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Abstract: Inthis paper, we use Riccati transformation technique hadnhpulsive inequality to establish some new oscillatioteda

for the second-order nonlinear impulsive dynamic equatiom time scal&'. Our results generalize and extend some pervious results
[14,15,16,18,20]. Finally, we give some examples to show that impulses pldgrainant part in the oscillations of dynamic equations
on time scales and to illustrate our main results.
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1 Introduction papers are on the oscillation of impulsive dynamic
equations on time scales.

The theory of time scales was introduced by Hilg&?|[

in order to unify, extend and generalize ideas from
discrete calculus, quantum calculus and continuou§r'ter'a for second-order impulsive dynamic equations of
calculus to arbitrary time scale calculus. A time scale jsthe form

an arbitrary closed subset of the reals. When time scale, ,,

equals to the reals or to the integers, it represents thel X () +a(t)x(a(t))
classical theories of differential and difference equatio (k=12 ...,

Many other interesting time scales exist, e.g., |X(t))=a(X(t)), X2 (t5) =b(x*(t)).k=1,2,...,

T =g := {q' : t € Ng for g > 1} (which has important

applications in quantum theory)] = hN with h > 0,  Lju and Xu [20] considered the forced super-linear
T = N2 andT = T" (the space of the harmonic numbers). impulsive ordinary differential equation

For an introduction to time scale calculus and dynamic

equations, see Bohner and Peterson bod/&.[ (r(t )x( )) ( )X(1)[@-x(t) = e(t), t € T := [0,00) OT,
Recently, many results have been obtained on the t £,

oscillation and nonoscillation of dynamic equations on +k . ;o
time scales (see9[10,13,19,21] and references cited (X&) = ( (tk ))ax(tk):bk(x (t ). k=12,

Qiaoluan Li and Lina Zhoullg] studied the oscillation

=et),te]J:=[0,0)NT,t #t,

therein).
Impulsive dynamic equations on time scales have been Huang et al. [14,15 considered the second-order
investigated by Agarwal et al.1], Belarbi et al. p|,  nonlinear impulsive dynamic equations

Benchohra et al. [3-6] and so forth. Benchohra et @Jl. |

considered the existence of extremal solutions for a class{ xX*4(t) + f(t,x?(t)) =0, t € J := [0,00) N'T, t # ti,
of second order impulsive dynamic equations on time | k=12, ...,

scales. +y _ — Aty — A (t— _

The oscillation of impulsive differential equations and X(t‘jr) ‘gk(x(ﬁk )2’ X (tAk ) =Mt k=12,
impulsive difference equations has been investigated by X(tg) = X0, X*(tg)) =7,

many authors and many results were obtained (4ég [

17] etc. and the references cited therein). But fewer
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Here, we are concerned with the oscillation of second- AC' = {x : Jp — R is i — times A —
order nonlinear dynamic equation with impulses on a timeg eretjabl e, whose ith delta derivative x4 is
scaleT which is unbounded above absol utely continuous}.
(0GOS ) + 11X (1) = B (1), s ok = oo e Cahich
te]=[0,00)NT, t#t, k=1,2,.. X(t ), xt)), ¥4t ) and XA (L)) edg with x(ty) =
X(tlzr) = Ek(x(tl:))v x4 (tlj) = hk(XA (tI:))vk: 17 27 [x3) X(tk),XA (tk7) = XA (tk)}-

X(tg) = X0, X (tg ) =3,
@) :
whereT is an unbounded above time scale witke T, 2 Main results
teT, 0<tr<ti<tr<..<tx<..liM etk=co. . ] _ _ o .

Through out this paper we assumed the following I this section, we use Riccati substitution on time scales
conditions are satisfied: and establish new oscillation criteria for Eq.).(Before
(Hy) r(t) > 0 andf € Gg(T x R,R), uf(t,u) >0 u£0) We state and prove our main oscillation results, we prove
and {4 > p(t) (U # 0), wherep(t) € Crg(T, [0, +e)), some lemmas which are important in proving our main

é(u) ! results.
¢ (u) € CY(R,R) andug (u) >0 (u#0), ¢ (u) > 0.
(Ho) G: T x R — R is a function such that Lemmal [15] Assume that m e PC N AC!
(Jr\ {t1,t2,...},R) and
uG(t,u) > 0foru+#£0 andG(t’ W <e(t),u#£0, mA(t) < p(t)m(t) +q(t),t € Jp:=[0,00) NT, t #ti, k=1,2,...,
¢ (u) m(te) < demity) + bok=1,2,...,

)

(H3) &.hx € C(R,R) and there exist positive constants
ay, ay, bk and by such that

aﬁs@sak, by <

thenfor t > tg

m(t) <mito) [ deep(t.to) + ( dea@Om
KUU) tol:kld ° to<Zk<t tkl:j|<t I

+ t [1 deep(t,a(s)a(s)As. (3)

to s<t<t

<b,u#0 k=1,2,...

(Hg) g € C4(R,R) is continuous and increasing function
with ug(u) > 0, u# 0, we have
, Lemma 2.Assumethat (H1)-(H4) hold and there exists e(t)
(i) guv) < g(u)g(v), uv # 0, such that (p(t) —e(t)) > 0and x(t) >0,t >T >ty isa
(i) A2g H(wgt(v) < g Huv) < g Hugi(v), nonoscillatory solution of (1). If

uv #£0,A1,A2 > 0,
1>94(nwmcmmﬂ

00 71 1
The purpose of this paper is to establish some new /to (V(S) [Mto<te<s 3
qthen x4 () > 0 and x2(t) > 0 for t € (t, t. 1], where

oscillation criteria for the second-order nonlinear

impulsive dynamic equations (1.1) which is not studie

before. Our results extend and improve some result k=T

established by 14,15,16,18,20] and can be applied t0  proof, First, we prove that? (t) > 0 fort, > T, otherwise,

arbitrary time scales. Some examples are given 0 showhere exist somg such that; > T andxA(t;) < 0, hence

that a dynamic equation is nonoscillatory, it may become N

oscillatory by adding some impulses to it. In this cases, xA(tJ*

impulses play a dominating part in oscillations of

dynamic equations on time scales. Letx2 (tf) =—B (B > 0). From Eq. 1), (H1) and H,), we

By a solution of (1.1), we mean that a nontrivial real paye fort (tiiop il i=1,2,...,

valued functiorx satisfies (1.1) fot € T. A solutionx of

(1.1) is called oscillatory if it is neither eventually pthae (rt) g4 (1)) =G(t,x (t)) — f(t,x°(t)) <

nor eventually negative, otherwise, it is called — (1) (p(t) —et)) <O

nonoscillatory. Eq. (1.1) is said to be oscillatory if all of -7

its solutions are oscnlatory. ie. (r(t)g(xA (t))) is nonincreasing ir(tj+iflatj+i]’]1‘y i —
Throughout the remainder of the paper, we assume| 2 . Then, we get

that, for eachk = 1,2,..., the points of impulse$ are

right-dense (rd for short). In order to define the solutions r(tj)

of (1.1), we introduce the spaces 90 (tj 1)) < r(tHl)g(xA(tf)),

AS= 0, 4)

) =hj (4 (1)) < bpx(t)) < 0.
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which implies that

XA (tj+l) S Alg—l<r(rt(.tj) )XA (t]_‘—) = —A]_Bgfl(r:t(]tiz)) < 07

x4 (tj42) <A1g” <r(tj+1)>xd(tj++1)
e (“’+1>)h,-+1<x4<tj+l>>

r(tj+2)

e
(tj)

r
< Alb]+lﬁg ! r(t

><O (6)

By induction, we get

XA(tJ+n) < —A1B9_1<

>|_lbj+l<0 (7)

Consider the following impulsive dynamic inequalities

(r(t)g(xA())) <O t>tj, t#£tk=j+1j+2,..,
XA <X (t),k=j+1,j+2,..,

letm(t) =r(t)g(x4(t)), then

mA(t) <Ot>tj, t £t k=j+1j+2..,
m(t,) <g(bom(t), k=j+1,j+2,....

Applying Lemmal, we get fort > t;

mt) < mt;) [ o(bi),

tj <te<t

rtgx (1) <r(t)gt (t)) 9(bi);

tj <<t

then, we get

e < af (10 peea (] am)

—azpg (5 o ( qu(b@)

= A2, thenM > 0 and hence

—Mgl<%)g1(|‘|tj<tk<tg(b§)>, ®)
<aX(ty), fork=j+21,j+2, ...

AssumingM

XA (1)
x(t)

IN

Applying Lemmal on (8), we get
t RYAICIA P
x(t) < x(t}") ayx— aMg 1(—)9
! tjl:k|<t t s<|;|<t r(s)

(tj <|t'k|<sg<b;>)As

= ] {x(tr) —A2Mg (1))

tj <te<t
07 Ty ctcs(50))

o 1
o (ws)
tj r(s) ﬂtj<tk<sak

From condition §), we get a contradiction wit®(t) > 0
ast — oo, Thereforex? (t) > 0 fort, > T. Since

As] . 9)

XA () = hi (X (),
then from Hs), we get for anyy > T
XA () > bixl (t) > 0.
Sincer (t)g(x2(t)) is decreasing irfty, tys 1], tx > T, we
get
0102 hog (T )8 11) 2 0.t

This completes the proof.

Remark
Whenx(t) is eventually negative, under hypothedig ¥-
(H4) and @), one can prove in a similar way thxﬁ(tk*) <
0 andx?(t) < 0 fort € (t, tkra]T, Wherety > T > to.

Lemma 3.Assumethat (H1)-(H4) hold and there exists e(t)
such that (p(t) —e(t)) > 0and x(t) >0, t > T >tgisa
nonoscillatory solution of (1). If
1
-1 -
g (r(t)>At+...+

t 1 b;
1 )at+ 2
/tog (f(t)> a
bibs...b, /tn+1 _1( 1 )
—Lzwn — At +... = oo, 10
aiay...an Ji, 9 r(t) + * (10)
then x2(t5) > 0 and x2(t) > 0 for t € (t,tk 1), Where

W>T.

Proof. First, we prove thatx®(t) > 0 for t, > T,
otherwise, there exist som¢ such thatt; > T and

X4 (tj) < 0. Proceeding as in the proof of Lemrawe
get G) and (7). Sincer(t)g(x4(t)) is nonincreasing in
(tj,tj+1]11~, t>T, then

XA(t) < Algl<%>xﬂ(tf),t S (tj,tj+1]11~.

Integrating the above inequality froiptotj 1, we get

JA @< Adog L r()A () fi ‘1(&>>“‘
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ie.,

X(tj41) < X(t7) = AA2Bg L (Y ))ﬁﬂ'“gl(r%>ﬂt-

Using Hs), we get

N
X(ti:2) < X(tf,1) +AAag M (r (42 0) O (K, /tj‘j g*(%)At

= §ualityn) +hg ey a0e ) [t (55

St r(t)

" 1
< ajeax(tiea) + AAog H(r(tja))bi XA (t 1) /11-1:12 971<m>m~

From () and (L1), we get

x(tj+2)<a|+1[( )~ AhaBg (e () /t';"“gfl(%)m],

J+1 ) ::2 : <<i>
= apa 1)) -wrapg ) [ )
“an o (o))

By induction, we get

Alz)\zbf+1l3971(r<tj+1))971 (

i) < B2 ) - Arhapa r0) /t:"“gfl(%)m

bj1 tj+zg—1<i>At+...+7bi+l hin-1 /Hn 9’1<i>ﬂt>]-
aj+1 Jtj g r(t) e aj+n 1 tjgn-1 r(t)

From condition {0) asn — o, we get a contradlct|on with
X(t) > 0,t > T. Therefore, fortk >T,x%(t) >0, and as
in the proof of Lemm&, we get

XA (t7) > Oandx? (t) > 0,t € (t, ta]r, th>T.
This completes the proof.

Remark

Whenx(t) is eventually negative, under hypothedik }-
(H4) and (LO), one can prove in a similar way thé’t(tk*) <
0 andx?(t) < 0 fort € (ty, 1], Wherety > T > to.
Theorem 1.Assume that (H1)-(Hz), (10) hold and there

exists e(t) such that (p(t) —e(t)) > 0 and & > 1, for
k > ko, ko isa positive integer. If

g 1 2 1 3
[ p0—emats o R0 —ewpats s [ o -ew)an
1 il
ot m/tn (P(t) — e(t) At + ... — w0 12)

then, Eq. (1) is oscillatory.

Proof. Assume that Eq1j has a nonoscillatory solution
Without loss of generality, we assume tixas eventually
positive solution of {), i.e. x(t) > 0,t >ty andky = 1.
From Lemma3, we havex®(t) > 0, t € (t,txy1)T, K =

thenw(t) > 0,k=1,2,... andw(t) > 0,t > to. Using the
delta derivative rules of the product and quotient of two
functions and then chain rule (se€]j[ Theorem 1.90]),
we find that when = t,

WA - (0902 m)°

¢(X"(t))

- / o' (x
From Eq. (L) we have

G(t,x7(t)) — F(t,x°(t))
WA (L) =

v 3
r(t
TBHOIP0C) / b (x
Using H1) and (—Iz) We get
W) < a) - pi) - SIS [P
< 7<p<t)fe<t)>- (14)

Since¢’(x(t)) > 0 and¢(x(t)) > 0, then from Hg) and
ag >1wegetfok=12,..

t)+hu(t)X® (t))dhxA (t).

t) + hu(t)x4(t))dh.

t)+hu(t)x?(t))dh

Witt) = rGH9 () _ ritgg(he(x (t)))
$(x(t)) ¢ (E(x(t))
r (69 (1) _ 1 (t)g(bi) g (t)
¢(ag(x(t)) — ¢ (x(t)
= g(b)W(ty). (15)
Integrating (4), we get
1
wit) <witg) — [*(p0) —er)at - (16)

Using (15), we get

w(ty) < g(by)w(ty) < g(b) [w(toﬂ -

Similarly, we get

W) < obewit) < ofba)[wtts) - (o) —ett) 1]

1 2
5 . o0 —e(t))At]

By induction, for any positive integer, we get

< glbu)a(en) ity - (i) ettt

W) < oor)a(e)-.ofbn) [wis) [ (0)e(t)at— s () —ett)an
1 tn
- G ., 0 -0 n

From condition 12) andg(by) > 0 (bx > 0), k=12, ...,
we getw(t;]) — —e asn — o, which is a contradiction
with w(t) > 0. This completes the proof.

Theorem 2.Assume that (Hi)-(Ha), (4) hold and there

exists e(t) such that (p(t) —e(t)) > 0 and & > 1, for
k > ko, ko is a positive integer. If

1,2,.... Define ® 1 o
. A 1 g PO -eat=e 19)
w(t) = X)) (13) " then, Eq. (1) isoscillatory.
(@© 2017 NSP
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Proof. As in the proof of Theoreri, we assume thatis Theorem 5.Assume that (H;)-(Hs), (4) hold and there
eventually positive solution oflf, i.e.x(t) > 0,t >tpand  exists e(t) such that (p(t) —e(t)) > 0 and a; > 1, for

ko = 1. From Lemma&, we havex? (t) > 0,t € (i, tc 1)1,
k=12, .... Definingw(t) as in (L3), we find that {4) and
(15) hold. Applying Lemmeéal on (14) and (15), we get

w(t) < w(to)

[ 900 [ [] oboels) —e(s)as
1 s<<t

to<ty<t

- ] o0 [wte [ ] g5 (e -esnas) (19)
Jog

to<ty<t Jg<s 9k

From condition 18), we get a contradiction ds— . This
completes the proof.

Theorem 3.Assume that (Hy)-(Hs), (10) hold and there

exists e(t) such that (p(t) — et)) > 0 and
¢ (ab) > ¢(a)¢(b), for anyab > 0. If

dap) f2 (@) [

[O (p(0) —eft)at+ Zo / () —eft)at+ GELEEE / (p(t) — e(t))At

g S0 (@) ; [ o0 —ettpats. =

9(b1)g(bz)...g(bn) Jin
then, Eqg. (1) is oscillatory.

Proof. Assume that Eq1j has a nonoscillatory solution
Without loss of generality, we assume tixas eventually
positive solution of 1), i.e. x(t) > 0,t >ty andky = 1.
From Lemma3, we havex?(t) > 0, t € (tg,tx 1], kK=
1,2,.... Definingw(t) as in (L3), we getw(t) > 0,t > to,

k > ko, ko isa positive integer. If

v (Mg g1 7 L - e
30 () () A1, 500 @ 0)as)as=o. @)
then, Eq. (1) isoscillatory.

Proof. Assume thak(t) > 0,t >ty be a nonoscillatory
solution of (1) and kyp = 1. From Lemma2, we have
XA(t5) >0,k=1,2,...andx?(t) > 0,t > to. By (H3) and

ag>1,k=12, .., weget

X(tg) < x(t) < X(t) < xX(t) <x(t)) <

It follows thatx(t) is nondecreasing ifig, ). From (@),

we have

{(r(t)g( (0)? < —(p(t) —e(t)$(x7(1)),t #t,k=1,2,...
At <bkxA(tk),k 1,2,.

)
Letm(t) =r(t)g(x*(1)).
m(t)? < —(p(t) —e(t))¢ (“())t#tk,k=1,2,...,
m(t") < g(bm(t).k=1,2,.

Applying Lemmal, we get

w(t") >0,k=1,2,.... From Theoreni, we find that {4) m(t) < m(s>s<|t'|<tg<bk> ’./stg |j tg(bk)(p(6> —€(0))$(x7(6))A8,1o < s<t,
holds fort = t, and _ “ h
wit) — L0 g0 0) _ rtgalboc ) €
P(x(t)) B (E(X()) (@ x(ty) r(Hged () <r(s)gx*(s) g<bk)7/ [T 9(b)(p(6) —e(8))9(x(8))A6,t<s<t,
- Wabigl ) _ 9b) 1 st 5 el
T @R . _ Then forty < s< t, we have
As in the proof of Theorer, by induction, we get for any
positive integen, X2 (s) > Ao ( ) *1( l‘| Fik) (9))¢(x"(9))A9>.
S s<ty <6
oy~ Glby)-g(by) 4 a8 20 e
) S S0 >{ (@)~ /10 (PO =08 o) -/11 (PO —enat Sinceg¢(x) > 0 (x# 0) and¢ (X) is nondecreasing, we get
_9(@)-9(E ) /™ _ - 1 Ao of 1N\ of [ 1 $(x°(6))
oot ) Jy #0202 @ o (a0 = 29 (g )0 (/] KD@W“’(Q)’G(Q” s 29)
From condition 20) ash — oo, we get a contradiction. This ;\2 B .
completes the proof. = h 1( ) 1( s sﬂg 9( bk )M) @
Theorem 4.Assume that (Hy)-(Ha), (4) hold and there  forse€ (ttia]r, k=1,2,.... Then
eXlng >E(t) SJbChf that b(p(t(% E E(t)) >0 and /‘tk+1 71( 1 )XA( )A /’X(tk+1) 71( 1 )Ae
al a , for anyab > 0. — S)As= — .
¢(ab) > ¢(a)¢(b) y L 9 e w9 30 -
/ M ¢(sk) (p(t) —e(t))At = oo, (23) Using 26) in (25), we get
o ot 90 Ei /tk“ga(i)g—l(nm In L(p(e)fem)me)m
then, Eq. (1) is oscillatory. SIS e s szo 9B

/tk+1 71<
; x(tk

)Ae
Hence

%k;/w ,1< ) (r'm./stkl:ld g(lk)(p(e)—e(e))A9>AS
S‘/x:g)gA(ﬁ)Ag'

From condition 24), we get a contradiction. This
completes the proof.

Proof. Similar to the proof of Theorem 3. So it is omitted.
In the following, we use the hypothesis:

(Hs) [ig ( ()>Au<oo for anye >0,

Jirg ( ))Au <
29 (%)Au<ooandf§°gl<ﬁ)Au<oo.

where means

(@© 2017 NSP
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Theorem 6.Assume that (Hi1)-(Hs), (4) hold and there
exists e(t) such that (p(t) — et)) > 0 and
¢ (ab) > ¢(a)¢(b), for anyab> 0. If

20 s ) (00,

then, Eq. (1) isoscillatory.

)A9>As: w, (27)

Proof. We assume thaft) > 0,t >ty be a nonoscillatory
solution of () and kg = 1. From Lemma2, we have
XA(t) > 0,t > to. Definingw(t) as in @3), we find that
(14) holds fort # tx and 1) holds. Then

{wﬂ(t) < —(p(t) —e(t)),t £t k=1,2, ...,

w(ty) < FRdw(to).k=1.2,...

Applying Lemmal, we get

9lb) /‘ 9(b)
s<tp<t ¢<aﬁ> 7S gy <t ¢(aﬁ>

It yields that

w(t) < w(s) (p(8) —e(0))AB,tg <s<t.

we > [ [ o p(0)-e(0))a0.
s S<ty<

ie.,

(g0 )*

forse (tx, tkra]T, k=1,2, ...

/tktk+1 g1 ( ; (x]is)) ) XA (s)As= /x;?}l) gt (ﬁ@)> (A2599)

o= 50 (i )o ([ 1 4 vie)-eenao)
s<t<
o

Hence

Using @9) in (28), we get
w2 L (g )o (im ), e e -e@nao s

@ X(ta) 1 1
— 0,
<3 o (¢<e>>A'
thus we have

n z/tktm 71( ) 71(‘21/; N ¢(b:))<p<9)fe<9)>Ae>As

s<tk<9g
. 1
< 1 -—— )ae.
*/x(tpg <¢<9>>

From condition 27), we get a contradiction. This
completes the proof.

Corollary 1.Assume that (H1)-(Hs), (4) hold and there
exists e(t) such that (p(t) —e(t)) >O0anda; > 1, by <1
for k > kg, ko is a postive integer. If
¥ (p(t) — e(t))At = o, then,

Eq. (1) isoscillatory.

Proof. Without loss of generality, &g = 1, byb, <1 and

1
g(by) <1, we getgpy = 1, therefore

t 1 t
LT g (PO —es)as> [ (p(s) - e(s)as

0 to<tk<s g( k) to

Ast — oo, using [“(p(t) — e(t))At = o and Theoren?,
we get that Eq.X) is oscillatory.

Corollary 2.Assume that (H1)-(Hs), (4) hold and there
exists e(t) such that (p(t) —e(t)) >0anda; > 1, b <1
for k > ko, ko is a positive integer. If

Jo a7 (75) 97 () (p(t) — et))At)As = e, then, Eq.
Q) is osullatory

Proof. Using Theorem 5, the proof is similar to the proof
of Corollary 1.

Corollary 3.Assume that (H1)-(Hs4), (10) hold and there
exists e(t) such that (p(t) —e(t)) > 0. Also, assume that
there exist a positive integer kg and a constant y > 0 such

that L y
* tk+l
ag > —g( )>( k) for k> ko. (30)
If .
| v -et)at=o, (31)

then, Eq. (1) isoscillatory.

Proof. Without loss of generality, ldg = 1, then

[ o0 - ew)ars
Jtg

; /tz(p(t) —e(t)At . ﬁ ‘/tntnﬂ(p(t) —e(t)at

) aoa:

> U] [Pt -evas / o) ettt [ o0 et

> 2 [* b0 -eas+ [ (oo -eas..+ [ (p(s)-e(s)as]
ty tn

=

1Y a1
== [T
1 Jtn

As n — o, using B1) and @2) yield that (L2) holds.
According to Theoreml, we obtain that Eqg. 1) is
oscillatory.

2

s) —e(s))As. (32)

Corollary 4.Assume that (H1)-(Hs4), (10) hold and there
exists e(t) such that (p(t) — et)) > 0 and
¢(ab) > ¢(a)¢(b) for ab > 0. Suppose there exist a
positive mteger ko and a constant y > O such that
4o > ,for k> ko. If [“tY(p(t) — e(t))At = o,
then, Eq. (1) is oscillatory.

tk+1

Proof. Similar to the proof of Corollary 3, and so it is
omitted.

Remark
(1) Wheng(x) = x* andG(t,x?(t)) = 0, we get the main
result of Huang16].

(2) Wheng(x) = x, r(t) = 1 andG(t,x?(t))
the main result of Huandl, 15].

=0, we get

Example 1.Consider the equatiofT = R)

(X (1) +(t|%+t2)x"(t)_t2x" t>3 t£k
x(kt) = (1+2)x(k),X (kt) =X (K), k=1,2,...,
X(%) = Xo, X,(%) :Xé)v

(33)
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wherev is the quotient of odd positive integers.
Hel’e,r() t!p() (tlnt+t ) ak:a§:1+%abk:
b; = 1, t = k and e(t) = t2. To apply Corollaryl, take
@(x) = x¥ andg(x) = x. Note that

900 4

“gr(L ds:/ms
‘/‘O g (r(s)) Jig tol?kl<s &
00 bi 00 k
= s —ds:/ s ——ds
'/10 tol?kl<s a to to<|T|k<s k+1

t1 k
s ds+ s ds
/to t0<|t-k|<s k+ 1 t tO<|t-k|<s k+1
t3 k
+ S ds+ ..
Jtp to<|T|k<s k+1

Thus condition (4) is satisfied. L&y = 1. Then

gt ( |_|to<tk<sg<bﬁ)>
|_|10<tk<sak

ag >1landby=1fork>1,
and . .
J, (bt —etsds= [ Lds—w
Hence, every solution of Eq38) is oscillatory.

Example 2.Consider the equatiofi = N)

() = (1 )
X(to) = X0, A(X(to)) = A ()

(34)
where 3 >1,n>2,f4(t) = Af(t) = f(t+1) - f(t) and
o(t)=t+1.

Here,r(t) = W p(t) = 2t(0 (1)), a = a; = (=2, by =
=1 ande(t) =t.

To apply Corollary 4, takep(x) = x2"~1 andg(x) = 2. It
is easy to see that the assumption (10) holds.kset 1
andy = 2, then

(p(a;z) - <ki2)2n—l_ (tk;l>2n—l> <tk;]_>2
gb)  \k+1 O\ & —\ &

and

[oe]

JRCCCRLCIEES

t=ng

(28 +8%) = w.
Hence, every solution of Eq34) is oscillatory.

Example 3.Consider the equatiofT = 27)

Bo(box(1)) + AT (3o (1))5 = — MO 5 in t
(X(a())10+1) 2 a(t)
x(t7) = 2L (K), Apx(t)) = Aox(K), k= 1,2,...,
X(2) = %o, 82X(2) = Lo¥o,
(35)
where a > 1, fA(t) = Axf(t) = [f(2t) — f(t)]/(2t —1)
ando(t) = 2t.
a-1

Here,r(t) = 1, p(t) = 290~ a — a — 2K ', —

=1,t = 2€ande(t) = ﬁ To apply Theorem 2, take
@(x) = x> andg(x) = x. Note that

. 0 Moot
) )
to

Ao /“” 900 g
nt0<tk<sak 1

0 to<tg<s a

00 K
—As= / —Ass
/to tol?kLSak fo t0<|T|k<52<k+l)

JAPS]

/fl k As+/tz k
Jo Jlzmrm et Sz

13 k
+/ ———AyS+... =00,
t2 tol?kl<s 2<k+ l)

Thus condition (4) is satisfied. L& = 1. Then
ag > 1fork>1,

and

o0 o [(A(25)91 o
5 Mho<ts gy (P(S) — €(9)Aos = f (“:-—?f%s)Azs (A28 1) e Laps = o,

0 s

) Hence, every solution of Eg39) is oscillatory ifA >
2_{].

Example 4.Consider the second order impulsive dynamic
equation

X(k) = x(K), XA (k) = (L)%&A(k),k,l,z,..,,
viy

(AN + (o(t) + 1V SA)XO)(1+ (x9(1)?) = o)X (1) (1+ (x(1))?),t > 0, t#k
{ = k+1
X(to) = X0, X" (to) = X5,

(36)
wherey is the quotient of odd positive integers.
Here, r(t) =1, pt) = (o(t) + 71), a = a = 1,
1

b= b; = () @ ande(t) = o t).
To apply Corollary 3, takep(x) = (1 + x2(t))x(t) and
g(x) = x9. It is easy to see that the assumption (10) holds.
Letkg =1, then

1 1 1

11 LS
g(bk) by ((L);)“ k ty
k+1

/to " (p(s) - e(s))As=

Hence, every solution of Eg36) is oscillatory.

and °
SAS= o,

fo

3 Conclusion

In this paper, we use Riccati transformation technique and
the impulsive inequality to establish some new oscillation
criteria for the second-order nonlinear impulsive dynamic
equation on a time scal&. Our results extend and
improve some results established bi4,[15,16,18,20]

and can be applied to arbitrary time scales. The results of
[20] can not be applied to Eq. (34). But, according to
Corollary 4, this equation is oscillatory. Also, when
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g(x) = x¥ andG(t,x?(t)) = 0, we get the main result of [18] Qiaoluan Li and Lina Zhou, Oscillation criteria for sew-
Huang [L6] and when g(x) = x, r(t) = 1 and order impulsive dynamic equations on time scales, Applied
G(t,x?(t)) = 0, we get the main result of Huan@4,15]. Mathematics E-Notes, 11 (2011), 33-40.

So the results of14,15,16] can be considered as special [19]S. H. Saker, Oscillation of second-order forced nogin
cases of our results. dynamic equations on time scales, Electronic Journal of

Qualitative Theory of Differential Equations, 23 (2005}, 1

17.
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