section 4 obtains the parameter estimation using MLE method. In Section 5, a numerical results are
obtained by using two real data. Finally, a conclusion for the results is given in Section 6.

2 Exponentiated inverse flexible Weibull extension distribution

2.1 EIFW specifications

A non-negative random variableX ∼ EIFW distribution with three parametersΩ = (α,β ,λ ), say EIFW(Ω) if its
cumulative distribution function is given by the followingform

F(x) = e−λ eα/x−βx
; α, β , λ > 0, x> 0. (3)

The two parametersα andβ are scale parameters butλ is the shape parameter. The density function correspondingto (3)
is

fX(x) = λ (β +
α
x2 )e

α/x−β xe−λ eα/x−βx
; α, β , λ > 0, x> 0. (4)

The inverse flexible Weibull extension distribution can be derived by putting the parameterλ equals one. Plots of the pdf
for theEIFW distribution at various values ofα, β andλ are given in Figure 1. From this figure, it is clear that the pdfof
theEIFW distribution can be right skewed or unimodal.

Fig. 1: The pdf of theEIFW distribution at various values ofα, β andλ .

2.2 Reliability analysis

If X ∼ EIFW(Ω), then the reliability function ofX is

R(x) = 1−F(x) = 1−e−λ eα/x−βx
; α,β ,λ > 0, x> 0, (5)

while its failure rate function is given by

h(x) =
f (x)
R(x)

=
λ (β + α

x2 )e
α/x−β xe−λ eα/x−βx

1−e−λ eα/x−βx
; α,β ,λ > 0, x> 0. (6)
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Also, the reversed failure rate function ofX is given by

r(x) =
f (x)
F(x)

=
λ (β + α

x2 )e
α/x−β xe−λ eα/x−βx

e−λ eα/x−βx

= λ (β +
α
x2 )e

α/x−β x. (7)

Plots of the failure rate function of theEIFW distribution for various values of its parameters are givenin Figure 2.
From this figure, it is clear that the failure rate function oftheEIFW distribution can take different shapes based on the
values ofα, β andλ , which makes the new model more flexible to fit different lifetime data sets.

Fig. 2: The failure rate function of theEIFW distribution at various values ofα, β andλ .

3 Characteristics of EIFW

3.1 Quantile function and median

The quantilexq of theEIFW distribution can be easily given by

xq =
1

2β







− ln(−
1
λ

ln(q))+

√

[

ln(−
1
λ

ln(q))

]2

+4αβ







, 0< q< 1. (8)

Sittingq= 1
2 in (8), we get the median ofEIFW distribution as

Med(X) =
1

2β







− ln(−
1
λ

ln(
1
2
))+

√

[

ln(−
1
λ

ln(
1
2
))

]2

+4αβ







. (9)
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3.2 The mode

We will derive the mode of theEIFW distribution by derivative (4) with respect tox and equate it to zero. The mode is
the solution the following nonlinear equation with respectto x

(
α
x2 +β )

[

λeα/x−β x
−1

]

−
2α

αx+βx3 = 0. (10)

In the general case, it is not possible to get an explicit solution in x to (10). So, we must use numerical methods such as
bisection or fixed-point to find the solution of (10).

3.3 The moment

In this subsection, we will derive therth moment of theEIFW distribution as infinite series expansion.

Theorem 1.If X ∼ EIFW(Ω), then therth moment ofX is given by

µ (r) =
∞

∑
j=0

∞

∑
k=0

(−1) jλ j+1αkΓ (r − k−1)
k! j! β r−k−1( j +1)r−2k+1

[

(r − k)(r − k+1)
β

+α( j +1)2
]

. (11)

Proof: Therth moment of the postive random variableX with pdf f (x) is given by

µ (r) =

∞
∫

0

xr f (x;α,β ,λ )dx. (12)

Substituting from (4) into (12), we get

µ (r) =

∞
∫

0

xr λ (β +
α
x2 )e

α/x−β xe−λ eα/x−βx
dx

= λ β
∞
∫

0

xreα/x−β xe−λ eα/x−βx
dx+λ α

∞
∫

0

xr−2eα/x−β xe−λ eα/x−βx
dx.

Let

I1 =

∞
∫

0

xreα/x−β xe−λ eα/x−βx
dx, I2 =

∞
∫

0

xr−2eα/x−β xe−λ eα/x−βx
dx,

then
µ (r) = λ β I1+λ αI2. (13)

Using the series expansion ofe−λ eα/x−βx
, one gets

I1 =
∞

∑
j=0

(−1) jλ j

j!

∞
∫

0

xre( j+1)[α
x −β x]dx.

Using the series expansion ofe( j+1)α/x, we have

I1 =
∞

∑
j=0

∞

∑
k=0

(−1) jλ jαk( j +1)k

j! k!

∞
∫

0

xr−ke−( j+1)β xdx.
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Using the substitutiony= ( j +1)βx in the previous integral, then we can get

I1 =
∞

∑
j=0

∞

∑
k=0

(−1) jλ jαkΓ (r − k+1)
k! j! β r−k+1( j +1)r−2k+1 . (14)

Similary, we obtain

I2 =
∞

∑
j=0

∞

∑
k=0

(−1) jλ jαkΓ (r − k−1)
k! j! β r−k−1( j +1)r−2k−1 . (15)

Substituting from (14) and (15) into (13) we find (11), which completes the proof.

3.4 Moment generating function

In this subsection, we derived the moment generating function ofEIFW distribution as infinite series expansion according
to the following theorem.

Theorem 2.If X ∼ EIFW(Ω), then the moment generating functionMX(t) is given by

MX(t) =
∞

∑
r=0

∞

∑
j=0

∞

∑
k=0

(−1) jλ j+1αkΓ (r − k−1)tr

r! k! j! β r−k−1( j +1)r−2k+1

[

(r − k)(r − k+1)
β

+α( j +1)2
]

. (16)

Proof: We start with the well-known definition of the moment generating function given by

MX(t) =

∞
∫

0

ext f (x;α,β ,λ )dx.

Using the series expansion ofext, we have

MX(t) =
∞

∑
r=0

tr

r!

∞
∫

0

xr f (x;α,β ,λ )dx=
∞

∑
r=0

tr

r!
µ (r). (17)

Substituting from (11) into (17), we find (16), which completes the proof.

4 Estimation and inference

In this section, we discuss the estimation of the model parameters by using the method of maximum likelihood. Also, the
asymptotic confidence intervals of these parameters will bederived.

4.1 Maximum likelihood estimators

We will derive the maximum likelihood estimators (MLEs) of the unknown parametersα, β andλ . Let X1,X2, ...,Xn be
a random sample of sizen from EIFW(Ω), then the likelihood functionl of this sample for the vector of parameters
Ω = (α,β ,λ ) is

l =
n

∏
i=1

f (xi ;α,β ,λ ). (18)

Substituting from (4) into (18), we get

l =
n

∏
i=1

{

λ (β +
α
x2

i

)eα/xi−β xi e−λ eα/xi−βxi

}

.
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The log-likelihood functionL = ln(l) can be written as

L = nln(λ )+α
n

∑
i=1

1
xi
−β

n

∑
i=1

xi −λ
n

∑
i=1

eα/xi−β xi +
n

∑
i=1

ln(β +
α
x2

i

). (19)

The log-likelihood function can be maximized either directly or by solving the normal equations ofL. The normal
equations can be obtained by setting the first partial derivatives of (19) with respect toα, β andλ to zero’s. The first
partial derivatives of (19) with respect toα, β andλ are obtained as follows

∂L
∂λ

=
n
λ
−

n

∑
i=1

eα/xi−β xi ,

∂L
∂α

=
n

∑
i=1

1
xi
−λ

n

∑
i=1

eα/xi−β xi

xi
+

n

∑
i=1

1

βx2
i +α

and

∂L
∂β

=−

n

∑
i=1

xi +λ
n

∑
i=1

xie
α/xi−β xi +

n

∑
i=1

x2
i

βx2
i +α

.

The normal equations take the following form:

n
∧

λ
−

n

∑
i=1

e
∧
α/xi−

∧

βxi = 0, (20)

n

∑
i=1

1
xi
−

∧

λ
n

∑
i=1

e
∧
α/xi−

∧

βxi

xi
+

n

∑
i=1

1
∧

βx2
i +

∧
α

= 0 (21)

and

−

n

∑
i=1

xi +
∧

λ
n

∑
i=1

xie
∧
α/xi−

∧

βxi +
n

∑
i=1

x2
i

∧

βx2
i +

∧
α

= 0. (22)

The normal equations do not have explicit solutions and theyhave to be obtained numerically. From (20) we can be

obtained the MLE ofλ for a given
∧
α and

∧

β as the following form

∧

λ =
n

n
∑

i=1
e
∧
α/xi−

∧

βxi

. (23)

Substituting from (23) into (21) and (22), we get the MLEs ofα andβ by solving the following system of two non-linear
equations:

n

∑
i=1

1
xi
−

∧

λ
n

∑
i=1

e
∧
α/xi−

∧

βxi

xi
+

n

∑
i=1

1
∧

βx2
i +

∧
α

= 0, (24)

−

n

∑
i=1

xi +
∧

λ
n

∑
i=1

xie
∧
α/xi−

∧

βxi +
n

∑
i=1

x2
i

∧

βx2
i +

∧
α

= 0. (25)

Therefore, we have to use mathematical package such as MAPLE, MATHCAD, MATLAB and MATHEMATICA to get
the MLEs of the unknown parameters.
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4.2 Asymptotic confidence bounds

In this subsection, we derive the asymptotic confidence intervals of the unknown parametersα, β andλ whenα, β , λ > 0

[3]. The simplest large sample approach is to assume that the MLEs(
∧
α ,

∧

β ,
∧

λ ) are approximately multivariate normal with
mean(α,β ,λ ) and covariance matrixI−1

0 , see [12], whereI−1
0 is the inverse of the observed information matrix which

defined by

I−1
0 =−









∂ 2L
∂α2

∂ 2L
∂α∂β

∂ 2L
∂α∂λ

∂ 2L
∂β ∂α

∂ 2L
∂β 2

∂ 2L
∂β ∂λ

∂ 2L
∂λ ∂α

∂ 2L
∂λ ∂β

∂ 2L
∂λ 2









−1

=











Var(
∧
α) Cov(

∧
α,β ) Cov(

∧
α,

∧

λ )

Cov(
∧

β ,
∧
α) Var(

∧

β ) Cov(
∧

β ,
∧

λ )

Cov(
∧

λ ,
∧
α) Cov(

∧

λ ,
∧

β ) Var(
∧

λ )











. (26)

The second partial derivatives include inI0 are given as follows

∂ 2L
∂λ 2 = −

n
λ 2 ,

∂ 2L
∂λ ∂α

=−

n

∑
i=1

eα/xi−β xi

xi
,

∂ 2L
∂λ ∂β

=
n

∑
i=1

xie
α/xi−β xi ,

∂ 2L
∂α2 =−λ

n

∑
i=1

eα/xi−β xi

x2
i

−

n

∑
i=1

1

(βx2
i +α)2

,

∂ 2L
∂α∂β

= λ
n

∑
i=1

eα/xi−β xi −

n

∑
i=1

x2
i

(βx2
i +α)2

and
∂ 2L
∂β 2 =−λ

n

∑
i=1

x2
i eα/xi−β xi −

n

∑
i=1

x4
i

(βx2
i +α)2

.

We can derive the(1− δ )100% confidence intervals of the parametersα, β andλ by using variance covariance matrix
as in the following forms

∧
α ±Zδ

2

√

Var(
∧
α) ,

∧

β ±Zδ
2

√

Var(
∧

β ) and
∧

λ ±Zδ
2

√

Var(
∧

λ )

whereZδ
2

is the upper( δ
2 )th percentile of the standard normal distribution.

5 Data analysis

In this section we analyze two real data sets to illustrate that theEIFW can be a good lifetime model comparing
with many known distributions such as flexible Weibull, inverse flexible Weibull, inverse Weibull, generalized inverse
Weibull[9] and exponentiated generalized inverse Weibull[6] distributions (FW, IFW, IW, GIW, EGIW). We have fitted
all selected distributions in each example. We calculated the Kolmogorov Smirnov (K-S) distance test statistic and its
corresponding p-value, the log-likeihood (L), Akaike information criterion (AIC), correct Akaike information criterion
(CAIC) and Bayesian information criterion (BIC) values.

Example 6.1.The data set in Table 1, gives the lifetimes of 50 devices thatwere provided by (Aarset, 1987)[1]. The
MLEs of the unknown parameters and the Kolmogorov-Smirnov (K-S) test statistic with its corresponding p-value for the
six tested models are given in Table 2. The fitted survival andfailure rate functions are shown in Figure 3 and Figure 4
respectively. The K-S test statistic value forEIFW model is 0.1575, and the corresponding p-value is 0.15275.Depending
on the K-S test statistic values and its corresponding p-values, which given in Table 2, we can deduce that:(i) both the
IW andFW distributions are rejected at any level of significanceδ ≥ 6×10−9, (ii) theGIW distribution must be rejected
at δ ≥ 3.8×10−5, (iii ) both theIFW andEGIW distributions are rejected atδ ≥ 2.5×10−3, (iv) theEIFW distribution
is accepted atδ ≤ 0.155. and (v) the EIFW model has the lowest K-S value and the highest p-value among all the
models used here to fit the current data set, which means that the new model fits the data better than theFW, IW,
GIW, EGIW andIFW models. The log-likeihood, Akaike information criterion,correct Akaike information criterion and
Bayesian information criterion values for the six tested models are given in Table 3. From Table 3 we find that, theEIFW
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distribution has the lowest L, AIC, CAIC and BIC values. Thisconfirms that theEIFW model fits the data better than all
models used here to fit the current data set.

Table 1.
Life time of 50 devices, see Aarset(1987)[1].
0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18
18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67
72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

Table 2.
The MLEs, K-S and p-values for Aarset data.

The model MLE of the parameters K-S value p-value

FW
∧
α = 0.0122,

∧

β = 0.7002 0.4386 4.29×10−9

IW
∧
α = 1.043,

∧

β = 0.397 0.435 5.95×10−9

GIW
∧
α = 0.596,

∧

β = 0.274,
∧

θ = 1.273 0.324 3.72×10−5

EGIW
∧
α = 1.008,

∧

β = 0.61,
∧

θ = 2.142,
∧

λ = 0.75 0.254 2.47×10−3

IFW
∧
α = 0.165,

∧

β = 0.024 0.276 7.38×10−4

EIFW
∧
α = 0.0988,

∧

β = 0.02963,
∧

λ = 2.1872 0.157 0.1528

Fig. 3: The empirical and fitted survival functions of selected models for Aarset data.
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Table 3.
The log-likelihood, AIC, CAIC and BIC values for Aarset data.

The model L AIC CAIC BIC
IW −281.07 566.14 566.396 569.964
GIW −287.48 580.951 581.473 586.687
EGIW −254.92 517.839 518.727 525.487
FW −250.81 505.620 505.88 509.448
IFW −242.57 488.914 489.169 492.738
EIFW −233.52 473.029 473.551 478.765

Substituting the MLEs of the unknown parameters into (26), we get estimation of the variance covariance matrix as the
following:

I−1
0 =





0.000998 −0.000026−0.00495
−0.000026 0.0000139 0.00061
−0.00495 0.00061 0.13745





The approximate 95% two sided confidence intervals of the unknown parametersα, β andλ are given respectively as
[0.036919,0.160760], [0.022326,0.036926] and[1.460496,2.913823]. The profiles of the log-likelihood function ofα,

Fig. 4: The fitted hazard functions of selected models for Aarset data.

β andλ for Aarset data are ploted in Figure 5, Figure 6 and Figure 7 respectively. From the plots of the profiles of the
log-likelihood function ofα, β andλ , we show that the likelihood equations have a unique solution.

Example 6.2.Table 4, gives the data set corresponding to remission times(in months) of 128 bladder cancer patients
reported in Lee and Wang (2003)[11]. The fitted survival and failure rate functions are shown inFigure 8 and Figure 9
respectively. From Figure 8 we can observed that, theEIFW distribution fits the data set better than all other distributions
considered here, because its fitted curve is closer to the empirical curve. The MLEs of the unknown parameters and the K-
S test statistic with its corresponding p-value for the six tested models are given in Table 5. The K-S test statistic value for
EIFW model and the corresponding p-value are 0.179 and 4.312×10−4 respectively. In fact, based on the values of the
K-S test statistic and its corresponding p-values , we can deduce that:(i) theIW, IFW, EGIW, GIW andFW distributions
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Fig. 5: The profile of the log-likelihood function ofα for Aarset data.

Fig. 6: The profile of the log-likelihood function ofβ for Aarset data.

are rejected at any level of significanceδ ≥ 5.3×10−13, (ii) theEIFW distribution is accepted atδ ≤ 4.5×10−4 and
(iii ) theEIFW model has the lowest K-S value and the highest p-value among all the models used here to fit the current
data set, which means that the new model fits the data better than theFW, IW, GIW, EGIW andIFW models. In fact,
based on the values of the L, AIC, CAIC and BIC given in Table 6,we observe that theEIFW distribution has the lowest
L, AIC, CAIC and BIC values. Therefore, theEIFW model is the best fit for these data among all the models used here.
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Fig. 7: The profile of the log-likelihood function ofλ for Aarset data.

Table 4.
Remission times of 128 bladder cancer patients., see Lee and Wang (2003)[11].
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97
9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64
5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31
0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34
14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23
5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26
2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 13.31 4.51 6.54 8.53 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 5.
The MLEs, K-S and p-values for Lee and Wang data.

The model MLE of the parameters K-S value p-value

FW(α,β )
∧
α = 0.0535,

∧

β = 0.915 0.390 1.12×10−17

IW
∧
α = 16.14,

∧

β = 0.464 0.503 4.02×10−29

GIW
∧
α = 0.75,

∧

β = 0.34,
∧

θ = 1.79 0.369 7.20×10−16

EGIW
∧
α = 1.006,

∧

β = 0.5,
∧

θ = 1.05,
∧

λ = 2 0.608 2.36×10−42

IFW
∧
α = 0.126,

∧

β = 0.143 0.333 5.294×10−13

EIFW
∧
α = 0.0802,

∧

β = 0.1697,
∧

λ = 2.465 0.179 4.312×10−4

Table 6.
The log-likelihood, AIC, CAIC and BIC values for Lee and Wangdata.

The model L AIC CAIC BIC
FW −525.53 1055.07 1055.16 1060.77
IW −500.12 1004.25 1004.33 1009.94
GIW −495.18 996.362 996.56 1004.92
EGIW −488.05 984.09 984.42 995.5
IFW −453.61 911.22 911.31 916.92
EIFW −423.46 852.909 853.104 861.47
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Fig. 8: The empirical and fitted survival functions of selected models for Lee and Wang data.

Fig. 9: The fitted hazard functions of selected models for Lee and Wang data data.

Substituting the MLEs of the unknown parameters into (26), we get estimation of the variance covariance matrix as
the following

I−1
0 =





0.0005871 −0.0001094−0.003909
−0.0001094 0.0001639 0.0023999
−0.003909 0.0023999 0.0929777



 .
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The approximate 95% two sided confidence intervals of the unknown parametersα, β andλ are given respectively as
[0.07840,0.1734], [0.11789,0.16807] and[1.8675,3.06279].

Fig. 10: The profile of the log-likelihood function ofα for Lee and Wang data.

Fig. 11: The profile of the log-likelihood function ofβ for Lee and Wang data.

To show that the likelihood equations have a unique solution, we plot the profiles of the log-likelihood function ofα,
β andλ for Lee and Wang data. in Figure 10, Figure 11 and Figure 12 respectively.

6 Conclusions

In this paper, we propose a new three parameter model we called it the exponentiated inverse flexible Weibull
extension distribution. Some statistical properties of this distribution have been derived and discussed. The quantile,
median, mode and the moments ofEIFW are derived in closed forms. The maximum likelihood estimators of the
parameters are derived and we obtained the observed Fisher information matrix. Two real data sets are analyzed using
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Fig. 12: The profile of the log-likelihood function ofλ for Lee and Wang data.

the new distribution and it is compared with flexible Weibull, inverse flexible Weibull, inverse Weibull, generalized
inverse Weibull and exponentiated generalized inverse Weibull distributions. It is evident from the comparisons thatthe
new distribution is the best distribution for fitting these data sets compared to other distributions considered here.
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