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Abstract: We propose a new family of distributions called thegeneralized Burr-G (GBG) familyof distributions motivated mainly for
lifetime phenomenon. Some mathematical properties of the new family are obtained such as quantile function, linear representation
of the family density, moments and incomplete moments, moment generating function, mean deviations, stochastic ordering, stress-
strength reliability parameter and order statistics. The model parameters are estimated by the method of maximum likelihood for
complete and censored samples. Four special models are discussed and the properties of one special model, thegeneralized Burr-
uniform (GBU), are obtained. A simulation study is carried out to check theperformance of maximum likelihood estimators. The
usefulness of GBU model is proved empirically by means of three real lifetime applications to complete and censored samples.
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1 Introduction

The Burr system of distributions was proposed by Burr (1942)which offers a variety of density shapes. Some well-known
standard distributions are limiting forms of the Burr system of distributions. The Burr XII distribution has logistic and
Weibull distributions as sub-models which are very popularmodel for modeling lifetime phenomenon with monotone
failure rates. When modeling monotone (increasing or decreasing) hazard rates, the Weibull distribution may be the initial
choice because its exhibits increasing and decreasing failure rate shapes. But Weibull model does not provide a reasonable
fit for modeling phenomenon with non-monotone failure (or hazard) rates such as the bathtub (BT) or upside-down bathtub
(UBT) (or unimodal) which are common in reliability and biological studies. UBT hazard rates can be observed in course
of a disease whose mortality reaches a peak after some finite period and then declines gradually.

In the past few decades, several methods for generating new probability distributions have been proposed by using the
logit of baseline distribution. Some well-known generalized (G-) classes (or generators) are: beta-G (Eugene et al., 2002;
Jones, 2004), Kumaraswamy-G (Cordeiro and de-Castro, 2011), McDonald-G (Alexander et al., 2012), Kummer beta-G
(Pescim et al., 2012), gamma-G (Zografos and Balakrishnan,2009; Ristić and Balakrishnan, 2012; Torabi and Montazari,
2012), log-gamma-G (Amini et al., 2012), logistic-G (Torabi and Montazari, 2014; Tahir et al., 2016a), beta extended
Weibull-G (Cordeiro et al., 2012), exponentiated generalized-G (Cordeiro et al., 2013), Transformed-Transformer (T-X)
family (Alzaatreh et al., 2013), exponentiated T–X (Alzaghal et al., 2013), Weibull-G (Alzaatreh et al., 2013; Bourguignon
et al., 2014; Tahir et al., 2016b), Odd Burr III-G (Jamal et al., 2017), exponentiated half–logistic-G (Cordeiro et al.,
2014) and odd generalized-exponential-G (Tahir et al., 2015). A review on well-known G-classes is reported in Tahir and
Nadarajah (2015).

Alzaatreh et al. (2013) proposed theT–X family of distributions as a general method for generating new family of
distributions as follows:

Let r(t) be the probability density function (pdf) andR(t) be the cumulative distribution function (cdf) of a random
variable (rv)T ∈ [a,b] for −∞ < a< b< ∞ and letW[G(x)] be a function of the cdfG(x) of some baseline rvX so that
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W[G(x)] satisfies the following conditions:
(i) W[G(x)] ∈ [a,b],
(ii) W[G(x)] is differentiable and monotonically non-decreasing, and
(iii) lim

x→−∞
W[G(x)] = a and lim

x→∞
W[G(x)] = b.

The cdf of theT–Xfamily is defined by

F(x) =
∫ W[G(x)]

a
r(t)dt = R

(
W[G(x)]

)
, (1.1)

whereW[G(x)] satisfies the conditions (i)–(iii).
The probability density function (pdf) corresponding to (1.1) reduces to

f (x) = r
(
W[G(x)]

) d
dx

W[G(x)] . (1.2)

Let G(x), g(x), G(x) = 1−G(x) andQG(p) = G−1(p) be the cdf, pdf, survival function (sf) and quantile function (qf)
of any baseline rvX. Then thegeneralized Burr-G (GBG) familyof distributions can be defined by using the generator
W[G(x)] =− log{1−G(x;ξ )}which is the quantile function of the standard exponential distribution. Ifr(t)= cktc−1(1+
tc)−k is the pdf of the BXII distribution, then the cdf of the GBG family is defined by

F(x;c,k,ξξξ ) = ck
∫ − log[G(x;ξξξ )]

0
tc−1 (1+ tc)−k dt = 1−

(
1+
{
− log[G(x;ξξξ )]

}c
)−k

. (1.3)

The pdf corresponding to Eq. (1.3) is given by

f (x;c,k,ξξξ ) = ck
g(x;ξ )

1−G(x;ξξξ)
{
− log[G(x;ξξξ )]

}c−1
(

1+
{
− log[G(x;ξξξ )]

}c
)−k−1

. (1.4)

Henceforth, a random variable with density (1.4) is denoted byX ∼ GBG(c,k,ξξξ ).
The qf has widespread use in general statistics and often findrepresentations in terms of lookup tables for key

percentiles. The qfQ(u) can be determined by inverting Eq. (1.3). If QG(u) = X is the baseline qf, then

Qx(u) = G−1
(

1−e−[(1−u)−
1
k −1]

1
c

)
. (1.5)

The hazard rate function (hrf) of the GBG family given by

h(x) =
ckg(x;ξξξ ) {− log[1−G(x;ξξξ)]}c−1

[1−G(x;ξξξ)]
[
1+ {− log (1−G(x;ξξξ))}c] .

The motivation of this family is to obtain more flexible models with less number of parameters and to improve
goodness-of-fits of the model by inducting two additional shapes parameters. Furthermore, the basic motivations for
proposing GBG family in practice are:
(i) to make the kurtosis more flexible as compared to the baseline model,
(ii) to produce skewness for symmetrical distributions,
(iii) to construct heavy-tailed distributions that are notlonger-tailed for modeling real data,
(vi) to generate distributions with symmetric, left-skewed, right-skewed and reversed-J shaped,
(v) to define special models with all types of hazard rates.

The rest of the paper is organized as follows. In Section 2, some general mathematical properties of the GBG family
are obtained such as analytical expression for the density and hazard rate shapes, linear representation of GBG density,
moments and incomplete moments, moment generating function, stress-strength reliability parameter, stochastic ordering
and explicit expression for the density of order statistics. In Section 4, the model parameters are estimated by using the
maximum likelihood method for complete and for censored samples. In Section 5, four special models are discussed
and the plots of density and hazard rate are displayed to check the flexibility of GBG family in terms of density and
hazard rate shapes. The mathematical properties of one special model, thegeneralized Burr-uniformare obtained. In
Section 6, a simulation study is carried out to investigate the performance of maximum likelihood estimators. In Section
7, the usefulness of one special model, thegeneralized Burr-uniformis shown to three real-life data sets. Section 8 offers
concluding remarks.
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2 Mathematical properties

2.1 Shapes

The shapes of the density and hazard rate functions can be described analytically. The critical points of the GBG density
are the roots of the equation:

g′(x;c,k,ξξξ )
g(x;c,k,ξξξ )

+
g(x;c,k,ξξξ )

1−G(x;c,k,ξξξ )
+

(c−1)g(x;c,k,ξξξ)
{1−G(x;c,k,ξξξ)}

[
logG(x;c,k,ξξξ )

] − c(k+1)g(x;c,k,ξξξ )
[
logG(x;c,k,ξξξ )

]c−1

G(x;c,k,ξξξ )
[
1+ {− logG(x;c,k,ξξξ )}

] = 0.

The critical point of the hazard rate are the roots of the equation:

g′(x;c,k,ξξξ )
g(x;c,k,ξξξ )

+
g(x;c,k,ξξξ )

1−G(x;c,k,ξξξ )
+

(c−1)g(x;c,k,ξξξ)
{1−G(x;c,k,ξξξ)}

[
logG(x;c,k,ξξξ )

] − cg(x;c,k,ξξξ )
[
logG(x;c,k,ξξξ )

]c−1

G(x;c,k,ξξξ )
[
1+ {− log[G(x;c,k,ξξξ )]}

] = 0.

Note that the above equation may have more than one roots.

2.2 Useful representation of GBG family density and cdf

Here, we obtain linear representations of the GBG density and cdf in terms of infinite mixture of exp-G distribution.

Theorem 1.If X ∼ GBG(c,k,ξξξ ), then we have the following linear representations

F(x) =
∞

∑
i=0

wi Hi(x;ξξξ ), (2.1)

and

f (x) =
∞

∑
i=0

wi hi−1(x;ξξξ ), (2.2)

where Hi(x;ξξξ ) = Gi(x;ξξξ ) and hi−1(x;ξξξ ) = ig(x;ξ )Gi−1(x;ξξξ ) represent the exp-G densities of the baseline distributions
with i and i−1 as power parameters, respectively. The coefficients are

ai = c

(
i − c

i

) i

∑
j=0

(−1)i

c− j

(
i
j

)
Pj ,i(−1)c+i (2.3)

and wi =
ei
c0

, ei = dn− 1
c0

n
∑
j=0

cn− j d j , ci are the coefficients of division of two power series (see Gradshteyn and Ryzhik,

2000) with d0 = c0−1 and di = ci .

Proof. Consider the following series expansion

[log(1+ z)]a = a
∞

∑
k=0

(
k−a

k

) k

∑
i=0

(−1)k

a− i

(
k
i

)
Pi,k zk. (2.4)

wherePj ,k =
1
k ∑k

m=1( jm− k+m)cmPj ,k−m, p j ,0 = 1 andck =
(−1)k

k+1 .

Using power series division and power series raised to a power (Gradshteyn and Ryzhik, 2000) given in Eq. (2.4), the
Eq. (1.3) becomes

F(x) = 1−
(

1+
∞

∑
i=0

ai R
i(x)

)−k

,

where

ai = c

(
i − c

i

) i

∑
j=0

(−1)i

c− j

(
i
j

)
Pj ,i(−1)c+i .

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


404 M. A. Nasir et al.: A new generalized Burr family of distributions...

Considering 1+∑∞
i=0ai Ri(x) = ∑∞

i=0bi Ri(x), whereb0 = 1+a0 andbi = ai, the above equation becomes

F(x) =

(
∑∞

i=0bi Ri(x)
)k

−1
(

∑∞
i=0bi Ri(x)

)k =
∑∞

i=0di Ri(x)

∑∞
i=0ci Ri(x)

.

After some algebra, we have

F(x) =
1
c0

∞

∑
i=0

ei F
i(x,ξξξ ).

The above equation can be expressed as

F(x) =
∞

∑
i=0

wi Hi(x;ξξξ )

and hence by simple differentiation of the above equation, we have

f (x) =
∞

∑
i=0

wi Hi(x;ξξξ ),

wherewi =
ei
c0

, ei = dn− 1
c0

n
∑
j=0

cn− j d j , ci are the coefficients of division of two power series (see Gradshteyn and Ryzhik,

2000) with d0 = c0 − 1 anddi = ci , and Hi(x;ξξξ ) is the exp-Rdistribution of the baseline densities withi as power
parameter.

2.3 Moments and moment generating function

Therth moment of GBG family can be obtained by using the followingexpression

E(Xr) =
∞

∑
i=0

wi

∫ ∞

0
xr hi−1(x;ξξξ )dx. (2.5)

Thesth incomplete moment of the GBG family can be obtained by using the following expression

µs(x) =
∞

∑
i=0

wi T
′
i (x), (2.6)

whereT ′
s(x;ξξξ ) =

∫ x
0 xshi−1(x;ξξξ )dx.

The moment generating function (mgf) of the GBG family can beobtained from

MX(t) =
∞

∑
i=0

wi

∫ ∞

0
et x hi−1(x;ξξξ )dx. (2.7)

The mean deviations of the GBG family can be obtained by usingthe following expressions

Dµ = 2µ F(µ)−2µ1(µ), (2.8)

and
DM = µ −2µ1(M), (2.9)

whereµ = E(X) can be obtained from Eq. (2.5), M = Median(X) can be obtained from Eq. (1.5). Here,F(µ) can be
calculated easily from Eq. (1.3) and µ1(.) can be obtained from Eq. (2.6). From the above equations, Bonferroni and
Lorenz curves can be obtained, for a given probabilityπ

B(π) =
µ1(q)
π µ

and L(π) =
µ1(q)

µ
, (2.10)

whereq= F−1(π) is the GBG qf atπ can be obtained form Eq. (1.5).
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2.4 Stress-strength reliability parameter and stochasticordering

The reliability parameterR is defined by

R= P(X1 < X2) =

∫ ∞

0
f1(x;ξξξ 1)F2(x;ξξξ 2)dx,

whereX1 andX2 have independent GBG(c1,k1,ξξξ 111) and GBG(c2,k2,ξξξ 222) distributions with a common parameter. Using
the infinite mixture representations given in Eqs. (2.1) and (2.2), we obtain

R= P(X1 < X2) =
∞

∑
i=0

wi

∞

∑
p=0

dp

∫ ∞

0
hi−1(x;ξξξ 1)Hp(x;ξξξ 2)dx,

wherehi−1 andHp(x) are the exp-G densities of the baseline distribution withi −1 andp as power parameters.

If X1 ∼ GBG(c,k1,ξξξ ) andX2 ∼ GBG(c,k2,ξξξ ) with common parameterc, then the density functions ofX1 andX2 are,
respectively, given by

f1(x) = ck1
g(x;ξξξ )
G(x;ξξξ )

{− log[G(x;ξξξ )]}c−1 [1+ {− log[G(x;ξξξ )]}c]k1−1
(2.11)

and

f2(x) = ck2
g(x;ξξξ )
G(x;ξξξ )

{− log[G(x;ξξξ )]}c−1 [1+ {− log[G(x;ξξξ )]}c]k2−1
. (2.12)

The ratio of the above two densities is

f1(x)
f2(x)

=
k1

k2

[
1+ {− log[G(x;ξξξ )]}c]k2−k1 . (2.13)

Differentiating the densities ratio, we have

d
d x

f1(x)
f2(x)

=
k1

k2
(k2− k1)

cg(x;ξ ){− log[Ḡ(x;ξξξ )]}c−1

1−G(x;ξξξ)
[
1+ {− log[Ḡ(x;ξξξ )]}c]k2−k1−1

. (2.14)

From above, we conclude that ifk1 > k2, then d
d x

f1(x)
f2(x)

< 0 which implies thatX ≤lr Y.

3 Order Statistics

Here, we give an expression of theith order statistics as a linear representation of baseline density.

Theorem 2.If n be an integer value and X1,X2, . . . ,Xn, i = 1,2, . . . ,n, be identically independently distributed random
variables, then the density of ith order statistics is givenby

fi:n(x) =
n−i

∑
j=0

∞

∑
m,r=0

mj(m, r)hm+r−1(x), (3.1)

where

mj(m, r) =
n!m(−1) j wmc j+i−1:r

(i −1)! j!(n− i − j)!(m+ r)
(3.2)

and hm+r−1(x) = (m+ r)g(x)Gm+r−1(x) are the exp-G densities of the baseline distribution with m+ r − 1 as power
parameter.

Proof. Consider the power series expansion (Gradshteyn and Ryzhik, 2000)

(
∞

∑
k=0

ak xk

)n

=
∞

∑
k=0

ck:nxk, (3.3)
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wherec0 = an
0 andcm = 1

ma0
∑m

k=1(kn−m+ k)akcn:m−k.

The density forith order statistics is given by

fi:n(x) =
n!

(i −1)!(n− i)!
g(x)Gi−1(x) [1−G(x)]n−i,

which can be written as

fi:n(x) =
n!

(i −1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)i f (x)[F(x)]i+ j−1.

Now using the linear representations defined in Eqs. (2.1), (2.2) and (3.3), the density ofith order statistics can be
expressed as

fi:n(x) =
n−i

∑
j=0

∞

∑
r,m=0

mj(r,m)hr+m−1(x),

where the coefficientmj(r,m) is defined in Eq.(3.2).

4 Estimation of GBG family parameters

Here, we consider the estimation of the unknown parameters of GBG family by the maximum likelihood method for
complete and censored samples.. The maximum likelihood estimates (MLEs) enjoy desirable properties that can be used
when constructing confidence intervals and deliver simple approximations that work well in finite samples. The resulting
approximation for the MLEs in distribution theory is easilyhandled either analytically or numerically. Letx1, . . . ,xn be a
sample of sizen from GBG family of distributions given in Eq.(1.4).

4.1 Estimation of parameters in case of complete samples

The log-likelihood function of GBG distributions for the vector of parameterΘ = (c,k,ξ )T is given by

ℓ(Θ) = n log(ck)+
n

∑
i=1

logg(xi ;ξξξ )−
n

∑
i=1

logG(xi ;ξξξ )+ (c−1)
n

∑
i=1

log{− logG(xi ;ξξξ )}

−(k+1)
n

∑
i=1

log
[
1+ {− logG(xi ;ξξξ )}c] .

The components of the score vectorU =
(
Uk,Uc,Uξξξ

)T
are

Uk =
∂ l
∂k

=
n
k
−

n

∑
i=1

log
[
1+ {− logG(xi ;ξξξ )}c] ,

Uc =
∂ l
∂c

=
n
c
+

n

∑
i=1

log{− logG(xi ;ξξξ )}− (k+1)
n

∑
i=1

[
c{logG(xi ;ξξξ )}c log{logG(xi ;ξξξ )}

1+
{
logG(xi ;ξξξ )

}c

]
,

Uξξξ =
∂ l
∂ξξξ

=
n

∑
i=1

[
gξξξ (xi ;ξξξ )
g(xi ;ξξξ )

]
+

n

∑
i=1

[
Gξξξ (xi ;ξξξ )
G(xi ;ξξξ )

]
− (c−1)

n

∑
i=1

[
Gξξξ (xi ;ξξξ )[

1+ {− logG(xi ;ξξξ )}c
]

G(xi ;ξξξ )

]

−c(k+1)
n

∑
i=1

[
c{− logG(xi ;ξξξ )}c−1Gξξξ (xi ;ξξξ )
G(xi ;ξξξ )

[
1+ {− logG(xi ;ξξξ )}c

]
]
,

whereGξξξ (·) andgξξξ (·) means the derivative of the functionG andg with respect toξξξ .
SettingUk, Uc andUξξξ equal to zero and solving these equations simultaneously yields the the maximum likelihood

estimates. These equations cannot be solved analytically,and analytical softwares are required to solve them numerically.
For interval estimation of the parameters, we obtain the 3×3 observed information matrixJ(Θ) =Urs (for r,s= c,k,ξξξ ),
whose elements are listed in Appendix A. Under standard regularity conditions, the multivariate normalN3(0,J(Θ̂)−1)

distribution is used to construct approximate confidence intervals for the parameters. Here,J(Θ̂) is the total observed
information matrix evaluated at̂Θ . Then, the 100(1−α) confidence intervals for c, k andξ are given by ˆc± zγ∗/2 ×
√

var(ĉ), k̂± zγ∗/2×
√

var(k̂) andξ̂ ± zγ∗/2×
√

var(ξ̂ ), respectively, where the var()s denote the diagonal elements of

J(Θ̂)−1 corresponding to the model parameters, andzγ∗/2 is the quantile(1− γ∗/2) of the standard normal distribution.
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4.2 Estimation of parameters in case of censored samples

If the lifetime of the firstr failed itemsx1,x2, . . . ,xr have been observed, then the likelihood function for type IIcensoring
is

ℓ(xi ;Θ) = A

[
r

∏
i=1

f (xi ;Θ)

]
×
(
F(x(0);Θ)

)n−r
, (4.1)

where f (.) andF(.) are the pdf and survival function corresponding toF(.), respectively. Here,X = (x1,x2, . . . ,xr)
T ,

Θ = (θ1,θ2, . . . ,θn)
T andA is a constant. Inserting Eqs. (1.3) and (1.4) in Eq. (4.1), we obtain

ℓ(xi ;Θ)=A

[
r

∏
i=1

ck
g(xi ;Uξξξ )

1−G(xi;ξξξ )
{
− logG(xi ;Uξξξ )

}c−1
(1+

{
− logG(xi ;ξξξ )

}c
)−k−1

]
×
[[

1+
{
− logG(x(0);ξξξ )

}c]−k
]n−r

.

(4.2)
The log-likelihood function for the vector of parameterΘ = (c,k,Uξξξ )

T is given by

ℓ(xi ,Θ) = logA+n log(ck)+
r

∑
i=1

logg(xi ;ξξξ )−
r

∑
i=1

logG(xi ;ξξξ )+ (c−1)
r

∑
i=1

log{− logG(xi ;ξξξ )}

− (k+1)
r

∑
i=1

log
[
1+ {− logG(xi ;ξξξ )}c]+ k(n− r) log

[
1+ {− logG(x(0);ξξξ )}c] .

The components of the score vectorU =
(

∂ l
∂k ,

∂ l
∂c,

∂ l
∂ξξξ

)
are

Uk =
n
k
−

r

∑
i=1

log
[
1+ {− logG(xi ;ξξξ )}c]+(n− r)

r

∑
i=1

log
[
1+ {− logG(x(0);ξξξ )}c] ,

Uc =
n
c
+

r

∑
i=1

log{− logG(xi ;ξξξ )}− (k+1)
r

∑
i=1

[{− logG(xi ;ξξξ )}c log{− logG(xi ;ξξξ )}
1+ {− logG(xi ;ξξξ )}c

]

+k(n− r)

[
{− logG(x(0);ξξξ )}c log{− logG(x(0);ξξξ )}

1+ {− logG(x(0);ξξξ )}c

]
.

Uξξξ =
r

∑
i=1

[
gξξξ (xi ;ξξξ )
g(xi ;ξξξ )

]
+

r

∑
i=1

[
Gξξξ (xi ;ξξξ )

1−G(xi;ξξξ )

]
+(c−1)

r

∑
i=1

[
Gξξξ (xi ;ξξξ )

logG(xi ;ξξξ ) [1−G(xi;ξξξ )]

]

+(k+1)
r

∑
i=1

[
c{− logG(xi ;ξξξ )}cGξξξ (xi ;ξξξ )[

1+ {− logG(xi ;ξξξ )}c
]
[1−G(xi;ξξξ )]

]
− k(n− r)

[
c{− logG(x(0);ξξξ )}cGξξξ (x(0);ξξξ )

[
1+ {− logG(x(0);ξξξ )}c

] [
1−G(x(0);ξξξ )

]
]
.

SettingUk, Uc andUξξξ equal to zero and solving these equations simultaneously yields the the maximum likelihood
estimates.

5 Some special models of GBG family

In this section, we give four special models of the GBG family, viz. generalized Burr-normal (GBN), generalized Burr-
Lomax (GBLx), generalized Burr-exponentiated- exponential (GBEE) and generalized Burr-uniform (GBU) distributions.
The properties of GBU model is obtained in detail.

5.1 Generalized Burr-normal (GBN) distribution

Let normal distribution be the baseline distribution with the pdf g(x) = 1√
2πσ e−

1
2(

x−µ
σ )

2

and the cdf

Φ(x) = 1√
2πσ

∫ x
−∞ e−

1
2(

x−µ
σ )

2

dx,−∞ < x< ∞, whereµ andσ are location and scale parameters, respectively. Then, the
cdf and pdf of the GBN distribution are, respectively, givenby

F(x) = 1− [1+ {− log (1−Φ(x))}c]
−k (5.1)
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and

f (x) =
ck
σ2

µ − x
1−Φ(x)

{− log(1−Φ(x))}c−1 [1+ {− log(1−Φ(x))}c]−k−1 .

(i) If c = 1 in Eq. (5.1), then GBN distribution reduces to the generalized Lomax-normal (GLxN) distribution, (ii) if
k= 1 in Eq. (5.1), then GBN distribution reduces to the generalized log-logistic-normal (GLLN) distribution, and (iii) if
c= k= 1 in Eq. (5.1), then the GBN distribution reduces to normal distribution.

In Figure1 (a) and (b), the plots for the density and hazard rate functions of the GBN distribution are displayed.
From Figure1(a) and Figure1(b) we conclude that the density shapes of GBN model are right-skewed, left-skewed and
symmetrical and the hazard rate shape is UBT.
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Fig. 1: Plots of (a) density and (b) hazard rate for the GBN distribution for different parameter values.

5.2 Generalized Burr-Lomax (GBLx) distribution

Let Lomax be the baseline distribution having pdfg(x) = α β (1+α x)−β−1 , x ≥ 0 and cdfG(x) = 1− (1+αx)−β ,
whereα > 0 andβ > 0 are scale and shape parameters, respectively. Then, the cdf and pdf of the GBLx distribution are,
respectively, given by

F(x) = 1− [1+ {β log (1+αx)}c]
−k (5.2)

and
f (x) = ckα β (1+αx)−1 {β log(1+αx)}c−1 [1+ {β log(1+αx)}c]

−k−1
.

(i) If c= 1 in Eq. (5.2), then the GBLx distribution reduces to generalized Lomax-Lomax (GLxLx) distribution, (ii) if
k = 1 in Eq. (5.2), then the GBLx distribution reduces to generalized log-logistic-Lomax (GLLLx) distribution, and (iii)
if c= k= 1 in Eq. (5.2), then the GBLx distribution reduces to the Lomax distribution.

In Figure2 (a) and (b), the plots for the density and hazard rate functions of the GBLx distribution are displayed.
From Figure2(a) and Figure2(b) we conclude that the density shapes of GBLx model are right-skewed, left-skewed and
decreasing, and the hazard rate shapes are decreasing and UBT.

5.3 Generalized Burr exponentiated-exponential (GBEE) distribution

Let exponentiated-exponential (EE) be the baseline distribution with pdfg(x) = α β e−α x (1−e−α x)
β−1

, x > 0 and the

cdf G(x) = (1−e−α x)
β , whereα > 0 is scale parameter whileβ > 0 is the shape parameters, respectively. Then the cdf

c© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 2, 401-417 (2017) /www.naturalspublishing.com/Journals.asp 409

(a) (b)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

x

pd
f

c = 0.3  k = 3  α = 0.8  β = 0.3
c = 3  k = 0.8  α = 1  β = 2
c = 5  k = 1.5  α = 2  β = 2
c = 8  k = 2  α = 2  β = 1.5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

hr
f

c = 0.3  k = 3  α = 0.8  β = 0.3
c = 3  k = 0.8  α = 1  β = 2
c = 5  k = 1  α = 1  β = 1
c = 10  k = 2  α = 2  β = 1.3

Fig. 2: Plots of (a) density and (b) hazard rate for the GBLx distribution for different parameter values.

and pdf of the GBEE distribution are, respectively, given by

F(x) = 1−
{

1+
[
− log{1−

(
1−e−α x)β}

]c}−k
(5.3)

and

f (x) =
ckα β e−α x (1−e−α x)

β−1
[
− log{1− (1−e−α x)

β}
]c−1

[
1− (1−e−α x)β

] {
1+
[
− log{1− (1−e−α x)β}

]c}k+1 .

(i) If c= 1 in Eq. (5.3), then the GBEE distribution reduces to the generalized Lomax-exponentiated exponential (GLxEE)
distribution, (ii) if k= 1 in Eq. (5.3), the GBEE distribution reduces to generalized exponentiated exponential (GLLEE)
distribution, and (iii) ifc= k= 1 in Eq. (5.3), then the GBEE distribution reduces to the EE distribution.

In Figure3 (a) and (b), the plots for the density and hazard rate functions of the GBLx distribution are displayed. From
Figure3(a) and Figure3(b) we conclude that the density shapes of GBLx model are right-skewed, nearly symmetrical and
decreasing and the hazard rate shapes are increasing, decreasing and upside-down bathtub.

5.4 Generalized Burr-uniform (GBU) distribution

Let uniform distribution be the baseline distribution having pdfg(x) = 1
θ , θ > 0 and cdfG(x) = x

θ , whereθ is a scale
parameter. Then, the cdf and pdf of the GBU distribution are,respectively, given by

F(x) = 1−
[
1+
{
− ln

{
1− x

θ

}}c]−k
(5.4)

and

f (x) =
ck

θ − x

{
− log

{
1− x

θ

}}c−1[
1+
{
− log

{
1− x

θ

}}c]−k−1
.

(i) If c = 1 in Eq. (5.4), then the GBU distribution reduces to generalized Lomax-uniform (GLxU) distribution, (ii) if
k = 1in Eq. (5.4), then GBU distribution reduces to generalized log-logistic uniform (GLLU) distribution, and (iii) if
c= k= 1 in Eq. (5.4), then the GBU distribution reduces to uniform distribution.

In Figure4 (a) and (b), the plots for the density and hazard rate functions of the GBU distribution are displayed. From
Figure4(a) and Figure4(b) we conclude that the density shapes of GBU model are left-skewed, right-skewed, decreasing,
U-shape and J, and the hazard rate shape are increasing, decreasing and BT.
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Fig. 3: Plots of (a) density and (b) hazard rate for the GBEE distribution for different parameter values.
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Fig. 4: Plots of (a) density and (b) hazard rate for the GBU distribution for different parameter values.

5.4.1 Properties of GBU distribution

The qf of the GBU distribution is given by

Qx(u) = θ


1−e

−
[
(1−u)−

1
k −1

] 1
c


 .

Therth moment of the GBU distribution is given by

µ ′
r =

∞

∑
i=0

wi

(
i

r + i

)
θ r . (5.5)

Thesth incomplete moment of the GBU distribution is given by

T(m)
s (z) =

∞

∑
i=0

wi

(
i

θ i

)
zi+s

i + s
. (5.6)

c© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 2, 401-417 (2017) /www.naturalspublishing.com/Journals.asp 411

The moment generating function of the GBU distribution is given by

MX(t) =
∞

∑
i=0

wi
i(−1)i

θ i

γ(i,−tx)
t i .

First incomplete moment can be obtained by settings= 1 in Eq. (5.6) as

T(m)
1 (z) =

∞

∑
i=0

wi

(
i

θ i

)
zi+1

i +1
.

The mean deviations about mean and median are

D(µ) = 2µ F(µ)−2
∞

∑
i=0

wi

(
i

θ i

)
µ i+1

i +1

and

D(M) = µ −2
∞

∑
i=0

wi

(
i

θ i

)
Mi+1

i +1
.

The log-likelihood function for the vector of parameterΘ = (c,k,θ )T is

l(Θ) = nlog

(
ck
θ

)
−

n

∑
i=1

log
(

1− xi

θ

)
+(c−1)

n

∑
i=1

log
{
− log

(
1− xi

θ

)}
− (k+1)

n

∑
i=1

log
{

1+
{
− log

(
1− xi

θ

)}c}
.

The components of score vector are:

Uk =
n
k
−

n

∑
i=1

log (1+ zi), (5.7)

Uc =
n
c
+

n

∑
i=1

log
{
− log

(
1− xi

θ

)}
− (k+1)

n

∑
i=1

(
źi:c

1+ zi

)
, (5.8)

where zi =
[
− log

(
1− xi

θ
)]c

and źi:c =
[
− log

(
1− xi

θ
)]c[

log
{
− log

(
1− xi

θ
)}]

.
Since the parameterθ involved in the limit of random variable 0≤ x≤ θ , so we will estimate it by the maximum order
statisticx(n). The above equations cannot be solved analytically, ratheran analytical software is required to solve them
numerically. In this paper the estimates and the standard errors of GBU model are obtained usingR-language.

6 Simulation study

In this section, a simulation study is carried out to examinethe performance of the MLEs of the GBU parameters. We
generate 1000 samples of size,n=25, 50, 100 and 500 of the GBU model for fixedθ = 0.5. The evaluation of estimates is
based on the mean of the MLEs of the model parameters and the mean squared error (MSE) of the MLEs. The empirical
study was conducted withR-software and the results are presented in Table1. The values in Table1 indicate that the
estimates are quite stable and more importantly the values of the estimates are close to the true values for the these sample
sizes. It can be observed from Table1 that the MSEs decrease asn increases. From this simulation study we conclude that
the maximum likelihood method is appropriate for estimating the GBU parameters. In fact, the MSEs of the parameters
tend to be closer to the true parameter values whenn increases. This fact supports that the asymptotic normal distribution
provides an adequate approximation to the finite sample distribution of the MLEs. The normal approximation can be
improved by using bias adjustments to these estimators. Approximations to the their biases in simple models can be
obtained analytically.

7 Applications of GBG model

In this section three real-life data sets are analyzed as an empirical illustration of the newly proposed family. The first
two data sets are based on complete observations (uncensored) while the third one is censored. We tried to show the
usefulness of the GBG model in different lifetime phenomenons. In these three applications, the model parameters are
estimated by the method of maximum likelihood. The goodness-of-fit criterion: Akaike information criterion (AIC),
Bayesian information criterion(BIC) are used to compare the proposed and competitive models. In general, the smaller
the values of these statistics, the better the fit to the data.The plots of the fitted pdfs and cdfs of the models are displayed
for visual comparison. For all data sets, we use the sub-model GBU to compare it with the Weibull-uniform (WU),
Weibull-Burr XII (WBXII), beta-Burr XII (BBXII) and Kumaraswamy-Burr XII (KwBXII) distributions. The required
computations are carried out inR-packages.
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Table 1: Means and MSEs for the of the MLEs of the parameters of the GBU model.

c k n Mean MSE
c k θ c k θ

1 1 25 1.346 1.272 0.699 1.464 1.282 0.406
50 1.065 1.256 0.682 1.374 1.263 0.399
100 1.064 1.255 0.645 0.229 1.182 0.214
500 1.009 1.035 0.509 0.028 0.753 0.040

2 1 25 2.271 0.762 0.518 1.964 1.792 0.093
50 2.024 0.902 0.509 1.020 1.087 0.062
100 2.022 0.956 0.507 0.915 0.483 0.026
500 2.012 0.966 0.501 0.501 0.175 0.006

2 0.5 25 1.606 0.145 0.788 0.776 0.556 0.878
50 1.783 0.216 0.548 0.539 0.492 0.157
100 1.849 0.376 0.515 0.256 0.267 0.059
500 1.977 0.404 0.503 0.123 0.129 0.034

0.5 3 25 0.535 2.764 0.459 0.237 0.111 0.038
50 0.511 2.915 0.463 0.136 0.061 0.021
100 0.512 2.965 0.491 0.082 0.026 0.005
500 0.498 3.007 0.499 0.016 0.015 0.002

7.1 Uncensored (complete) data sets

7.1.1 Data set 1: Birnbaum-Saunders data

The first data set was used by Birnbaum and Saunders (1969) which corresponds to the fatigue time of 101
6061-T6aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second (cps).
Bourguignon et al. (2014), and Torabi and Montazeri (2014) studied Birnbaum-Saunders data set and reported AIC
values as follows: Weibull-log-logistic (WLL) and logistic-Uniform (LU) distributions = 919.082, beta-generalized
exponential (BGE) distribution = 921.285, beta-exponential (BE) distribution = 920.211, beta-normal (BN) distribution
= 920.837, beta-Gumbel (BG) distribution = 920.956, Beta-Laplace (BL) distribution = 921.025, beta-generalized half
normal (BGHN) distribution = 921.577, beta-Birnbaum-Saunders (BBS) distribution = 921.867, gamma-uniform (GU)
distribution =922.745, beta-generalized Pareto (BGP) distribution = 923.081, beta-modified Weibull (BMW) distribution
= 923.239, beta-Pareto (BP) distribution = 924.838, respectively.

From Table 2, we see that the proposed model GBU has lower value of AIC and BIC as compared other models. Thus
our model provides better fit as compared to other models to this data set. Figure 5(a) and Figure 5(b) show the plots of
the estimated pdfs and cdfs of GBU and other competitive models. From this we conclude that GBU estimated density
and cdf show good adjustment to the data set 1.

7.1.2 Data set 2: Breast Cancer data

The second real data set represents the survival times of 121patients with breast cancer obtained from a large hospital in
a period from 1929 to 1938 (Lee, 1992). These data were previously studied by Ramos et al. (2013) and Tahir et al.
(2014). They reported the AIC values for Kumaraswamy log-logistic (KwLL) distribution = 1189.937, beta log-logistic
(BLL) distribution = 1171.861, Zografos-Balakrishnan log-logistic distribution (ZBLL) = 1167.063, exponentiated-
Weibull (EW) distribution = 1163.759, exponentiated-log-logistic (ELL) distribution = 1167.341 and
McDonald-log-logistic distribution (McLL) = 1164.661, McDonald-Weibull (McW) = 1166.474, log-logistic =
1179.199, gamma distribution = 1166.474, log-Normal (LN) distribution = 1194.067 respectively.

Table 3 indicates that the GBU model gives the best fit among all others competitive model for data set 2. The estimated
pdfs and cdfs are presented in Figure 6(a) and Figure 6(b), respectively. Figure 6 also indicates that the GBU distribution
provides a better fit to the data as compared to other models.

7.2 Data set 3: Censored data set

In this section, we provide an application of the GBU model tocensored data set. The data are related to the times to
failure of 20 aluminum reduction cells. and the failure times is in units of 1000 (Lawless, 2003). Table 4 indicates that
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Fig. 5: Plots of the estimated (a) pdfs and (b) cdfs of GBU and other competitive models for data set 1.
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Fig. 6: Plots of the estimated (a) pdfs and (b) cdfs of GBU and other competitive models for data set 2.
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Fig. 7: Plots of estimated cdfs of GBU and other competitive models for data set 3.
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Table 2: MLEs and their standard errors (in parentheses) for the dataset 1.

Distribution MLEs AIC BIC
GBU(c,k,θ ) 5.848 1.075 215 - 910.211 915.421

(0.526) (0.116) - -
WU(a,b,θ ) 1.184 2.782 215 - 945.090 950.301

(0.122) ( 0.181) - -
WBXII(c,k,α,β ) 18.371 22.161 5.073 0.025 923.879 934.323

(116.891) (1.496) (1.048) (0.002)
BBXII(c,k,α,β ) 66.295 51.750 0.815 31.009 916.923 927.343

(126.694) (38.003) (0.261) (44.806)
KwBXII(c,k,α,β ) 793.469 588.060 20.290 0.048 915.017 925.438

( 219.976) (227.223) (15.357) (0.002)

Table 3: MLEs and their standard errors (in parentheses) for the dataset 2.

Distribution MLEs AIC BIC
GBU(c,k,θ ) 1.183 3.505 160 - 1159.186 1164.777

(0.077) ( 0.340) - -
WU(a,b,θ ) 1.405 0.691 160 - 1187.540 1193.132

(0.128) ( 0.042) - -
WBXII(c,k,α,β ) 65.022 53.454 0.025 0.880 1166.053 1177.242

( 292.673) ( 9.906) (0. 011) ( 0.587)
BBXII(c,k,α,β ) 0.418 159.033 0.366 28.783 1173.254 1184.437

(0.212) (104.782) (0.075) (10.892)
KwBXII(c,k,α,β ) 32.582 341.059 0.169 1.687 1173.480 1184.663

(43.880) ( 293.180) ( 0.115) ( 1.602)

Table 4: MLEs, their standard errors and goodness-of-fit statisticsfor data set 3.

Model Parameters MLE Standard error AIC BIC
GBU c 2.151 0.407 42.683 44.675

k 1.750 0.425
θ 2.5 -

WU a 0.566 0.160 45.708 47.699
b 1.186 0.232
θ 2.5 -

WBXII c 5.062 8.841 46.0746 50.057
k 1.791 1.386
α 2.090 2.062
β 0.239 0.280

BBXII c 0.363 0.551 46.094 50.077
k 4.372 20.586
α 1.739 2.066
β 8.431 12.365

KwBXII c 16.600 24.992 46.034 50.017
k 19.361 89.159
α 0.553 0.512
β 2.116 2.402
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the GBU model gives the best fit among all others competitive model for data set 3. Figure 7 also indicates that the GBU
distribution provides a better fit to the censored data as compared to other models.

8 Concluding remarks

In this paper, we proposed a new family of distributions called thegeneralized Burr-G familyof distributions. We obtained
some of its mathematical properties. Estimation of parameters are dealt for both complete and censored samples. Four
special models are considered and the properties of one special model, thegeneralized Burr-uniformare obtained. A
simulation study is carried and the MLEs estimates are foundquite satisfactory. Three applications to real data sets also
reveals that the special model of the proposed family performs better as compared to some other well-known models.
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Appendix A

Ukc = −
n

∑
i=1

[
log
[
− logG(xi ;ξξξ )

]
{− logG(xi ;ξξξ )}c

G(xi ;ξξξ )
{

1+
[
− logG(xi ;ξξξ )

]c}
]
,

Ukξξξ = −
n

∑
i=1

[
cGξξξ (xi ;ξξξ )

[
− logG(xi ;ξξξ )

]c−1

G(xi ;ξξξ )
{

1+
[
− logG(xi ;ξξξ )

]c}
]
,

Ukk = − n
k2 ,

Ucξξξ = −
n

∑
i=1

Gξξξ (xi ;ξξξ )
G(xi ;ξξξ ) logG(xi ;ξξξ )

−(k+1)
n

∑
i=1

[
Gξξξ (xi ;ξξξ ) [− logG(xi ;ξξξ )]c−1

G(xi ;ξξξ )
[
− logG(xi ;ξξξ )

]c +
c log[− logG(xi ;ξξξ )] [− logG(xi ;ξξξ )]c−1

G(xi ;ξξξ )
{

1+
[
− logG(xi ;ξξξ )

]c}

−Gξξξ (xi ;ξξξ ) log[− logG(xi ;ξξξ )]
[
− logG(xi ;ξξξ )

]2c−1

G(xi ;ξξξ )
{

1+
[
− logG(xi ;ξξξ )

]c}2

]
,

Ucc = − n
c2 − (k+1)

n

∑
i=1

[[
− logG(xi ;ξξξ )

]c [
log{logG(xi ;ξξξ )}

]2
{

1+
[
− logG(xi ;ξξξ )

]c} −
[
− logG(xi ;ξξξ )

]2c [
log{logG(xi ;ξξξ )}

]2
{

1+
[
− logG(xi ;ξξξ )

]c}2

]
,

Uξξξ ξξξ ′ =
n

∑
i=1

[
gξξξξξξ ′

(xi ;ξξξ )
g(xi ;ξξξ )

− [gξξξ (xi ;ξξξ )]2

[g(xi ;ξξξ )]2

]
+

n

∑
i=1

[
[Gξξξ (xi ;ξξξ )]2

[G(xi ;ξξξ )]2
+

Gξξξ ξξξ ′
(xi ;ξξξ )

G(xi ;ξξξ )

]

−(k+1)
n

∑
i=1

[
(c−1) [Gξξξ (xi ;ξξξ )]2

[
− logG(xi ;ξξξ )

]c−2

[G(xi ;ξξξ )]2
{

1+
[
− logG(xi ;ξξξ )

]c} +
c[Gξξξ (xi ;ξξξ )]2

[
− logG(xi ;ξξξ )

]c−1

[G(xi ;ξξξ )]2
{

1+
[
− logG(xi ;ξξξ )

]c}

− c2 [Gξξξ (xi ;ξξξ )]2
[
− logG(xi ;ξξξ )

]2c−2

[G(xi ;ξξξ )]2
{

1+
[
− logG(xi ;ξξξ )

]c}2 +
cGξξξ ξξξ (xi ;ξξξ )

[
− logG(xi ;ξξξ )

]c−1

[G(xi ;ξξξ )]
{

1+
[
− logG(xi ;ξξξ )

]c}
]

−(c−1)
n

∑
i=1

[
[Gξξξ (xi ;ξξξ )]2

[G(xi ;ξξξ )]2[logG(xi ;ξξξ )]2
+

[Gξξξ (xi ;ξξξ )]2

[G(xi ;ξξξ )]2[logG(xi ;ξξξ )]
+

Gξξξ ξξξ ′
(xi ;ξξξ )

[G(xi ;ξξξ )][logG(xi ;ξξξ )]

]
.
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