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Abstract: In this paper we propose a fractional generalization of tled-llnown Legendre equation. We obtain a solution in the
form of absolutely convergent power series with radius afveogence 1. We then truncate the power series to obtainvdre and
odd fractional Legendre functions in closed forms. Thesetions converge to the Legendre polynomials as the fraatiderivative
approaches 1, and new explicit formulas of the even and oddndre polynomials have been derived.
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1 Introduction

In recent years, fractional differential equation (FDEgught the attention of many researchers because of their
appearance in modeling several phenomenon in the physiEices 1,2,3]. As many FDEs don’t possess exact
solutions on closed forms, analytical and numerical tephes have been implemented to study these equatiph$]
7,8,9,10,11,12]. In the literature there are many functions that are irsspby the use of fractional calculus. They appear
as solutions to certain fractional deferential equatiohgctv generalize well known differential equations witheigér
orders, or as generalized fractional calculus operatorsagfc functions. These functions include the Mittag-Liffle
functions, the Fox-Wright function and the Fox H-functiatc; for more details the reader is referred 13,[L4]. In
recent years, there are interests to generalize severakmeabn differential equations and study their solutiolms]15]

the solution of the fractional Bessel equation is derivedeis of the power series and asymptotic analysis of the
solution for large arguments is obtained, where the fraetiderivative is of the Riemman-Liouville type. 1&§] a new
mathematical model of cornel topography based on the solati the modified Bessel fractional differential equatisn i
obtained. The fractional Legendre equation is investijat¢17]. However, the conformable fractional derivative is used
which satisfies same properties of the integer derivativehis paper we consider the fractional Legendre eigenvalue
problem

1
(1-x*"\D3%y — 2ax?Dg,y+ (¢ + 1)y =0, 5<a<l0<x<l, (1.1)

whereDgﬁ = D§, (Dg,) andDg, is the left Caputo fractional derivative. The above equeitca fractional generalization
of the well-known Legendre equation

(L)) +Ay=(1-x2)y —2xy +Ay=0,0<x<1, A =(({+1).

The left Caputo fractional derivative is defined by

(D5, £)(®) = (13- g F) (1) = ﬁﬁ“*)“‘“‘lf‘m(s)ds n—l<a<nel,

f (1), a=neN,
wherefl is the well-known Gamma function af, is the left Riemann-Liouville fractional integral defineg b
1 t a—1
= [5(t—9)9f(s)ds a >0
IC! f)(t) = T (a) fO( ’
1gn0 {7 a0
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(1.2)
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For more details about the definition and properties of ioaetl derivatives, the reader is referred &g][ As the

fractional derivativen in Eq.(1.1) approaches 1, the proposed fractional eigenvalue probi#meduce to the Legendre
equation.
This paper is organized as follows. In Section 2, we pre$enitifinite series solution and then discuss the convergence
the series in Section 3. In Section 4, we present the fraatioegendre functions and obtain closed formulas for theeve
and odd fractional Legendre functions. In Section 5, wesitlate the convergence of the fractional Legendre funstion
to the well known Legendre polynomials as the fractionaivd¢ive a approaches 1. Finally, we close up with some
concluding remarks in Section 6.

2 The Infinite Series Solution

In this section we obtain the series solution of Elql). We first rewrite Eq.1.1) as

1
D3y +P(X)DG.y +a(x)y=0, 5 <a <1, (2.1)
where p(x) = 2‘”‘ = and q(x) = (”” . Sincep andq are analytic at the origin with radius of convergence 1, therD

is an ordinary pomt of Eq(D). We expand the solution in a power series of the form

y= zoanxn".
n=

As the fractional derivativeD, (c) = O, for ¢ being constant, we have

r(na+1) _
D na—ao
oY= z rna+1-a) ’

I (na+1) _
DZG (n—2)a
oY= 22 Mh—2a+1)
na+1)
201 2a na
Dy = %an—x ;
L (n-2)a+1)
_Mna+1) r(na+1)
1— DZC{ n 2)a na
(1-x)Bgty = Zz M(n—2a+1)" Zz M(n—2a+1) .

and
Frna+1) .,

XDory = z F(na+1-a)
Substituting in Eq.1.1) yields
il na+1) (n-2a il r( na+1) na

O: _— _—
n;anl'((n—z)a+1 Zz F((n—2)a+1)
[(na+1) e hd
Zaz Mna+1- a) fe+1) nz
hd r(n+2)a+1) L l Fha+1) 4
p— - X
n;a“” r(na+1) zz ( 2)a+1)

r(na+1)
) S Sl
az rna+1- a)

Equating the last equation we have

X+ 4(0+1) anx”".

r2a+1)ax+¢(+1)ag=0,
and
r(3a+1)

——  Zag-2al (a+1 1ay =
FlatD) az—2al (a+1)ag+¢(£+1)a; =0,
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which implies

o L(L+1])
Q= —maoa (2.2)

2ar (a+1)—£(0+1)

az=1I(a+1) FEatl)

an, (2.3)

and
r(ha+1) 1 20

F(n+2)a+1) ( D m=2e+D T Fln—Da+ D

Since the odd terms of the series dependhpand the even terms depend ag) the general solution to the fractional
Legendre equation is

o2 = |- e+ 1>)an, 22 (24)

00 0

y=Ciy1+Cy2=C1 Z)aznﬂX(an)a +c ZOaZnXZ”". (2.5)
n= n=

It is worth to mention that foor = 1, Equations2.2-2.4) reduce to

0+1 (+2)(0—-1
a=- ( 2 )ao, 832—7( é(l )al

and
(4+n+1)(—n)
n+2)(nt1) o

which gives the power series expansion of the ordinary Léggeaquation.

ani2 = —

3 Radius of Convergence

In this section we show that the infinite series solutidrb) obtained in the previous section converges absolutely wit
radius of convergenge = 1. Since the terms of the series goes up by steps of twp applying the D’Alembert Ratio
test we have

Ry = 13n+2 X2e) _ Bzl oa g,
|an X" ||
In the following we prove that
jim (B2l g
e fan)
and thus the series converges absolutely fan0< 1.
We have
any2 _e+1)
an = a(zn I'(na+1))’
where
. r?(na+1)
" r((n+2a+1)
and
B 1 n 2a
AT F(n—2a+1) T(n-Latl)

For largen we have% ~ XnZn. We apply the Stirling’s formula

I (n) ~+2me "n"1/2,
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for largen to prove thai,z, ~ 1. We have

2
(\/E-[efnnfl[na + 1]nnt+1/2>

(n+2)a11/2
/2421 ((n+2)a+l>

2na+1 2na+1
V221 (na) <1+ i)
(n+2)a+1/2 . (n+2)a+1/2
((n+2)a> <1+ 7(n+2)a)

2na+1
/2 e na+2a-1 (na> 2
)(n+2)n+1/2

~

e

((n+2)or

na+1/2
2 (-2 (na)

<1+ %)naﬂ/z ((n+ 2)a) “

na+1/2
V2 -2 (na)
2a
e ((n +2) a)

na+1/2
V2me " (na)
2a )
(n + 2) a2

1 en-2)a+1 20en-Da+l
~ \/ﬁ ( ((n _ 2)(1 + 1)(n—2)a+1/2 + ((n _ 1)a + l)(n—l)a+1/2 )

e(n—z)a+1 1
e ( (n-2)a+1/2 (n-2)a+1/2
<(n—2)a> <1+ ﬁ)
20e” )

+ (n-la+1/2 (n-1a+1/2
((ml)a) (1+ ﬁ)

e(n—Z)a+1 1 2qe”
~ V2 "2z (—Da+1/2
((n—Z)a) e ((nfl)a) e

~

~

~

and

(n—2)a
€
1+

(n72)0><n72)a+1/2 ( ((ni 1)a>a (1+ L><n1m+1/2)

n-2

e(n—Z)a

(n—2)a+1/2 (l + (

e(nfz)n

(
(

\/E'r((n— 2)a> o <l+ ((n— l)a)a
(

Thus,

na+1/2
V2me " (na) -2

XnZn ~ (n—2)a+1/2

<n+2>zaa2”’ Jﬁ((n—Z}a)

efzn

2a na+1/2 —2a
(n+2> a2°(1—§> (n—Z) q-2a

(3.1)
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which proves the result. In the above analysis we used thiekwelvn fact that for large

(1+§)”~e"".

4 The Fractional Legendre Functions

For certain values of, one of the two infinite series ir2(5) will truncate to obtain a finite sum, the fractional Legemdr
functions. In Eq. 2.4), let

n_ (ha+1)
Ba = r(n+2)a+1)’ (4.1)
1 2a
Sg’:r(na+1)(l'((n—2)a+1)+I‘((n—1)a+1)>’ -2
then
2= B3(% 10+ 1) Jan, n>2 (4.3)

If we choos€’ such that
0(6+1)=5p,

for certainm, then
amiok =0, fork>1,

and the infinite series will truncate to obtain the finite sum
m
PE= 3 e,
n=

the fractional Legendre function of degnee . In the following we derive a general formula for obtainif§ for mbeing
even and odd.

Proposition 1.The following holds true
[(2a+1)

n
2]
== = 4.4
Dlﬁ" ren+1)a+1)’ (44)
D o rBa+1)
-1 TS 4.5
JELB" F(ntDa+ 1) (4.5)
wheref and $, are defined in Eq’s4.1-4.2).
ProofWe have
n .
[152 = pipaps--pa" "Bi"
=
_@a+1)r(4a+1)r(6a+1) r@2n-2a+1) rI(2na+1)
T T(4a+1)T(6a+1)T(8a+1) F2na+1) T ((2n+2)a+1)
B r(2a+1)
Cr2(n+la+1)
The proof of the result in Eq4(5) is analogous.
Theorem 1The fractional Legendre function of ord2m is given by
2m Sgrm 20 2m xand "t S(ij Zm
P = F e % 2 FEna D) ﬂ( ~S) (4.6)
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ProofWe have
PaM = ag + apx*” + iaznxzn"
=
Forn> 2, it holds that
agn = an 2(32n 2 SZm)
2B BE (S§ —S(E -S ( -s e

n—1 n—1

n-1
_ gl Zi_sgm
aleB (Sa )

st (2 " 1
_ o a+1) a
Fra+1)r2na+1) =

SZm n—1 2j
T (2na+1) |_|1(

which proves the result.

-5

Theorem 2The fractional Legendre function of ord2m+ 1 is given by

omd a x30’ x(2n+1 n
B =X e (3a+1) +W"Zr @ntDa+1) ) ) “.7)
where § is defined in Eq.4.2) and
Wg = I‘(a+1)(20rl’(a+1)—s§,m+1>.
ProofWe have
m

p§m+1 _ alxa + a3X3a + ZZ a2n+lx(2n+1)a’

_ a Xaa (2n+1)a

aix +a1,_(3 +1 + Zzaz X
Forn> 2, it holds that
an+1 = an_l(szn_l ™ apn_ 1
e s e e A
n—-1
n . .
=2 rLfsé“%s%’*l —sm)
J:
- I'(3a + 1) n -1 mi1
T T2+ Da+1)T 3a+1 auj]‘L (& =
Wy
_ _gml
r((2n+1)a+1) I_L( o)
which proves the result.
Applying the above formulas fan= 1, we have
Ma)+2
PZ=1 5_()0{) 2a (4.8)
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— P2
— P4
—— P6
—— P8
— P10
Fig. 1 A plot of P2,P* P8 P8 pPl0for g = 0.7
and L L
2ar (a+1)—T(3a+1)[r + ]
P3 AT 1 (a)+1 ' ' (2a) ng. 4.
a=x"—l(a+1) F(Ba+1) (4.9)
As the order of the fractional derivative approaches 1, we have
PZ=1-23%,
and 5
PR =x— 2@, (4.10)

which are constant multiplies of the Legendre polynomiélsrder 2 and 3, respectively. Figures 1-4 depict the even and
odd fractional Legendre functions for several values of

— P2
— P4
-~ P6
-~ P8
— P10

Fig. 2 A plot of P2,P* P8 P8 P0for o = 0.9

5 Comparison with the Legendre Polynomials

In the following we illustrate that the even and odd Legerfdrections obtained in Eq.'s4(6-4.7) converge to the odd
and even Legendre polynomials as the fractional derivativepproaches 1. Fomr = 1, we havesy = n(n+ 1) and
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0.04f
0.02f

s . . — P38

02 1.0

NN —— — P5
~0.02f

i — P7
-0.04f

: — P9
-0.06
-0.08f

Fig. 3 A plot of P3, P>, P7. P for o = 0.7

— P3
A — P5
-0.01F . p7
—0.02; — P9
-0.03;
—0.04;
Fig. 4 A plot of P3,P%, P7. P for a = 0.9
Wg = 2— (2m+ 1)(2m+ 1) = —4m(m+ 1). Substituting in Eq.'s4.6-4.7) yields
m 2n n—-1
P?M = 1 m(2m+ 1)x* — 2m(2m+ 1) z I_L 2j(2j+1) — 2m(2m+1)),
a1 (% 5 Z 221+ 1) - mame+ 1) (5.1
=1-m(2m+1 (x— e~ j(2j+1)—m2m+1 >, 5.1
n; (2n)! Dl
and
omil X m X2n+1 n
P = Xx—2m(2 — (2j(2j — 1) — (2m+1)(2m+2
—x-zmem 3 (ge 5 X []i2i 1~ zme 12m+2) )
X3 m 2nx2n+1 no
= x—m(2m+3) (§ Zz 1] I_L 1(21—1)—(2m+1)(m+1))), (5.2)
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and we obtain new formulas for the Legendre polynomials.pg the above formulas we have
p*=1-10¢+ %5,)(4

14, 21
B _x_ W 2Ls
X=3X "t 3

P6:1—21x2+63x4—41—%2x6
99 . 429

7 7

VY o VMg v
P X + 5X 35X
p® = 1—36x°+198¢ — %16X6+ %87)(8
o_y_ s 2865 572, 2431
Pr=x=3 5 7 63

which are, up to constants, the Legendre polynomials ofesegé to 9.

6 Conclusion

In this paper we have proposed a fractional generalizatioth® well-known Legendre equation. We obtained its
solution in the form of a power series that converges abslyléior 0 < x < 1. As the fractional derivativer approaches

1, the obtained power series solution coincides with thefonthe Legendre equation. For certain non integer values of
£, the power series expansion truncates to obtain the fradticagendre functions. We obtained closed forms of the odd
and even fractional Legendre functions. These functionseigdize the Legendre polynomials. As the fractional
derivativea approaches 1, a new interesting formula of the Legendrenpatyals is obtained.
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