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Abstract: We consider a boundary value problem involving conformalggvative of ordem, 1 < a < 2 and Dirichlet conditions.
To prove the existence of solutions, we apply the method peupnd lower solutions together with Schauder’s fixed{pibieorem.
Furthermore, we give the Lyapunov inequality for the cquoesling problem.
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1 Introduction

Recently, an interesting derivative called conformablévdéve that is based on a limit form as in the classical\idive
was introduced by Khalil et al. inl]. Later, this new local derivative is getting more attentiand is improved by
Abdeljawad in P]. The importance of the conformable derivative is that it kamilar properties than the classical one.
Nevertheless, this conformable derivative doesn’t satisé index law B,4] and the zero order derivative property i.e. the
zero order derivative of a differentiable function doesmdtirn to the function itself.

Following this new conformable derivative, several pagease been presented, in particular some studies about
boundary value problems for conformable differential g have been the subject of some pap8,7,8,9,10,3,
4,11]. Furthermore, in §], Batarfi et al. studied a conformable differential equatid ordera € (1,2], with three point
boundary conditions and proved the existence and uniqe@iaslution by using fixed point theorems. Bj,[Bayour et
al. solved an initial conformable differential value prelv for o € (0,1) by the help of the tube solution method which
is a generalization of the lower and upper solutions method.

In this work, we analyze the existence of solutions for tHfang boundary value problem (P)

Tau(t)+ f(t,u(t)) =0,a<t<b, (1.1)

u(a)=u(b)=0 (1.2)

where 1< a < 2, T2 denotes the conformable derivative of ordeiu is the unknown function anél: [a,b] x R — R is
a given function. For this purpose, we use the method of uppérower solutions together with Schauder’s fixed-point
theorem. The method of lower and upper solutions is a powrdliin the investigation of the existence of solutions and
has been used in several papers, we refet2nl[3,14,15].

In the casef (t,u(t)) = q(t)u(t), we prove a new Lyapunov inequality that coincide with thasslcal one when
oa=2.

The classical Lyapunov inequality states thatjif [a,b] — R is a real and continuous function, then a necessary
condition for the boundary value problem

—u"(t)=qt)u(t),a<t<b
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u(a)=u(b)=0
to have nontrivial solutions is that .
4
> .
[ etz 7=, (1.3)
see [21]. An equivalent version of the Lyapunov inequallty8f was proved by Borg see [8].
b u" ()] 4
—=ddt> ——. .
/a 0 5 (1.4)

under the conditiom(t) > O fort € (a,b).

Many authors have extended the Lyapunov inequality by densig a fractional derivative or a sequential of
fractional derivatives instead of the second derivativeeguation (1.1), seelp,17,18,19,20,2,22,23,24,25,26]. In
particular, we cite the paper of Ferreirh9], where he gave the corresponding Lyapunov type ineqeslfior both
Caputo sequential fractional differential equation an@énRann-Liouville sequential fractional differential etjoa
subject to Dirichlet boundary conditions. Ihg], Agarwal et al. obtained Lyapunov type inequalities foxad nonlinear
Riemann-Liouville fractional differential equations Wit forcing term and Dirichlet boundary conditions. Reogntl
Guezane-Lakoud et a20], considered a mixed left Riemann—Liouville and right Capdifferential equation subject to
natural conditions and obtained a new Lyapunov type inéiyual

This paper is organized as follows. In Section 2, we presenirtain concepts of the conformable derivatives, we give
some useful properties and we prove a property on the extreofia function for a conformable derivative. In Section 3,
we prove existence of solution to problem (P) by using thehaebf upper and lower solutions together with Schauder’s
fixed-point theorem. In Section 4, we prove a Lyapunov inéiyufor problem (P) in the casé(t,u(t)) = q(t) u(t).

As far as we know, this work will be the first one that gives th@punov inequality for conformable differential
equations.

2 Preliminaries

We recall some essential definitions on conformable déviesthat can be found ir2[1].
Letn< a <n+1, and sef3 = a —n, for a functiong : [a,) — R, we denote by

't

129(t) = | (s—a)" “g(9jdsn =0,

Ja

and
13g(t) = % / (t—9"g(s)dB(s.a) = % / (t-9"(s—a)f g(gdsn> 1

- Ja - Ja

Remark. Notice that, since & 8 < 1, thenl3g(t) is the Lebesgue-Stieltjes integral of the functior- s)"g(s) on [a,t]
anddp(s,a) = (s—a)P~ldsis an absolutely continuous measure with respect to thedgeleemeasure on the real line,
generated by the absolutely continuous functipa a)? and the weight functioris — a)?~1 € Ly [a,b] is its Radon-
Nikodym derivative according to the Lebesgue measure.

The conformable derivative of order0a < 1, of a functiong : [a,») — R is defined by

g(t+ea-at) ~gl)
Tg(t) = lim

Jt>a
£—0 &

If T2g(t) exists on(a,b), b>aand Iirrng,‘g(t) exists, then we definélg(a) = Iim+T§g(t).
t—a t—a
The conformable derivative of ordar< a < n+ 1 of a functiong : [a,o) — R, wheng(" exists, is defined by
T29(t) = T (1),

where =a —ne (0,1).
For the properties of the conformable derivative, we menitie following:
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Letn < a < n+ 1 andg be an(n+ 1)-differentiable at > a, then we have

T2g(t) = (t—a)" g™ (1) (2.1)
and W )
aTa _ A g (a) (t - a)
laTag(t) _g(t)_kzo Kl .

Remark. —For 0< o < 1, using (2.1) it follows that, if a functiog is differentiable at > a, then one has
H a -
limT79(t) =g (t)
and
lim T7g(t) = (t—a)g'(t),
a—0

i.e. the zero order derivative of a differentiable functdmes not return to the function itself.
—Letn< a <n+1,if gis (n+ 1)-differentiable on(a,b), b>aand Iirrlg“‘“) exists, then from (2.1), we g&fg(a) =
t—a

Iim Tg;‘g(t) =

—Let n<a <n+1, if gis (n+ 1)-differentiable at > a, then we can show thaig(t) = T2 g (t) for all positive
integerk < a.

Similarly to the classical case, we give a property on theeextim of a function that has a conformable derivative:

Proposition 1. Let1 < a < 2, if a function ge C! [a, b] attains a global maximum (respectively minimum) at sometpoi
& € (a,b), then g (&) < O (respectively fg(&) > 0).

Proof. The result follows from the fact that

g (&reE-a”)
Ta9(§) = Tg-1d' (&) = lim : :

3 Existence of Solutions

Let AC?[a,b] = {ue C![a,b],u' € AC[a,b]}, whereAC|a,b] is the space of absolutely continuous functionsaby .
Denotel! ([a,b], p(s)ds) the Banach space of Lebesgue integrable functiorja,dhwith respect to the positive weight
functionp(s) = (s—a)* ?eLl[ab],1<a <2

To prove the existence of solutions for problem (P), we useltiver and upper solutions method, we need the
following definition of lower and upper solutions for proti€P).

Definition 1. The functiongr, @ € AC?[a, b] are called lower and upper solutions of problem (P) respesty, if
a)Téo(t)+f(t _())zo,forallte[a,b],
o(a) <0, G(b) <0
b) TZG () + f (t 6())§0,forallte[a,b],
o(a)>0,a(b)>0.

Next, we solve the following linear boundary value problem.

Lemma 1. Assume that ¥ C|[a,b], then the following linear boundary value problem

T2u(t)+y(t)=0,a<t<b, (3.1)
u(a) =u(b) =0,
has a unique solution given by
u) = [ e9y(sp (s ds @2)

where

(3.3)

1 {—(b—a)(t—s)+(b—s)(t—a),agsgtgb
(b—s)(t—a),alt<s<h. ‘
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Proof. Applying the integral operatdg, to both sides of the differential equation (3.1), we get
laTau(t) +1gy(t) =0,

hence
ut)—u(@—ct—a)+I13y(t)=0.

Sinceu(a) = 0, then
ut)=—13y(t)+c(t—a). (3.4)

Fromu(b) =0, we get
c= ?|SY(U lt=b
Substitutinge by its value in (3.4), it yields

(D) = 18Y(0) + 5= 18O o

_a) /b
- _/t (t—s)(s—a)? 2y(s)ds+ ((:)_2))/61 (b—s)(s—a)* y(s)ds

a
- ["e.9y(spisi0s
where the Green functioB is given in (3.3).
Lemma 2. The Green function G is nonnegative, continuous and satisfie
0<G(t,s) <b-—aVstelab. (3.5)
Now we give the main result on the existence of solutionstertonlinear problem (P).
Theorem 1. Let g and@ be the lower and upper solutions of (P) such tbat @, define E= {(t,x) € [a,b| x R, g (t) <
x <0 (t)} and assume that(f, x) is continuous on E. Then the problem (P) has at least oneisalutcs AC- ([a,b]) such

that
ot)<u(t)<o(t),a<t<h

Proof. Define the modified problem

0,
where _
F(6,0 (1) + ot forx>a(t),
Ft,x) =1{ f(t,), forg(t) <x<a(t),
f(ta () + 852, for x< a(t).

The functionF (t,x) is called a modification of (t,x) associated with the coupled of lower and upper solutmas1do.
It follows from the definition ofF thatF (t,x) is continuous an¢F (t,x)| <M on[a,b] x R, with M = My + 1 where

Mo = max{|f (t,x)|, (t,x) € E}.

Define the operatoh on X =C|a,b], by
b
Aut) :/ G(t,s) (s—a)" 2F (s.u(s))dsa<t<b.
a

SetQ = {ueCla,b],|u(t)| <M (b_a"“_)iﬂ,agt < b}. We will show thatA(Q) is uniformly bounded. Leti € Q, then,
using (3.5), we get

(b—a)
a—1

)

b 2
|Au(t)|§/a G(t,s) (s—a)* “|F (s,u(s))|ds< M
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consequentlA(Q) is uniformly bounded ané (Q) C Q.
Now we prove thafA(Q) is equicontinuous. Fa <t; <t, <b, we have

|Au(ty) — Au(tz)|
ty
< (tz—tl)M/ (s—a)7 2ds+ M

+7(t?b__t1;)M /: (b—s)(s—a)" ?ds

= al—l (-t (-2 '+ (b-a)"?) +t-t) | »0,

1.
*(to—s) (s—a)"2ds
6]

whent; — to. Hence A(Q) is equicontinuous. Thanks to Arzela-Ascoli’'s theorem witlgat A is completely continuous.
Moreover, by Schauder fixed point theorem we concludeAtats a fixed point € Q which is a solution of the modified
problem (MP).

Localization of solution. Let us prove thatifis a solution of the modified problem (MP), it satisfies
a(t) <u(t) <T(t). (3.6)

Setw = u— 0. Assuming the contrary, so there exiti& [a, b] such that

maxw(t) =w(tg) >0
tela,b]

therefore, we have some cases to consider such as the fojjowi
Case 1 If tp € (a,b), then from Proposition 1 it yieldS,2w(tg) < 0. Using the fact that is an upper solution for
problem (P), we get

Téw(to) = T3u(to) - T3T (t0)
_ T (to) —u(to)
—f(t,0 (o)) — ulto) — o (to) + 1

that leads to a contradiction, thus the maximurwa$ not achieved at the poity € (a,b).
Case 2:If tg = a, we obtain

—Tga (to) >0,

w(a) =u(a)—0o(a) > 0.
On the other hand, sinaeis solution, theru(a) = 0 and consequently (a) < 0, which contradicts the fact that is an
upper solution of problem (P).
Case 3:If tg = b, we obtain a contradiction as in the second case.

Applying similar reasoning, we prove thatt) < u(t), vt € [a,b]. Finally from (3.6) we conclude thatis a solution
of problem (P). The proof is completed.

4 Lyapunov Inequality
Let f(t,u(t)) =q(t)u(t), then problem (P) becomes
Tdu(t)+qt)u(t)=0,a<t <b, (4.1)
u(a) =u(b) =0,
that we denote by (P1). Now we are ready to give the Lyapuneguiality for problem (P1).

Theorem 2. Let g C([a, b]). If the boundary value problem (P1) has a solutioa AC? ([a, b]) such that (t) # 0 a.e.
on(a,b), then

b 4
/a la(s)[p(s)ds= —. (4.2)
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Proof. Letu < AC?([a,b]) be a solution of problem (P1) such thdt) # 0 a.e. on(a,b), then from equation (4.1), we
can write

lq(t)| = (4.3)

Tau(®)
u(t) ‘

a.e. on(a,b). Applying the integral operatd§ _, to both sides of the differential equation (4.3) and followihe same
ideas asin [8], we getforal<c<d<b

b
(13 11al) (O s = [ (s—a)" *[a(s)ds
:/b(s_a)a—Z TO?U(S)

b
> (Jul) ™ [ (s-a)" ?|(s—a)f “u"(9)]ds

u(s)

-1 d 1
> (u)™ [ | (9)]ds
Since the function/’ is absolutely continuous da, bl , it yields
(1§-2lal) (O [i=p > (fjul) ™ v/ (d) ~ ' (<)

where||u|| = rr?aé|u(t)|. Let||u|| = u(&) then the Mean value theorem implies there eaistc < £ andé < d < b such
tela,
that

(13-4 1al) () o > (lul) 2|7

_1 1
Cb-& &-a
Finally thanks to the harmonic mean inequality, we get (4.2)

Remark.Note that ifa — 2, then we get the classical Lyapunov inequality (1.3).
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