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Abstract: A flexible manufacturing cell consisting of two machining centers, several automated storage retrieval stations, and amobile
transporting robot is considered. The problem is to schedule jobs on machines so as to minimize the makespan, with the effects of
transportation and set-ups to be taken into account. The problem is studied with the aid of a graph model, and an exact algorithm of
cubic complexity is derived based on the Gilmore- Gomory algorithm for the travelling salesman problem
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1 Introduction

Small – scale flexible manufacturing cells with a few
machines for parts processing and robots for their
transportation are quite commonly found in real
applications. Most of the multi-machine flowshop
scheduling problems arising in this environment are
known to be NP- hand, for which no exact algorithm
running in reasonable computational time are found,
except for very special cases. One of the well-solvable
cases is the famous two-machine, n-job flowshop problem
with unbounded inter-machine storage, which was studied
by ‘Johnson (1954) who solved it in 0(n log n) time.
Various modifications of the latter problem, taking into
account the transportation and set-up times have been
developed by many authors ( Lawleret al 1993).
Another type of flowshop scheduling model describes the
robotic cells having no intermediate storage between the
machines for work-in-progress (‘no-WIP-storage’), as is
often the case in industry. Two basic modifications of the
no-WIP-storage model are known. The first one does not
include input / output automated storage-and-retrieval
stations (AS / RS). This modification has been
investigated, among others, by Levner (1969), Panwalker
(1991) and Stern and Vitner (1990)who have discussed its
relations with the Johnson flowshop problem and the
travelling salesman problem (TSP).
A more complicated modification of the no – WIP –
storage scheduling model, involving AS/R stations, has

been presented by Kiseet al. (1991). They considered the
two-machine one-robot scheduling problem and solved it
in cubic time using the Gilmore – Gomory algorithm for
TSP as a subroutine. This model was restricted to the case
of a single AS/R station, job-independent transportation
times, and set-ups included in processing times.
Kabadi and Fazle (1999) worked on Gilmore–Gomory
type traveling salesman problems (TSP) where they
implement the GG scheme in NP-hard for classes of TSP.
However, they identify some subclasses of GG which the
GG scheme can be implemented in time of polynomial. In
the problems, they identify, generalize and unify
polynomially testable and polynomially solvable
subclasses of the TSP.
Carlier et al. (2010) investigate Optimization-Based
Heuristic for the Robotic Cell Problem where problem
arises in automated cells and is a complex flow shop
problem with an single transportation robot and a
blocking constraint by proposing an approximate
decomposition algorithm were it breaks the problem into
two scheduling problems that are solved sequentially: a
flow shop problem with additional constraint (blocking
and transportation times) and a single machine problem
with precedence constraints, time lags, and setup times
Antonio et al., (2014) worked on Production processes in
Cellular Manufacturing Systems (CMS) often involve
groups of parts sharing the same technological
requirements in terms of tooling and setup, that is, issue
of scheduling such parts through a flow-shop production
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layout is known as the Flow-Shop Group Scheduling
(FSGS) problem where they proposed an hybrid
metaheuristic procedure integratingfeatures from Genetic
Algorithms (GAs) and Biased Random Sampling (BRS)
searchtechniques with the aim of minimizing the total
flow time, i.e., the sum of completion times of all jobs.
Sarahet al., (2015), they considered the work on flexible
flow shop scheduling with unrelated parallel machines at
each , were the number of stages and machines vary at
each stage and each machine can process specific
operations. There proposed problem, that is ,
transportation of parts, loading and unloading parts are
done by robots and the objective function is finding an
optimal sequence of processing parts and robots
movements to minimize the makespan and finding the
closest number to the optimal number of robots. Their
contribution of the study was to present the mixed integer
linear programming model for the problem which
considers release times for parts in scheduling area,
loading and unloading times of parts which transferred by
robots.
Yazdani and Naderi, (2017) worked on Modeling and
Scheduling No-idle Hybrid Flow Shop Problems where
they focus on considers the problem of scheduling no-idle
hybrid flow shops, by developing a mixed integer linear
programming model mathematically formulate the
problem. Using commercial software, the model can
solve small instances to optimality.

2 Description of the Robotic Cell

Consider a robotic cell consisting of two machining
centres (machines), several input AS/RS and a single
output AS/ RS
A given set J of n jobs is to be processed on the machines,
MA and MB, in this order A job is loaded at one of the
input AS/R stations and unloaded after its processing at
the output AS / R station. Transportations between the
input/output stations and a machine and between two
machines are performed by a transporting robot. The
same robot serves for loading / unloading the jobs
No machine has buffer storage for work-in-progress. The
robot can transport only one job at a time. Each machine
can process at most one job at a time and is not allowed to
interrupt processing once it has started. The problem is to
determine in which order (the same for both machines) the
jobs are to be processed, and to find the robot’s tours, so
as to minimize the makespan
Let us consider a fixed order (a sequence) P = (P1, P2, . . . ,
Pn) of jobs from J to be processed on the machines. The
jobs in P are processed according to the following
technological rules.
Rule 1

1.The first job, P1, is loaded on the robot at the AS/ RS
station where is stored, and sent to machine MA. After
transporting job P1, the robot loads it on machine MA

2.Concurrently with the above transportation and
loading, a tool is set on machine MAfor performing
job P1

3.Then machine MA starts processing the first job, the
robot unloads it from Ma, transports and loads it on
machine MB

4.Upon completing Job P1 on machine MA, the robot
unloads it from MA, transports and loads it on
machine MB

5.Concurrently with the above transportation and
loading, a tool is set on machine MB for performing
P1

Set k: = 1 and then apply Rule 2
Rule 2

1.Machine MB receives job Pk and starts its processing.
Concurrently, the empty robot moves to the input AS/
RS station where job Pk+1 are stored. Loads it and
transport it to machine MA, then job Pk+1is loaded by
robot on machine MA. Concurrently with the
transportation and loading, a tool on machine MA is
changed for performing job Pk+1, if necessary.

2.Machine MA then starts processing Pk+1.
Concurrently with processing Pk+1by machine MA,
the empty robot moves to machine MB, waits there
until job Pk is finished on machined MB, unloads it,
then transfers it to the output AS/RS and unloads it
there.

3.The empty robot then moves from the output AS/RS
to machine MA, waits there if job Pk+1 is not finished
on MA, and then unloads it from MA, transfers and
loads it on machine MB.Concurrently with the
transportation and loading, a tool on machine MBis
changed for performingjob Pk+1, if necessary

Set k : = k + 1, and , if k< n, apply Rule 2. If k = n, apply
Rule 3
Rule 3

1.Machine MB starts processing job Pn
2.The empty robot waits at machine MB until the last

job, Pn, is finished, unloads it and then transfers it to
the output AS/ RS, where it loads. Stop

The key points of our model are that the transportation
times are job-dependent and the work piece / tool set-ups
are separated from processing operations.
Notation
J = [1, 2, . . . , n]: the set of n jobs to be processed.
For j = 1, . . . , n
L1(j) = the time required for the robot to load job j at the
input AS/RS, where it is located;
T1A

1(j) = the transportation time needed for the robot to
send job j from its input AS / RS to machine MA.
LA(j) and LB(j) = the times spent loading job j on machine
MA and machine MB respectively
CA(j) and CB(j) = the times to set (or change) a tool for
processing job j on machines MA and MB respectively.
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PA(j) Pk+1and PB(j) = the processing times of job j on
machines MA and MB, respectively;
UAand UB = the times spent by the robot unloading any
job from machines MA and MB respectively;
TA

1.B = the transportation time needed for the robot to
deliver any job finished on machine MA for processing on
MB;
TA.B

0 = the transportation time needed for the empty robot
to run from machine MA to MB;
TB.1

0(j) = the transportation time for the empty robot to
run from MB to that input AS/ RS where job j is stored;
TB.0

1 = the transportation time for the robot to deliver the
finished job from machine MB to the output AS/ RS;
U0 = the time required to unload any job at the output
AS/RS;
T0.A

0 = the transportation time needed for the empty robot
to run from the output AS/RS again to machine MA to
serve a job finished at that machine.

3 A Graph Model of the Technological
Process

Consider the graph representation of the technological
process subject to Rules 1-3, corresponding to a fixed
sequence P = (P1, P2, . . . , Pn) (see Figure 1)
The following statement can be proved by induction on n.
For a fixed p, the makespan, F(P), is equal to the length
of the maximal path in the graph G which comprises three
parts: initial (denoted as G0), middle (G1, . . . , Gn−−1), and
terminal, Gn.

The proof is omitted as being analogous to that presented
by Levner (1954) and Kiseet al(1991). In our notation,
the length of the maximal path in the initial part, G0, of G
is equal to time b(p1), needed to fulfill all the operations
described in Rule 1 steps (a) – (e), and is a follows:
b(p1) = L1(p1) + max {T1

1.A(p1) + LA(p1). CA(p1)} +
PA(p1) + UA + max{TA.B

1 + LB(p1) . CB(p1)} (??)
The middle part of G includes n – 1 identical sub graphs
G1, G2, . . . , Gn−−1, one of which is depicted in Figure 2
FIG. 2. Sub graph Gk, k = 1, . . . , n – 1 is equal to time t(pk)
needed to fulfill the operations described in Rule 2, Steps
(a) – (c ), at iteration k, and is as follows:
t(Pk) = max{W1

k+1, W2
k+1, W3

k} + UA + max{T1
A.B +

LB(pk+1), CB(pk+1)} . (2)
Where
W1

K+1 = T0
B.1(pk+1) + L1(pk+1) + max{T1

A.B(pk+1) +
LA(pk +1). CA(pk+1)} + PA(pk+1);
W2

K+1 = T0
B.1(pk+1) + L1(pk+1) + max{T1

1.A(pk+1) +
LA(pk +1). CA(pk+1)} + T0

A.B +UB + T1
B.0 + U0 + T0

0.A;

W2
k = PB(pk) + UB + T1

B.0 + U0 + T0
0.A

The length of the maximal path in the middle part of G is
equal to the time, t(p1, ..,pn−−1), needed to fulfill all the
operations described in Rule 2, Steps 2 (a) – (c ), for all k;
it is as follows:
t(p1, . . . , pn−−1) = ∑(pk) (3)
The time f(pn), needed to fulfill the final operations
described in Rule 3, steps (a) – (b), is:
f(pn) = PB(pn) + UB + T

′

B.0 + U0 (4)
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Therefore, the time to complete all n jobs in sequence p,
is:
F(p) = b(p1) + t(p1, .., pn−−1) + f(pn) (5)

4 Analysis of the Objective Function

We start two evident observations.

1.The optimal solution of the problem (i.e. the sequence
minimizing (5) does not change if we subtract from
F(P) the following constants, c, entering f(pn) : c = UB

+ T
′

B.0 + U0
2.The optimal solution of the problem does not change

if we subtract from F(P) the following quantity, q, not
depending on P:

q = ∑[UA + max{T1
A.B + LB(pk), CB(pk)}],

in which the first term, UA + max {T1
A.B + LB(p1),

CB(p1)}, enters b(p1) (see (1)) while all other components
are from t(P1, . . . , pn−1) (see (3) and (??))
Objective function (5), after the above subtractions, will
be:
F’(P) = b’(p1) + t’(p1, . . . , pn−−1) + f’(pn)
where:
b’(P1) = L1(P1) + max{T1

1.A(p1) + LA(p1). CA(p1)} +
PA(p1) (6)
t’(p1, . . . , pn−−1) = ∑max{ W1

k+1 + W2
k+1 + W3

k+1}; (7)
f’(p n) = pB(pn) (8) Let us denote:
A(Pk) = max{W1

k, W2
k}; B(pk) = W3

k, k = 1, .., n (9)
Then we find that minimizing F(P) in (5) is equivalent to
finding the permutation minimizing the following
function:
F’(P) = b’(p1) + ∑ max (A(Pk+1), B(Pk) + f’(pn) (10)
The latter problem is reducible to a special case of the
travelling salesman problem studied by Gilmore (1985)
and Gomory (1991), denoted GGP. The proof is given in
the Appendix
Thus, one evident way to minimize (10) is to calculate, for
each pair (p1,Pn), the value of
b’(p1) +min ∑ max (A(Pk+1), B(Pk) + f’(pn)
and to choose the minimal among the resulting n (n – 1)
values.
Since the GGP may be solved in O(n log n) time. In fact,
this scheme may be modified to be performed in
essentially cubic time. In what follows, we will consider
this modified scheme, not detailing the steps, which are
the same as those of the Gilmore – Gomory Algorithm.
GGA

5 Description of the Algorithm

The input of the modified scheme is n + 1 pairs of numbers
corresponding ton + 1 cities in the Gilmore – Gomory case
of the TSP: n pairs, (A(i), B(i), 1≤ i ≤ n, defined by (9)
and renumbered so that B(??) ≤ B(??) ≤ . . .≤ B(n), and

an auxiliary pair of numbers. (A(n + 1), B(n +1) = (K, K),
where K≥ max (A1, A2, . . . , An, B1, B2, . . . , Bn)
Step 1 of the modified scheme is the same as the first step
in GGA (1991): to arrange the A(i) values in
non-decreasing order and or find the permutationφ
defined byφ (j) = q, 1 ≤ i ≤ n, q being such that A(q) is
the jth smallest of the A(i)
At step 2, for each pair of indices, I and j, I6= j, I, j = 1,
. . . , n, we find a partial sortingφq, which is obtained from
the sorting at step 1 by excluding A(φ (i)) and A(φ (j)).
Step 3, 4 and 5 of our algorithm reproduce three main
steps of GGA (1991), namely ‘forming an auxiliary
graph’, finding a maximum spanning tree and finding an
optimal permutation respectively. The only difference
from GGA is that these steps are repeated for allφ i, j ; that
is, they are performed n(n – 1) times in turn, for each pair
of indices, I and j, i6= j, I, j = 1, . . . , n, being excluded
Denote the optimal permutations obtained at step 5 by
P∗

I, j

At step 6, for each optimal permutation, P∗
I, j , I, j = 1,

. . . , n, i 6= j , compute makespan F(P*I, j) = b’(i) + f
′
(j) +

t’(P∗
i, j), where b’(i), f’(j) and t’(P∗I, j) are defined by(6)

-(8)
Find permutation P∗ minimizing F(P∗I, j): F’(P∗) =
mini, jF(P∗I, j)
The crucial point is that the sorting at step 1 is performed
only once, requiring 0 (n log n) time. For each of n(n – 1)
fixed pairs of indexes, Step 2, 3 and 5 run in linear time,
and Step 4 in time ‘essentially linear’ in n (see Gilmoreet
al (1985) , Gabowet al (1986).). Step 6 runs in quadratic
time. Thus, the total running time of the modified
algorithm is essentially cubic.
Notice that if we apply the same structuring of the GGA
for solving a special case of the scheduling problem in
which the transportation times are job-independent (see
Kise et al., 1991) , a version of the modified algorithm
running in essentially quadratic time can be readily
obtained
An Illustrative Example
In a numerical example below we compare our
scheduling model that takes into account job-dependent
transportations and set-ups (denoted∗Model 1∗), with a
more rough Model II in which the set- ups are included
into the processing times. The makespans computed for
an arbitrary schedule, P, in the two models are denoted,
respectively, FI (P) and FII (P)
Table 1: Time parameters for the sample computations
(comprising seven jobs)
Job L1 T1

1.A LA LB CA CB PA PB T0
B.1

1 0.2 1.9 0.4 2.6 0.1 3.9 2.4 5.7 1.1
2 0.8 1.9 0.5 0.1 2.3 0.3 3.5 9.6 1.1
3 0.4 2.2 0.4 0.4 0.1 0.9 0.3 0.9 0.9
4 0.5 1.9 0.6 0.3 2.5 2.2 4.6 2.5 1.1
5 0.6 2.2 0.4 1.1 0.2 0.3 5.6 1.1 0.9
6 0.2 2.2 0.1 0.4 0.1 1.1 0.5 4.1 0.9
7 0.7 1.9 0.8 0.6 2.5 1.8 3.0 3.8 1.1
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In Table 2, those data are transformed, by formulae (6)
- (8), into integrated parameters A(j), B(j), b’(j) and f’(j)
which will enter F’(P) in (10)
For this numerical example, the results of step of the
suggested algorithm, for the fixed pair (5, 6), are
presented in Table 3
The auxiliary parameters, A(6) and B(6), are chosen to be
k = 15. The results of step 4 are sets of arcs, T1 and
T2,which are to be added to the auxiliary graphs obtained
at step 3. They are, corresponding, T1 = {(5, 6), (2, 3)}
for model I, and T2 = {(5,6)} for Model II. The resulting
graphs are depicted in Figure 3
The optimal permutations obtained at Step 6 run out to be
different for the two models. They are: P1 = ( 2-5-3-6-7-

1-4) for Model I, and P2 = (2-7-5-6-3-1-4) for Model II,
with the makespan values, respectively: FI(P1) = 76.0, and
FII(P2) = 83.4
We can measure the transportation / set-up effects in
flowshop scheduling by estimating relative differences of
the optimal makespan values in Models I and II, the
so-called modeling errors

TABLE 2: Integrated Parameters for the two models
Job B A f’ b’
Model I
1 7.9 6.8 5.7 4.9
2 11.8 7.8 9.6 6.7
3 3.1 7.1 0.9 8.3
4 4.7 8.7 2.5 7.6
5 3.3 9.7 1.1 8.8
6 6.3 6.6 4.1 3.0
7 6.0 7.7 3.8 6.4
Model II
1 14.4 6.4 13.2 5.0
2 12.2 10.1 10.0 9.0
3 4.4 6.7 2.2 3.4
4 7.2 11.2 5.0 10.1
5 4.7 9.9 2.5 9.0
6 7.8 6.5 5.6 3.1
7 8.4 10.0 6.2 8.9

TABLE 3: Results of Sorting
Job B A q
Model I
6 15.0 15.0 6
5 7.9 9.7 2
4 6.3 7.7 3
3 6.0 7.1 1
2 3.3 6.8 5
1 3.1 6.6 4
Model II
6 15.0 15.0 6
5 14.4 10.0 4
4 8.4 9.9 2
3 7.8 6.7 1
2 4.7 6.5 3
1 4.7 6.4 5

1.The error e1relative, time losses incurred by using
Model II: e1 = [F1(P1) – Fn(P2)] / F1(P1); in our
example, FI(P1) = 76 versus FII (P2) = 83.4 produces
error e1 = 10%
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2.The error e2 measures the roughness of criterion Fn of
Model II in comparison with the corresponding
criterion. F1 of Model I, which is defined as e2 =
[F1(P1) – Fn(P1) / F1(P1); in our example, F1(P1) =
76, Fn(P1) = 84.4, and error e2 = 11%

The example shows that, even in the case of small n,
including the transportation set – up times into processing
times may lead to essential errors. This effect was steadily
observed in our computational experiments for various
randomly-generated small and medium –sized instances
(n ≤ 60). The same effect is also observed when the
transportations / set – up times are averaged or ignored10

6 Concluding

Since transportation and set-up operations are expected to
consume a large portion of the production time in robotic
cells, ignoring or averaging the transportation / set – up
times may lead to considerable time losses and noticeable
errors in determining the optimal makespan. On the
contrary, OR models that explicitly introduce
job-dependent transportation / set-up operations, and
investigate how the latter are to be scheduled in order to
decrease the makespan, can enhance the productivity of
the cell. In this paper we have presented such an OR
model for a small scale flexible manufacturing cell with
job-dependent processing and material handling
operations. In this paper, we study the two-machine,
no-WIP-storage robotic cell with AS / RS. We introduce
several AS/RS (of special importance when processing a
large number of jobs), and show that the resultant
scheduling problem with job –dependent transportation
times may be exactly solved in cubic time using a delicate
structuring of the Gilmore – Gomory algorithm.
Using a graph model of the technological process, we
solved exactly, in polynomial time, the two-machine,
one-robot, no- WIP-storage scheduling problem. We
believe that the graph- based approach used in this paper
can be extended to schedule efficiency more general
robotic cells with several machines and robots

Appendix

Proposition
Minimizing t’(P1, . . . , Pn) in (??) is equivalent to funding
the minimal tour in the Gilmore – Gomory case of the
travelling salesman problem, GGP
Proof
Consider the following problem, GGP
GGP: Given n cities{1, 2, . . . , n}. Two non-negative
numbers, Aiand Bi, are assigned to each city, i = 1, . . . , n
The distance between city I and city j (I, j = 1, . . . , n; i6=
j) is defined as follows:
D(i, j) = max(Ai, B j)
The length of a tour, T = (p1, p2, . . . , pn,p1), is:

L(T) = ∑max(BP(0), Ap(I+1) + max (Bp(n), Ap(??) A(??)
The problem is to find a tour of minimal length
Consider the GGP with the traditional, (n + 1)th, city with
parameters (An +1, Bn+1) such that An +1 = Bn+1 = K,
where K≥ max(A1, . . . , An, B1, . . . , Bn).
The length of an arbitrary tour, T = (Pn+1, P1,P2,. . . , Pn,
Pn+1), according to (A1) is
L(T) = ∑max(BP(i), Ap(I+1) + 2K
Since 2K is a constant and does not depend on T, the
problem of minimizing L(T) is equivalent to that of
minimizing t’(p1, . . . , pn−1) appearing in (??), as claimed
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