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Abstract: This article is devoted to both theoretical and numericatigtof the eigenvalues of regular fractional Sturm-Liolevil
problem. The fractional derivative in this paper is in th@foomable derivative sense. In this paper, we implementépeoducing

kernel Hilbert space method to approximate the eigenvalsastence and uniformly convergent of the eigenfunctiafrtbe considered
problem are provided and proved. The main properties of thev8Liouville problem are investigated. Numerical résulemonstrate
the accuracy of the present algorithm. Comparisons witarattethods are presented.
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1 Introduction

The Sturm-Liouville eigenvalue problem has played an intgrdrrole in modeling many physical problems. The theory
of the problem is well developed and many results have be&ingdl concerning the eigenvalues and corresponding
eigenfunctions. It should be noted that since finding aielysolutions for this problem is an extremely difficultkas
several numerical algorithms have been developed to sepkoximate solutions. Several researchers discussed
fractional Sturm-Liouville eigenvalue problem when thadtional derivative is constant. In 1970 and 1977, Djrbashi
[1] and Nahusev]] studied this type of problems. 1], the existence of a solution to such boundary value prolas
established. Ing], the aforementioned relation between eigenvalues anoszafr Mittag-Leffler function was shown.
Al-Mdallal [ 3] used the Adomian decomposition while Abbasbarmjaiged the Homotopy Analysis method. Ertug [
used the fractional differential transform method to cotepthe eigenvalues of such problems. Luchkg] ysed the
Fourier series to solve this problem. Neamatz etdlahd Shi et al. §] used the method of Haar wavelet operational
matrix. In [9]-[11], [12], and [L3], researchers extended the scope of some spectral pexpeti fractional
Sturm-Liouville problem. Recently, Al-Refailf] has established existence and non-existence results étasa of
fractional Sturm-Liouville eigenvalue problems and estied the eigenvalues. Variational Methods and Inverseacapl
transform method applied il ] and [16], respectively. Recently P. Antunes and R. Ferrelrd Eonstructed numerical
schemes using radial basis functions while B. Jin and&tJsed Galerkin finite element method and Syam and Siyyam
[19] implemented the iterated variation method to solve sucklgm.

The numerical solution of eigenvalue problems have rededemsiderable interest in recent years because they have
large number of applications in different areas of physied angineering. A few examples of such applications are
pendulums, vibrating and rotating shafts, viscous flow leetwrotating cylinders, the thermal instability of fluid spés
and spherical shells, earth’s seismic behavior and ringcstres; for more details se2(], [21], [22], [23], [24], [25].

Note that such problems is often referred to as the circutag structure with constraints which has rectangular
cross-sections of constant width and parabolic varialitkiiess; seeZe] and [27].
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In this paper, we develop a numerical technique for apprakiimy the eigenvalues of the following regular fractional
Sturm-Liouville problem of the form

DM [p(x)y (¥)] +d(X)y = ~AW(x)y(x),x €| = [0,1], 0< & <1 (1.1

subject to
aoy(0) +ayy'(0) =0,

agy(1) +agy (1) =0, (1.2)

wherep, p/, g, andw(x) are continuous functions d@,1] with p(x),w(x) > 0 for all x € [0,1]. Herea; (for j =
0,---,3) are real constants such that
a+a2>0,

a3+a3 > 0.
If the domain iga, b], then we use the following change of variable to mak®itl]

x=(b—ajt+a

For this reason, we assume that the domaj,i§]. The fractional derivative here is in the conformable datiixe sense.
Up to our knowledge, we are the first who discuss the reguléalia fraction order Sturm-Liouville problem numerigall

Historically, problem 1.1) had been studied theoretically wheiix) = 1 by [28] who showed that it has an infinite
sequence of eigenvalu¢ap, A1, A, ...} with the following property

n<Ad<A<A<..

where
lim Ap = oo,
N—co
andn is a constant and each eigenvalue has multiplicity at most 3.

The present work is motivated by approximating the eigaresbf problem (1) using the Reproducing kernel Hilbert
space method (RKM). The RKM which accurately computes thiesaolution is of great interest to applied sciences.
This technique gives the solution in a rapidly convergerigésavith components that can be easily computed. This ndetho
is used for the investigation of several scientific appia, see29], [30], [31].

This paper is organized as follows. In section 2, we presemespreliminaries which we will use in this paper.
A description of the RKM for discretization of problerh.{) is presented in section 3. In addition, the existence aad th
uniformly convergent of the eigenfunctions are given irs theéction. Several numerical examples and comparisons with
Al-Mdallal [3] results are presented in Section 4. Conclusions and gjosmarks are given in Section 5.

2 Preliminaries

In this section, we review the definition and some preliminasults of the conformable derivatives as well asdhe
fractional integral and their properties.
Definition 2.1. Given a functionf : [0,) — 0. Then the conformable derivative 6f of ordera is defined by

1-ay _
D% f(x) = lim f(x+ex—%) —f(x)
e—0 &

forallx>0,0<a <1 If f is a—differentiable is som¢0,a), a > 0, and Ii(r)QD"f(x) exists, then define
X—

D?f(0) = lim DY f(x).

x—0t

Among the properties of the conformable derivatives, we tioarthe following properties. Let & o <1 and f, g
be a —differentiable at a point > 0. Then,

1D%af +bg] =aD?f(x)+bD%(x), foralla,b e 0.
2D%P =pxP~%forall pe .
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3D%p=0forallpeO.
4D%f g = gDO’f()+fD"g(x).

5D [ L] (x >D"f<xg*(x>f<x> %X provided thag(x) # 0.
6.D°’f(x)—x1 o fr(x).
7D (x) = f/(x).

Next, we define ther— fractional integral.
Definition 2.2. The a— fractional integral is defined by

I"f(x):/oxt<::(_t)a)dt,

where the integral is the Riemann improper integral arel (0, 1). For more details, se@p,33,34].
Among the properties of the— fractional integral, we mention the following property. fifx) is any continuous
function in the domain of¥ andx > 0,

DA19f(x) = f(x).

The reproducing kernel is given by this definition.
Definition 2.3. Let A be a nonempty set. A functidd: Ax A — C s a reproducing kernel of the Hilbert spaddf
and only if

1K(.,x) e H forallxe A,
2.(0(.),K(.,x)) = @(x) forallxc Aandp € H.

The second condition is called the reproducing propertyaHibert space which possesses a reproducing kernel is
called a reproducing kernel Hilbert space (RKHS).

3 Analysis of RKHSM for Solving the Eigenvalue Problem

In this section, we discuss how to solve the following reguéaiable fractional Sturm-Liouville problem of the form

DX [p(x)y ()] +a(X)y = —AW(x)y(x),x € | =[0,1], 0< a(x) < 1 (3.1)
subject to
aoy(0) +agy'(0) =
azy(1) +agy (1) (3.2)

wherep, p/, g, andw(x) are continuous functions d@, 1] with p(x ), ( ) > 0 forallx € [0,1]. Herea; (for j=0,---,3)
are real constants such that
ad+as >0,

a5+ a3> 0.

If a(1) =1, we get regular Sturm-Liouville problem of the form

2 [POOY (9] +(xly = ~AwO)y(0 X< | =[0,1]. 33)

The eigenvalues of the regular Sturm-Liouville probleé8( are well known. For this reason, we assume thatd(x) <
1. Using the properties mentioned in the previous section,amerewrite Equation3.3) as

~009 p(y" (x) + x4 p ()Y (%) +aA(X)Y(X) = —AWY(X). (3.4)
Assume thay(0) = p1 andy'(0) = 2. To homogenize these conditions, we assume that
f(X) = y(X) — H2X — pia.

Then, Equation3.4) becomes
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X409 p(x) £ (x) + X0 0 /(%) £ (%) + pax Y% ! (%) + (%) F (%) + G(X) (p2X+ e
= —AW(X) f (X) — AW(X) (X + 1)

or
go(x) (%) +91(x) f'(x) +G2(x) f (x) = h(x) (3.5)
subject to
f(0) = f'(0)=0. (3.6)
where
go(x) = X"~ p(x),
g1(x) = x4 p'(x),
2(x) = q(x) +Aw(x),
h(x) = — (kX + p11) AW(X) +(x)) — X~ p (x).

Sincea3 + a2 > 0 andpy ag + L2 a; = 0, we have the following two cases.

1.If ag =0, up, = 0 and we have only one unknown whichis.
2.Ufag #0, pp = —% and we have only one unknown whichyis.

Therefore, we can write the solution as a product of one ottimstantg; and i, and a function which depends on
xandA only. To find the eigenvalues of Proble®.1)-(3.2), we use the simple shooting method by forcing the solution
to satisfy the condition

agy(1) + agy' (1)

In order to solve problem3(5-(3.6), we construct the kernel Hilbert spacég|0,1] andW;'[0, 1] in which every
function satisfy the boundary conditiorz§). Let

WS[0,1] = {f(s): f,f andf” are absolutely continuous real-valued functions,
" ¢ L?[0,1], f(0) = f'(0) = 0}.

The inner product iW;[0, 1] is defined as

(U(2), V(2))ygi0,4 = UO)V(0) + U (OV/(0) + U(L)V(L) +U(L)V (1) + /0 e (2v® (2)dy,

and the nornﬂuHWza[O’l] is given by
||U||w23[071]: (U(Z)au(z))wg[o,l]

whereu,v € W5[0,1].
Theorem 3.1.The spac&\5'[0,1] is a reproducing kernel Hilbert space, i.e.; there eXgts z) € W;'[0, 1] such that
for anyu € W5[0, 1] and each fixed, x € [0, 1], we have

(u(2),K(x, Z))W23[071] = u(x).

In this caseK (X, 2) is given by

[ s ,a(0Z, z<x
g = { Bodtts 255

where
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Co =0, ¢ =0, c2:i<5z4_11122_1023_25>,

—Z 1
c3= 0, Ca= 2 G5 = 120(1+22)
2 -z
qum:ﬁm]ﬁ#nfﬂ
2 z
= —75 da=0.ds= 755

Proof: Using integration by parts, one can get
(U(2),K(%,2))ygj0,y = UO)K(x,0) +U(1)K(x. 1) +U(0)Kz(x,0) + U'(1)Ky(x, 1)

3 3
w221 -0 25 x0)

4 4 5 5 1 6
—u'( )(;Z}: (x,1)+U'(0) [;le (x,0)+u(1 )[z??z}; (x,1)— (0)(;; (x,0) — /o u(z)[;—z}:(x,z)dz.
Sinceu(z) andK (x,2) € W5[0, 1],
u(0)=u(0)=0
and
K (x,0) = Kz(x,0) = 0. (3.7)
Thus,

(U(@),K(x2)wgoy = UDK(X, 1)+U'(1)Kz(x 1)+U (1 )—23
*K /

~U() 57 (6D +u(l dz
Since K(x,z) is a reproducing kernel (WS[O, 1],
(U(@), K (% D)zi05 = U(X)
which implies that
(;Es—zlz(x, 2) =0(z—Xx) (3.8)
whered is the Dirac-delta function and
5K
K(x,1)+ ¥ (x,1) = 0, (3.9)
&mn-%?mn:q (3.10)
%%mnzq (3.11)
?gwm_o (3.12)
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Since the characteristic equationf’ge% (x,2) = 8(x—12) is A® = 0 and its characteristic valueAs = 0 with 6 multiplicity
roots, we writeK (x,z) as

[ sPoa(xZ, z<x
K(X7Z)_{Zi5=(§)di(x)2‘, z>x}'

Since%e—z'é(x, z) = &(x—z), we have

m m
o;;(x X+0) = f?zf}:(xx 0), m=0,1,...,4. (3.13)
On the other hand,integratirfé%(x, z) = &(x— z) fromx — € to X+ € with expect taz and lettinge — 0 to get

d°K 9°K
97 X0 5a

Using the conditions3.7), and @3.9)-(3.14, we get the following system of equations

X,X—0)=—1. (3.14)

Co(X) = 0,¢1(x) = 0,c3(x) =0,

6d3(X) 4 24d4(x) + 60ds(x) = O, idi (X) + 120d5(x) =

i 24d4 12&15(x) =
5 .5
Z)Ci (X)X = 'Zﬁdi (X)X,
5 _ 5
leci (x)x~1 = L (x)x 1,
] i= | I?
;m —De()x 2= Y i(i - D)X
s s

S ii—1)(i-2)(i-3)c()x* = i i(i—1)(i—2)(i —3)di(x)x 4,
i=4 i=4
5lds(x) — 5lcs(x) = —1.

We solved the last system using Mathematica to get

C0=0,c1=0, &= 2o(67 1117 10~ 7).

-z 1
c3= 0,¢c= 2 Cs = 120(1+22)
v -7
do= o0 =, o= 120(5z4 1112 - 2),
Z Z
dg= —75 da=0,ds= o
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which completes the proof of the theorem.
Next, we study the spask[0,1]. Let

W2[0,1] = {u(x) : u are absolutely continuous real-valued functiais; L0, 1]}.

The inner product i [0, 1] is defined as

(U2 YD gy = UOMO) + [ (2
and the nornﬂu||W21[071] is given by
[Ullwgioy = 4/ (U(2), u(Z)wgo

whereu,v € W0, 1].
Theorem 3.2.The spac&V}[0, 1] is a reproducing kernel Hilbert space, i.e.; there eX®tsz) € W.'[0,1] such that
for anyu € W4 [0, 1] and each fixed, x € [0,1], we have

(U(Z), R(X, Z) )W21[071] = U(X) .

_ ) 1+z z<x
R(X’Z)_{ler, z>x}'

Proof: Using integration by parts, one can get

In this caseR(x, 2) is given by

(U(2).R(%.2)Jygpo1) = UORX.0) + / dz

1 2
= U(0)R(x,0) +u(1) aR(x 1) - (O)i,’—lj(x,O)— /0 u(z)aTR(x,z)dz.

SinceR(x,2) is a reproducing kernel af4[0, 1],

(u(2),R(x, Z))wzl[o,l] =u(x)
which implies that

2
375()(72):5(2_)() (3.15)
and
R(x,0) — [;—F; (x,0) =0, (3.16)
JOR
E(X’ 1)=0. (3.17)

Since the characteristic equation{»g% (x,2) = 6(z—x ) is A2 =0 and its characteristic valueAs= 0 with 2 multiplicity
roots, we writeR(x,z) as

R(x,2) = { co(X)+c1(X)z, z< x}.

do(X) +d1(X)z, z> x

Since a—zﬂ(x, 7) = —8(z—x), we have

R(x,x+0) — R(x,x+0) =0 (3.18)
oR oR
E(X’X+ O)—E(x,x+0) =-1 (3.19)
(@© 2017 NSP
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Using the conditions3.17)-(3.19, we get the following system of equations

co(X) —c1(x) = 0, (3.20)
di(x) =0,
Co(X) + ¢1(X) x = do(X) +d1(X) X,

which implies that

co(X) =1, c1(X) = 1,dp(x) = 1+ X, di(x) = 0.

This completes the proof of the theorem.
Now, we present how to solve Problef%)-(3.6) using the reproducing kernel method. Let

a; () = R(X;,X)
fori=1,2,.... Itis clear that. : W5[0,1] — W3[0, 1] is bounded linear operator. Let
Yi(x) =L 0i(X)

whereL(gi(x)) = go(X) 0/’ (X) + 91(x) ¢ (x) + g2(x)0i(x) and L* is the adjoint operator of. Using Gram-Schmidt
orthonormalization to generate orthonormal set of fumstipy; (x)}fll where

Fi(x) = IZ aij g (x) (3.21)
=1

anda;jj are coefficients of Gram-Schmidt orthonormalization. l& tiext theorem, we show the existence of the solution
of Problem 8.5-(3.6).
Theorem 3.3.If {x;};”; is dense o0, 1], then

o

f(x) = Z Zlaijh(xj)llfi (X). (3.22)
i=1j=

Proof: First, we want to prove thatyi (x)};-; is the complete system %[0, 1] and i (x) = L(K(x,x)). It is clear
thatyi (x) € W5[0,1] fori = 1,2, .... Simple calculations implies that

W (x) = L 0i(x) = (L"6i(x),K(X, Z))W;’[O,l]
— (010, L(K (X 2 gio = LK(X X))

For each fixed (x) € W5'[0, 1], let

(F09 Y (ngioy =0 1= 1,2, ...
Then

(F (), i (Dwgo = (FOO: L7 01Xz
= (LF(), (g,
=Lf(x)=0.

Since{x};, is dense o0, 1], Lf(x) = 0. SinceL~* exists,u(x) = 0. Thus,{{(x)};; is complete system &[0, 1].
Second, we prove equatioB.22. Simple calculations implies that
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f(X):zi W301]W(X)
ZI aij (f(x),L" (K(x, XJ)))W3[0 1]w (X)
o] i
ZI Qi (L1 (%), KO6X))wgjo, 8 (%)
00 | -
21 aij (), KO X)) g, 9 (%)
o] i
and the proof is complete.
Let the approximate solution of Proble®.9)-(3.6) be given by

N i

W)= 3 3 @) dix. (3:23)
i=1j=

In the next theorem, we show the uniformly convergent of{tﬁ%ﬁ(”%x)} to %(X) form=0,1,2.

X

Theorem 3.4.1f f(x) andfy(X) are given as in3.22 and @3.23, then{ d dean X }:71 converges uniformly t@%‘) for
m=0,1,2. -
Proof: First, we prove the theorem fon= 0. For anyx € [0,1],

1100~ 09 2o = (FO9 — (), 1)~ fu(X)zion

Thus,

xup | f(x = Xu 3 f(X), P ()2 301 -
Xe[oﬁ]ﬂ (%) — fn(x )||w301] xe[Opl] g (f(), di( ))w23[071]

From Theorem (3.3), one can see tiy&t; (f(x), Llli(X))Wz:«;[Ql]LiJi (x) converges uniformly td (x). Thus,

Lim xup [|f(x) = fn () lwgjoy =0

N= ycl0,1]

which implies thaf fn(x) }x_; converges uniformly tdy (x).
Second, we prove the uniformly convergencerfo: 1, 2. Since? c'fx(n’fz is bounded function of0, 1] x [0, 1],

d™K(x,2)
dxm

S Xm, M= 17 2.
W5[0,1]

Thus, for anyx € [0,1],
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d™K(x,2z)

’f(”ﬂ (X) — flslm (x)‘ = ‘(f(x) — fn(X), W)WS[O’H
d™K(x,2)
< 110~ O wspoy || s
W01 || T gxm w01
< Xl 100~ u(¥)lwgio
< XmXxup |/ f(x) — fN(X)Hw23[071]-
x€[0,1]
Hence,
xup || £ (x) — £ xu X
up |6 9] gy = X200 1109 = (o
which implies that
(m) _
gim o [0~ 470,

Therefore,{ dmd%()() } converges uniformly té’% form=1,2.
N=1

4 Numerical Results

In this section, we apply the RKM outlined in the previoustssts to solve numerically the following three examples.
Note that the maximum number of terms in the series solutitakien afN = 12 for all examples considered in this paper.
Example 4.1.Consider the following regular fractional eigenvalue peob

DTzfvsmx)/(x) =-Ay(X), 0<x<1,0<v<1

subject to
y(0)=0,y(1)=0

Al-Mdallal [3] solved this problem using the Adomian decomposition metincthe Caputo fractional derivative sense
whenv = 0 and he found the first three eigenvalues onlyNot 25. These eigenvalues are

A1 =2.11027708 A\, = 1376538223 A3 = 24.24328676

Using the conformable derivative sense, the correspomtiviglem to Equations (6) is

Xy (%) = =Ay(%)
subject to
y(0) = pa, Y (0) =0.
Using the change of variabligx) = y(x) — u1, we get

X000 A F(X) = —Apy (4.1)
subject to
f(0)=0, f'(0)=0. (4.2)

We report the first five eigenvalues in Table 1 fo= 0. The eigenfunctions corresponding to these eigenvahges a
shown in Figure 1.
It worth mention that when we take= 40, we find the following eigenvalues
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Table 1: Eigenvalues of Example (4.1) for=0
i Aj
4.790491770421957
37.18737319624638
1004162368272831
1944864297458961
3193895777330032

abhwNBE

Table 2: § j for Example (4.1) whew =0
A % % O % j
57x10 18 204101 28«10 1% 093x10 1%
57x10716 7.6x10°14 85x101% 95x1014
20x10°14 7.6x1014 29101 51«10 14
28x1071% 85%1014 29«10°14 6.2x1014
93x107 1 095x101% 514104 6241014

O~ WN RP|—

Table 3: Eigenvalues of Example (4.1) for=1
i Aj
5.189982714917013
3958147104205038
10691354150495103
1822275092159661

A WN PR

4.7904917704219587.187373196246380041623682728311944864297458961
319389577733003275153647278075561750921399033B791907367345706
11274718520205686406625145556905271580565793182020862321659794966
409086044034430412986902215844483640771180237,/7267.32559030844

We notice that these eigenvalues satisfy the property
4.79049177042195F A\g < A1 <Ax < ...

Let )
3= ’/O Yi(X) yj (x) w(x)dx] .

In Table 2, we report the values &f;j fori, j =1,2,...,5withi # j.
However, we comput§ ; for Al-Mdallal results B] whenn = 25 and the results are

012 =0.0011366 61 3 = 0.00904938 &, 3 = 0.0270058

In addition, We taken = 60 but we do not get any new eigenvalue using his technique.
Forv =1, we can write the problem under study as follow

X3 Y (x) = —Ay(x)

subject to
y(0) =, Y (0) = 0.
For v = 1, the first four eigenvalues are reported in Table 3. The eigaifons corresponding to these eigenvalues are

shown in Figure 2.
Example 4.2.Consider the following regular variable fractional eigelwe problem

24V X

D™F Y (X) +y(x) = —Ay(x), 0<x<1,0<v <1,
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Table 4: Eigenvalues of Example (4.2) for=0
i Agj
13051713056570495
57.778106764331230
13334327399186424
23975031067251480
37699966723778533

abhwNBE

Table 5: & j for Example (4.1) whew =0
O % % j O j % j
16x10 18 144101 84x10 1> 10«10
16+10°16 94x1015 1.1+101 13«10
14x10°15 94x10°15 2.2x10°14  4.8x10°14
84x10°1° 114101 22«10 14 3.2x10°14
104101 13x101% 48«10 32x1014

G WN RP|f—

subject to
y(0) =0, y(1) =0.
Using the conformable derivative sense, the corresporgfiviglem to Equations (6) is

XY () y(x) = ~AY(X)
subject to
y(0) =0, Y (0) = piz.
Using the change of variabligx) = y(X) — t2x, we get
XETAOOE7 (x) 4 (14+A) F(X) = — (1+AX) (4.3)
subject to
f(0)=0, f'(0)=0. (4.4)

We report the first five eigenvalues in Table 4 fo= 0. The eigenfunctions corresponding to these eigenvahges a
shown in Figure 3.
It worth mention that when we take= 40, we find the following eigenvalues

13.0517130565704957.77810676433123333432739918642£2397503106725148
376.9996672377853545091460043768§44.025733056819738023947543952
123442474131974095257973831367003.8504310652365632164852262741093
24385352291651428632996021989624826808779889705495563649719205953451176291645

We notice that these eigenvalues satisfy the property

13.051713056570495 A\g <A1 <A < ...
Let

1
&= ‘/0 Yi(X) yj(X) w(x)dx| .

In Table 5, we report the values &f; fori, j =1,2,...,5 withi # j.

Forv = 1, the first four eigenvalues are reported in Table 6. The eigations corresponding to these eigenvalues
are shown in Figure 4.

Example 4.3.Consider the following regular variable fractional eigalue problem

2+v X2

DT y(¥)+y(x) = —Ay(x), 0<x<1,0<v <1,
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Table 6: Eigenvalues of Example (4.2) for=1
i Aj
1207671301571908
54.14588306274719
125617837878429016
175197982492775378

AWN PR

Table 7: Eigenvalues of Example (4.3) for=0
[ Aqj
1460628075017210128211
6505773017966611660092
1505957338546744860472
2712247472417288673558
4269454126371902860653

O b WN RP-—

subject to
y(0)=0,Yy(1) =0.

Using the conformable derivative sense, the corresportimigiem to Equations (6) is
X009y (%) y(X) = —AY(X)

subject to
y(0) =0, Y(0) = .

Using the change of variabligx) = y(x) — Lox, we get
XETAOOE7 (%) 4 (14 A) F(X) = — (1+AX) o (4.5)

subject to
f(0)=0, f'(0)=0. (4.6)

We report the first five eigenvalues in Table 7 for= 0. The eigenfunctions corresponding to these eigenvahges a
shown in Figure 5.

—-0.5+ 4

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1: The first five eigenfunctions of Example 4.1 foe 0.

It worth mention that when we take= 40, we find the following eigenvalues
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Fig. 2: The first four eigenfunctions of Example 4.1 foe= 1.

1— W

1— Y3
[ 1— Va
-0.1r N ]
r - 1— ¥

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3: The first five eigenfunctions of Example 4.2 for= 0.

Fig. 4: The first four eigenfunctions of Example 4.2 foe 1.

14.60628075017210128211442561165.0577301796661166009231097468305957338546744860472
271224747241728867355826.945412637190286065317.7578953196759670319
843662252827292583577210465850936177586327794007466765219458657824
1731926760425475214277209819876454500130650724995626909698101854646
293601854101772828976340756631555316309922039142060151621494835994

4455937640353540442293303276003655445358380886534207870076875568754
CHRAAA185706095808307898
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“01] o |

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5: The first five eigenfunctions of Example 4.3 foe= 0.

_0_17 ]
ﬂ2; E" Ya
0.0 0.2 0.4 0.6 0.8 1.0
Fig. 6: The first four eigenfunctions of Example 4.3 foe= 1.
Table 8: § j for Example (4.1) whew =0
j O Y 33, 04 05 |
1 1941016 214101 26410 3.8x101°
2 19x10716 22x10°15 244101 31%101°
3 21x101 22x101° 29%10°1 49x10°15
4 26+1071% 24101 29410715 3.8x10°15
5 38x1015 31x101 41x1015 38x1014

We notice that these eigenvalues satisfy the property

14.60628075017210128211442561107%c < A1 < Ax < ...
Let

3= ‘/Ol)/i (X) yj(X) w(x)dx]| .

In Table 8, we report the values &fj fori, j =1,2,...,5withi # j.

For v = 1, the first four eigenvalues are reported in Table 9. The eigaifons corresponding to these eigenvalues
are shown in Figure 6.
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Table 9: Eigenvalues of Example (4.3) for=1
_ x
24.28225719853922514678
1126205306176597434665
2651194498587259278269
3812966761564513870887

A WN P -

5 Conclusion

In this paper, we have developed a numerical technique tooappate the eigenvalues of regular variable fractional
Sturm-Liouville problem. The method of solution is basedri<M. The numerical results for the examples demonstrate
the efficiency and accuracy of the present method. From tiee #xamples which we mentioned in the previous section,
we notice that our technique is very efficient for computimg €igenvalues of the regular variable fractional probldms

is competes the method iB][and gives better and faster results. We end this sectiohdfollowing remarks.

1.From Examples (4.1), (4.2), and (4.3), we can find as mugénealues as the model requires with the following
property

AM<A<Az3< .. <Ap< ...

while in [3] only three eigenvalue can be found.
2.From Examples (4.1), (4.2), and (4.3), the orthogonalibperty

intdyi (x) yj(x) W(x) =0, i # j

holds while in B], we getd; » = 0.0011366 &; 3 = 0.00904938 &, 3 = 0.0270058

3.From Figures 1-6, we see that corresponding to each eag@W; is a unique (up to a normalization constant)
eigenfunctions; (x) which has exactly - 1 zeros in(0, 1).

4.We notice that the conformable derivative sense is moitalda to study the regular variable fractional
Sturm-Liouville problems than the Caputo fractional dafive sense.

5.The results in this paper confirm that RKM is a powerful affitient method for solving regular variable fractional
Sturm-Liouville problems in different fields of scienceslangineering.

6.RKM is excellent tool due to rapid convergent.

7.The existence and uniformly convergent are proven in fidrae (3.3) and (3.4).

References

[1] M. M. Djrbashian, A boundary value problem for a Sturneuville type differential operator of fractional ordézy. Akad. Nauk
Armjan. SSR Ser. Mat. 5(2), 71-96 (1970).
[2] A. M. Nahusev, The Sturm-Liouville problem for a secormdi@r ordinary differential equation with fractional deafives in the
lower termsDokl. Akad. Nauk SSSR 234, 308-311 (1977).
[3] Q. M. Al-Mdallal, An efficient method for solving fractimal Sturm-Liouville problemsChaos, Solit. Fract. 40, 183-189, (2009).
[4] S. Abbasbandy and A. Shirzadi, Homotopy analysis metioodnultiple solutions of the fractional Sturm-Liouvillergblems,
Numer. Algorit. 54(4), 521-532 (2010).
[5] V. S. Erturk, Computing eigenelements of Sturm-LidlesiProblems of fractional order via fractional differaaititransform
method,Math. Comput. Appl. 16(3), 712-720 (2011).
[6] Y. Luchko, Initial-boundary-value problems for the edenensional time-fractional diffusion equatidfr,act. Calc. Appl. Anal.
15(1), 141-160, (2012).
[7] A. Neamaty, R. Darzi, S. Zaree and B. Mohammad Zadeh, Ma&elet operational matrix of fractional order integratemd its
application for eigenvalues of fractional Sturm— Liougifroblem\World Appl. Sci. J. 16(12), 1668-167 (2012).
[8] Z. Shi and Y. Y. Cao, Application of Haar wavelet methodetigenvalue problems of higher ordéppl. Math. Model. 36(9),
4020-4026 (2012).
[9] E. Bas and F. Metin, Spectral properties of fractionalr8t-Liouville problem for diffusion operator, arXiv:1214761, (2012).
[10] E. Bas and F. Metin, A note basis properties for fraciidnydrogen atom equation, arXiv:1303.2839v2, (2013).
[11] E. Bas, Fundamental spectral theory of fractional siagSturm-Liouville operator]. Funct. Space. Appl., Article ID 915830, 7
pages, Volume (2013).
[12] M. Zayernouri and G. E. Karniadakis, Fractional Stubieuaville eigen-problems: theory and numerical approxiom J.
Comput. Phys. 252, 495-517 (2013).

(@© 2017 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl3, No. 4, 305-321 (2017)www.naturalspublishing.com/Journals.asp NS = 321

[13] T. Aboelenen and H. M. El-Hawary, Spectral theory anchatical approximation for singular fractional Sturm-Lidle eigen-
problems on unbounded domain, arXiv:1410.1583v4, (2014).

[14] M. Al-Refai, Non-existence results and analytical hds of eeigenvalues for a class of fractional Sturm-Lidawéligenvalue
problems Fract. Differ. Calc., to appear, (2017).

[15] M. Klimek, T. Odzijewicz and A. B. Malinowska, Variatial methods for the fractional Sturm-Lio uville probleinMath. Anal.
Appl. 416(1), 402—-426 (2014).

[16] F. D. Saei, S. Abbasi and Z. Mirzayi, Inverse Laplacesfarm method for multiple solutions of the fractional $tutiouville
problems Comput. Meth. Differ. Equ. 2(1), 56-61 (2014).

[17] P. Antunes and R. Ferreira, An augmented — RBE methoddtwing fractional Sturm-Liouville eigenvalues probler8sAM J.
Sci. Comput. 37(1), A515-A535 (2015).

[18] B. Jin, R. Lazarov, X. Lu and Z. Zhou, A simple finite elemenethod for boundary value problems with a Riemann-Libbevi
derivative,J. Comput. Appl. Math. 293 94-111 (2015).

[19] M. Syam and H. Siyyam, An efficient technique for findimhg teigenvalues of sixth-order Sturm-Liouville problei@kaos Solit.
Fract.39, 659-665 (2009).

[20] A. Boutayeb and E. H. Twizell, Finite-difference mettsofor twelfth-order boundary-value problendsComput. Appl. Math. 35,
133-138 (1991).

[21] K. Djidjeli, E. H. Twizell and A. Boutayeb, Numerical rtteods for special nonlinear boundary-value problems o€, J.
Comput. Appl. Math. 47, 35—-45 (1993).

[22] W. Z. Huang and D. M. Sloan, The pseudospectral methoddtving differential eigenvalue problem, Comput. Phys. 111,
399-409 (1994).

[23] C. P. Gupta, Existence and uniqueness theorems fordirigeof an elastic beam equation at resonadcklath. Anal. Appl. 135
208-225 (1988).

[24] D. O’Regan, Solvability of some fourth (and higher) eragingular boundary value problends Math. Anal. Appl. 161, 78-116
(1991).

[25] Y. Wang, Y. B. Zhao and G. W. Wei, A note on the numericdusion of higher-order differential equationd, Comput. Appl.
Math. 159 387-398 (2003).

[26] R. H. Gutierrez and P. A. A. Laura, Vibrations of non4anim rings studied by means of the differential quadratuethod,J.
Sound Vib. 1853), 507-513 (1995).

[27] T. Y. Wu and G. R. Liu, The generalized differential quatdire rule for fourth-order differential equatioriaf. J. Numer. Meth.
Eng. 50, 1907-1929 (2001).

[28] L. Greenberg, An oscillation method for fourth ordelfsadjoint two-point boundary value problems with nonlémesigenvalues,
SAM J. Math. Anal. 22, 1021-1042 (1991).

[29] F. Geng and M. Cui, Solving a nonlinear system of secanéroboundary value problem,Math. Anal. Appl. 327, 1167-1181
(2007).

[30] J. Du and M. Cui, Solving the forced Duffing equationshniittegral boundary conditions in the reproducing kernekspint. J.
Comp. Math. 87, 2088-2100 (2010).

[31] H. Yao and M. Cui, A new algorithm for a class of singulaumdary value problems, Appl. Math. Comp86, 1183-1191
(2007).

[32] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A newfthition of fractional derivative]. Comput. Math. Appl. 264, 6570
(2014).

[33] O. Acan, O. Firat, Y. Keskin and G. Oturanc, Conformaldeiational iteration methody TMSCI 5(1), 172-178 (2017).

[34] O. lyiola and E. Nwaeze, Some new results on the new cordble fractional calculus with application using D’Alaetb
approachProgr. Fract. Differ. Appl. 2( 2), 1-7 (2016).

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Analysis of RKHSM for Solving the Eigenvalue Problem
	Numerical Results
	Conclusion

