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Abstract: We propose a new family of distributions called teneralized Burr-G (GBG) familgf distributions motivated mainly for
lifetime phenomenon. Some mathematical properties of &we family are obtained such as quantile function, linearesgntation
of the family density, moments and incomplete moments, nmirgenerating function, mean deviations, stochastic argestress-
strength reliability parameter and order statistics. Traleh parameters are estimated by the method of maximumhded for
complete and censored samples. Four special models aresskstand the properties of one special model géveeralized Burr-
uniform (GBU) are obtained. A simulation study is carried out to checkpg@gdormance of maximum likelihood estimators. The
usefulness of GBU model is proved empirically by means afdéhreal lifetime applications to complete and censored Esmp

Keywords: Burr XII distribution, G-class of distributions, quantiienction, maximum Likelihood estimation, uniform distuitoon.

1 Introduction

The Burr system of distributions was proposed by Burr (194a}h offers a variety of density shapes. Some well-known
standard distributions are limiting forms of the Burr systef distributions. The Burr XlI distribution has logistiad
Weibull distributions as sub-models which are very poputadel for modeling lifetime phenomenon with monotone
failure rates. When modeling monotone (increasing or aesitng)) hazard rates, the Weibull distribution may be thigaini
choice because its exhibits increasing and decreasingdatte shapes. But Weibull model does not provide a reat®na

fit for modeling phenomenon with non-monotone failure (adral) rates such as the bathtub (BT) or upside-down bathtub
(UBT) (or unimodal) which are common in reliability and bigjiical studies. UBT hazard rates can be observed in course
of a disease whose mortality reaches a peak after some fariedmand then declines gradually.

In the past few decades, several methods for generating redalpility distributions have been proposed by using the
logit of baseline distribution. Some well-known generatiZG-) classes (or generators) are: beta-G (Eugene et al., 2002;
Jones, 2004), Kumaraswamy-G (Cordeiro and de-Castro,)2PcDonald-G (Alexander et al., 2012), Kummer beta-G
(Pescim et al., 2012), gamma-G (Zografos and BalakrisH2@09; Ristic and Balakrishnan, 2012; Torabi and Montazari
2012), log-gamma-G (Amini et al., 2012), logistic-G (Torand Montazari, 2014; Tahir et al., 2016a), beta extended
Weibull-G (Cordeiro et al., 2012), exponentiated geneealiG (Cordeiro et al., 2013), Transformed-Transformex)T
family (Alzaatreh et al., 2013), exponentiated T-X (Alzapét al., 2013), Weibull-G (Alzaatreh et al., 2013; Bougnon
et al., 2014; Tahir et al., 2016b), Odd Burr IlI-G (Jamal et aD17), exponentiated half-logistic-G (Cordeiro et al.,
2014) and odd generalized-exponential-G (Tahir et al.5204 review on well-known G-classes is reported in Tahir and
Nadarajah (2015).

Alzaatreh et al. (2013) proposed tfieX family of distributions as a general method for generatieg fiamily of
distributions as follows:

Letr(t) be the probability density function (pdf) afrit) be the cumulative distribution function (cdf) of a random
variable (rv)T € [a,b] for —0 < a < b < 0 and letW[G(x)] be a function of the cdB(x) of some baseline rX so that
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WI[G(x)] satisfies the following conditions:
() WIG(Y)] € [a,b],
(i) W[G(x)] is differentiable and monotonically non-decreasing, and
(iii) xl'_U_‘wW[G(X)] = aandxl_|>rl1°W[G(x)] =bh.
The cdf of theT-Xfamily is defined by

W(G(x)]
F(x) = /a r(t) ot = R(WIG()]), (1.1)
whereW[G(x)| satisfies the conditions (i)—(iii).

The probability density function (pdf) corresponding 101 reduces to

d
f(x)=r (W[G(x)]) S WIGK). (1.2)

Let G(x), g(x), G(x) = 1— G(x) andQg(p) = G~*(p) be the cdf, pdf, survival function (sf) and quantile funatigf)
of any baseline nX. Then thegeneralized Burr-G (GBG) familgf distributions can be defined by using the generator
WI[G(x)] = —log{1— G(x; &)} which is the quantile function of the standard exponentatithution. Ifr (t) = ckt®* (14
t¢)~Xis the pdf of the BXII distribution, then the cdf of the GBG fiyris defined by

F(x.ck &) =ck /O-Iog[G(x;E)] (140 Kdt=1— (1+ {~log[G(x; E)]}C) - (1.3)
The pdf corresponding to Eql.Q) is given by
flsok 8) = ok 2t logG )} (1+ {~loalG(6 )]}°) (L4)

Henceforth, a random variable with density4) is denoted byX ~ GBG(c,k, &).

The gf has widespread use in general statistics and oftenréipgbsentations in terms of lookup tables for key
percentiles. The oq®(u) can be determined by inverting E4..9). If Qg (u) = X is the baseline gf, then

1

1
Quy =G (1— e (A-u k-1 ) : (1.5)
The hazard rate function (hrf) of the GBG family given by

ckgx; &) {~log[l—G(x&)}°*
[1-G(x&)] [L1+{—log (1 G(x &))"

The motivation of this family is to obtain more flexible moslelith less number of parameters and to improve
goodness-of-fits of the model by inducting two additionadsds parameters. Furthermore, the basic motivations for
proposing GBG family in practice are:

(i) to make the kurtosis more flexible as compared to the beseiodel,

(ii) to produce skewness for symmetrical distributions,

(iii) to construct heavy-tailed distributions that are twiger-tailed for modeling real data,

(vi) to generate distributions with symmetric, left-skelyeght-skewed and reversed-J shaped,
(v) to define special models with all types of hazard rates.

The rest of the paper is organized as follows. In Section Resgeneral mathematical properties of the GBG family
are obtained such as analytical expression for the densityhazard rate shapes, linear representation of GBG density
moments and incomplete moments, moment generating funsti@ss-strength reliability parameter, stochastieong
and explicit expression for the density of order statistinsSection 4, the model parameters are estimated by using th
maximum likelihood method for complete and for censored@am In Section 5, four special models are discussed
and the plots of density and hazard rate are displayed tokdhecflexibility of GBG family in terms of density and
hazard rate shapes. The mathematical properties of one&abkpeadel, thegeneralized Burr-uniformare obtained. In
Section 6, a simulation study is carried out to investigagepgerformance of maximum likelihood estimators. In Sectio
7, the usefulness of one special model,dgkeeralized Burr-unifornis shown to three real-life data sets. Section 8 offers
concluding remarks.

h(x) =
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2 Mathematical properties

2.1 Shapes

The shapes of the density and hazard rate functions can baloksanalytically. The critical points of the GBG density
are the roots of the equation:

g(xck &) gx;ck, &) N (c—1)g(xc k&) _c(k+1) g(x;c.k &) [logG(x; c,k,f)]Fl 0

gixc k&)  1-G(xck§) {1-G(xckE&)}[logG(xc.k &)  Gxc.k &) [1+{—logG(xck &)} '
The critical point of the hazard rate are the roots of the gqoa

gixcké) | gxcké) (c=1)gxck &) cgixck §) [logGick &))" 0.

g(x;c,k, &) + 1-G(xck &) + {1-G(x;c.k &)} [logG(x;c.k &)] - G(xck, &) [1+{—log[G(x;c,k,&)]}]

Note that the above equation may have more than one roots.

2.2 Useful representation of GBG family density and cdf
Here, we obtain linear representations of the GBG densttycdiin terms of infinite mixture of exp-G distribution.

Theorem 1.1f X ~ GBG(c, k, &), then we have the following linear representations

:-iWi Hi(X;E), (2-1)

and

= iﬁWi hi—1(x &), (2.2)

where H(x; &) = G'(x;&) and h_1(x; &) = ig(x; &) G'~1(x; &) represent the exp-G densities of the baseline distribstion
with i and i— 1 as power parameters, respectively. The coefficients are

a=c (i‘ic> _izo(__l); (J)PJ (1)t 2.3)

and w = %, =20 — % Z cn-jdj, ¢ are the coefficients of division of two power series (see &rggyn and Ryzhik,
j=o0
2000)with@ =cp—1andd =g;.

Proof. Consider the following series expansion

log(1+2))? z ( ) i - ( ) Pk (2.4)

. _ 1)k
wherePj = £ X1 (jm— K+ m)cmPj x-m, Pj,0 = 1 andc, = %
Using power series division and power series raised to a p@@radshteyn and Ryzhik, 2000) given in Ef.4), the
Eq. 1.3 becomes

—k

F(x)=1— <1+_iai Ri(x)> ,
where

(TR (e
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Considering K 372, a; R (X) =37 obi R (x), whereby = 1+ ap andb; = &, the above equation becomes

(3moBR09) 1 5o aR
(Zi”:o biR (x)) ko YR oGR(X)

F(x) =

After some algebra, we have

- SeFE)
X) = .iWi Hi(x; &)

and hence by simple differentiation of the above equatianhave

X) = iiWi Hi(x &),

n
wherew; = %, e =0n— % S ¢n—jdj, G are the coefficients of division of two power series (see &gelyn and Ryzhik,
j=0

The above equation can be expressed as

2000) withdp = co — 1 andd; = ¢, and Hi(x; &) is the exp-Rdistribution of the baseline densities withas power
parameter.

2.3 Moments and moment generating function

Therth moment of GBG family can be obtained by using the followéxgression

Z;W'/ X hi_1(x &) dx (2.5)

Thesth incomplete moment of the GBG family can be obtained bygittie following expression

X) =Y wT/(x), (2.6)
o
whereT/(x; &) = [5x%hi_1(x; &) dx.
The moment generating function (mgf) of the GBG family carob&ined from

_ iji/ &¥hi_1(x &) dx 2.7)
= 0
The mean deviations of the GBG family can be obtained by usiadollowing expressions
Dy = 2uF (1) — 2u* (), (2.8)
and
Dm = p—2u*(M), (2.9)

whereu = E(X) can be obtained from Eq2{), M = MedianX) can be obtained from Eql(5). Here,F(u) can be
calculated easily from Eq1(3 and u'(.) can be obtained from Eq2(6). From the above equations, Bonferroni and
Lorenz curves can be obtained, for a given probabitity

B(11) — “;(5) and L(m) = “1;‘”, (2.10)

whereq = F~1(m) is the GBG qf atrr can be obtained form EqL ().
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2.4 Stress-strength reliability parameter and stochastaering
The reliability parameteR is defined by
R=P(X < Xp) = /O f1(x; & 1) Fa(x £5) dx

whereX; andX, have independent GBG ki, &,) and GBG¢;, ks, &5) distributions with a common parameter. Using
the infinite mixture representations given in Eds1) and @.2), we obtain

R P(X < %) = fowi S dy | a6 ) Hax €)
i= p=0

whereh;_; andHp(x) are the exp-G densities of the baseline distribution Wit andp as power parameters.

If X3 ~ GBG(c, kg, &) andX, ~ GBG(c, ko, &) with common paramete; then the density functions of andX; are,
respectively, given by

f1(x) = cky g&?) {~10g[G(x; £)]}°™ [1+ {~log[G(x &)]}] (2.11)
and _
10 = clo S5 (—10gG(c £))1° 1+ {~logiGLx )} 2.12)
The ratio of the above two densities is
% - ';—; [1+ {~log[G(x &)]}c]¢ ™" (2.13)
Differentiating the densities ratio, we have
d f k ; —log[Gl ; el = crke—ki—
ﬁfi&; = jo bt ° E)i_?s%[x; §X> A (14— togGc gt (2.14)

From above, we conclude thatkf > ko, then%g—gg < 0 which implies thaX <, Y.

3 Order Statistics

Here, we give an expression of thik order statistics as a linear representation of baseénsity.

Theorem 2.If n be an integer value andXXz,..., Xy, i = 1,2,...,n, be identically independently distributed random
variables, then the density of ith order statistics is gitagn

n—i o

fin(X) = ZO z m; (M, 1) myr—1(%), (3.1)

,r=0

where Im(—1)]
nim(— WmCjri—1r
MM = =i - J'J)!(m+f>

and hnr1(X) = (m+r1)g(x) G™~1(x) are the exp-G densities of the baseline distribution with- m- 1 as power
parameter.

(3.2)

Proof. Consider the power series expansion (Gradshteyn and Ry200)

n
(Z akxk> = z Ck:nxka (3.3)
k=0 k=0
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wherecy = aj) andcy, = % S i1 (kn—m+K) aCnm-k-
The density foiith order statistics is given by

fin(x) =

which can be written as

n! T n—i i i+i—
fin(x) = m%( P e

Now using the linear representations defined in Egl)( (2.2 and @.3), the density ofth order statistics can be
expressed as
n—i o

fizn(X) = jZO r,nzpo m; (r, M) hrym-1(X),

where the coefficier;(r,m) is defined in Eq3.2).

4 Estimation of GBG family parameters

Here, we consider the estimation of the unknown paramefe@B& family by the maximum likelihood method for
complete and censored samples.. The maximum likelihoath&ists (MLES) enjoy desirable properties that can be used
when constructing confidence intervals and deliver simpfaaximations that work well in finite samples. The restin
approximation for the MLEs in distribution theory is eadilgndled either analytically or numerically. Let ..., x, be a
sample of sizen from GBG family of distributions given in EqL(4).

4.1 Estimation of parameters in case of complete samples
The log-likelihood function of GBG distributions for themter of paramete® = (c,k, &)T is given by

£(@) = nlog(ck) +leogg xi; &) — ZlogG xi; &)+ (c—1) Zlog{ logG(x;; &)}

—(k+1) zllog [1+ {—logG(x; €)}°] .

The components of the score vedtbe (Uk,UC,U,E)T are

U = Z—L = E—iilog [1+{—1logG(x;&)}°],
gl n O _ N | c{logG(x; &)} log{logG(x; &)}
Uc = e (—3+i;Iog{—IogG(x., —(k+1) ZI[ 1+ {logB(x; f)} 1 ;
_o 2| gfxd) x| G (x; &)
Vem5g = 2 g(m:f)]*% Sid) | VA | (Clogtii )1 G(xmi

c{—logG(x; &)} *G* (x; &)
c(k+1 —

el )Zi G(xi; )[1+{—logG(>q;£)}°i]

whereG¢ (-) andg? (-) means the derivative of the functi@andg with respect tcf .

SettingUy, Uc andUg equal to zero and solving these equations simultaneouslgts/the the maximum likelihood
estimates. These equations cannot be solved analytiaathyanalytical softwares are required to solve them numlgric
For interval estimation of the parameters, we obtain the33bserved information matri¥(©) = Uy (for r,s= ¢, k, &),

whose elements are listed in Appendix A. Under standardlaeiguconditions, the multivariate normalg(O,J(é)‘l)
distribution is used to construct approximate confidenteritals for the parameters. Hetd@) is the total observed
information matrix evaluated @. Then, the 10QL — a) confidence intervals for ¢, k anfl are given byc=*z,. , x

Vvar(@), k+ Zy 12 X var(k) andé + Zy 12 X var(f), respectively, where the vgs denote the diagonal elements of
.J(GAD)*l corresponding to the model parameters, apg is the quantilg1 — y*/2) of the standard normal distribution.
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4.2 Estimation of parameters in case of censored samples

If the lifetime of the firstr failed itemsxy, o, ..., X have been observed, then the likelihood function for typeHsoring

is
|L| f(x;0)

wheref(.) andF(.) are the pdf and survival function corresponding=0), respectively. HereX = (xq,%z,...,X)
O =(61,6,...,6,)" andAis a constant. Inserting Eq<..0) and (L.4) in Eq. 4.1), we obtain

((%;0)=A x (F(x0:0))" ", (4.1)

T

U(x:;0)=A ithkilg—()g(;f)z) {~10gG(x;Ug)}* (1+{—|ogC(xi;£)}c)_"‘1] X “1+{—Iog@(x(o);£)}crk} o

(4.2)

The log-likelihood function for the vector of parame@r= (c, k,Uf)T is given by
r r r
0(x,0) = logA+ nlog(ck) + Zlogg(xi;f) - zilogé(xi;f) +(c—1) Zlog{—logé(xa;f)}
i= i= i=
;
— (k+1) Z log[1+ {~10gG(x; €)}°] +k(n—r)log[1+ {~logG(x); §)}°] -
i=
The components of the score vedtbe (ngu a, %) are

U = E—i log[1+{~10gG(x;§)}] + (n—1) _2"’9 [1+{~10gG(x0); &)}

Ue = 2 + ii log{—10gG(x;;§)} — (k+1) 2 {{_ IogGl()i;{f_)igg({X; ?)g}f(xi; f)}]

. [{—10gG(x(0); §)}° log{—logG(x0); €)}
+k(n r)[ 1+ {—1logG(x(p); &)}°

BN ECT 3] R T I IS, & id)
Uf_i; Q(Xi:f)]jLiZi 1-G(%:€) e 1);1 logG(x; §) (1~ G(xi: )]

r

_ I . cré .
+(k+1) Zi c{—1ogG(x); §)}°G* (X); §)

[1+{—10gG(X0); §)}¢] [1—G(X(): §)]

c{—logG(x;; &)}°GE(x; ) K1)
[1+{—10gG(x;; €)}°] [1—G(x; &)]

SettingUy, Uc andUg equal to zero and solving these equations simultaneouslgis/the the maximum likelihood
estimates.

5 Some special models of GBG family

In this section, we give four special models of the GBG family. generalized Burr-normal (GBN), generalized Burr-
Lomax (GBLXx), generalized Burr-exponentiated- exporaii@BEE) and generalized Burr-uniform (GBU) distributson
The properties of GBU model is obtained in detail.

5.1 Generalized Burr-normal (GBN) distribution

X\ 2
Let normal distribution be the baseline distribution witthet pdf g(x) = ﬁe‘%(Tp) and the cdf

- 2
P(x) = ﬁ [ e 2 (%) dx, —o0 < X < o, whereu ando are location and scale parameters, respectively. Then, the

cdf and pdf of the GBN distribution are, respectively, gilsn
F(x)=1—[1+{—log (1— @(x)} ¥ (5.1)
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and
09 = Ca Tt g 1~ 100(L- B0} [1+ {~log(1- 09}

(i) If c=1in Eq. 6.1), then GBN distribution reduces to the generalized Lomastral (GLXN) distribution, (ii) if
k=1inEq. 6.1), then GBN distribution reduces to the generalized logsiictnormal (GLLN) distribution, and (iii) if
c=k=1inEqg. 6.1), then the GBN distribution reduces to normal distribution

In Figurel (a) and (b), the plots for the density and hazard rate funstf the GBN distribution are displayed.
From Figurel(a) and Figurel(b) we conclude that the density shapes of GBN model are-gkéved, left-skewed and
symmetrical and the hazard rate shape is UBT.

(@) (b)

u=0 o=1 p=0 o=1

15

| — c¢=05 k=4
- - ¢=005k=15

0.5

c=02 k=8
f=. c=01Kk=5_
N~ \

pdf
0.2 0.4
I
hrf
0.5 1.0
I

0.1

0.0
0.0

Fig. 1: Plots of (a) density and (b) hazard rate for the GBN distridufor different parameter values.

5.2 Generalized Burr-Lomax (GBLXx) distribution

Let Lomax be the baseline distribution having k) = a8 (1+ax) ?~1, x> 0 and cdfG(x) = 1— (1+ax) P,
wherea > 0 andf > 0 are scale and shape parameters, respectively. Then,ftarcdcddf of the GBLx distribution are,
respectively, given by

F(X)=1—[1+{Blog (1+ax)} (5.2)
and
f(x) =cka B (1+ax) "t {Blog(1+ax)}* 1+ {Blog(1+ax)} .

(i) If c=1in Eqg. 6.2, then the GBLx distribution reduces to generalized Lorharaax (GLxLx) distribution, (i) if
k=1in Eqg. 6.2, then the GBLx distribution reduces to generalized logjdtic-Lomax (GLLLx) distribution, and (iii)
if c=k=1inEqg. 6.2, then the GBLx distribution reduces to the Lomax distritt

In Figure?2 (a) and (b), the plots for the density and hazard rate funstaf the GBLx distribution are displayed.
From Figure2(a) and Figur&(b) we conclude that the density shapes of GBLx model are-sgéwed, left-skewed and
decreasing, and the hazard rate shapes are decreasing and UB

5.3 Generalized Burr exponentiated-exponential (GBEEiyidbution

Let exponentiated-exponential (EE) be the baseline Higion with pdfg(x) = a e * (1— e‘“x)ﬁ’l, x> 0 and the
cdfG(x) = (1— e*"X)B, wherea > 0 is scale parameter whife > 0 is the shape parameters, respectively. Then the cdf
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Fig. 2: Plots of (a) density and (b) hazard rate for the GBLXx distidoufor different parameter values.

and pdf of the GBEE distribution are, respectively, given by

—k

F(=1- {1+ [~log{1~ (1_e*”)"}r} (5.3)

and .
ckafe ™ (1-e )Pt [~log{1- (1-e )] <

f(x) = S
[1_(1_6,“)5] {1+ [—Iog{l—(l—e*"x)ﬁ}} }

() If c=11inEq. 6.3), then the GBEE distribution reduces to the generalizeddaexponentiated exponential (GLXEE)
distribution, (ii) if k=1 in Eq. 6.3), the GBEE distribution reduces to generalized expontttiaxponential (GLLEE)
distribution, and (iii) ifc=k=1in Eq. 6.3), then the GBEE distribution reduces to the EE distribution

In Figure3 (a) and (b), the plots for the density and hazard rate funstid the GBLx distribution are displayed. From
Figure3(a) and Figur&(b) we conclude that the density shapes of GBLx model are-sgewed, nearly symmetrical and
decreasing and the hazard rate shapes are increasingasiagrand upside-down bathtub.

k+1-°

5.4 Generalized Burr-uniform (GBU) distribution

Let uniform distribution be the baseline distribution hayipdfg(x) = %, 6 > 0 and cdfG(x) = , wheref is a scale
parameter. Then, the cdf and pdf of the GBU distribution espectively, given by

Fo9=1-[1+{-In {1—%}}Tk (5.4)

R

(i) If c=1in Eq. 6.4), then the GBU distribution reduces to generalized Lomaifeun (GLxU) distribution, (ii) if
k = 1in Eq. 6.4), then GBU distribution reduces to generalized log-lagighiform (GLLU) distribution, and (iii) if
c=k=1inEq. 6.4), then the GBU distribution reduces to uniform distribatio

In Figure4 (a) and (b), the plots for the density and hazard rate funstid the GBU distribution are displayed. From
Figure4(a) and Figurel(b) we conclude that the density shapes of GBU model areskedfived, right-skewed, decreasing,
U-shape and J, and the hazard rate shape are increasinegpsiagrand BT.

and

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

410 NS 2 M. A. Nasir et al.: A new generalized Burr family of distrilbors...
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Fig. 3: Plots of (a) density and (b) hazard rate for the GBEE distigioufor different parameter values.
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Fig. 4: Plots of (a) density and (b) hazard rate for the GBU distrdwufor different parameter values.

5.4.1 Properties of GBU distribution

The gf of the GBU distribution is given by

Q=0 |1e T

Therth moment of the GBU distribution is given by

/ - . I r
Y= i;W. <r—+|) 6" (5.5)

Thesth incomplete moment of the GBU distribution is given by

w0 - 3w () e (56)
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The moment generating function of the GBU distribution igegi by

M (1) = iiWi i(;_il)' V(i,ti—tx).

First incomplete moment can be obtained by settingl in Eq. 6.6) as

T1<m>(z) :igWi <é> ,er;ll

The mean deviations about mean and median are

D(u) =2uF(u) —Ziiwi (é) |ul+—+i

and :
o i\ Mitt
The log-likelihood function for the vector of parame@r= (c,k, 0)" is

1(©) = nlog (%‘) - _ilog (1— %) +(c-1) img {—Iog (1_ %) } ~(k+ 1)_ilog {1+ {—log (1_ %) }c} .
The components of sé:_ore vector are: - -

Uy = E—_ilog (1+32), (5.7)
Ue = 2+i=§llog{—log (1_ %)} ~(k+1) é(ﬁ;) , (5.8)

where z = [—log (1—%)]Cand Z.c=[—log (1—%)]C [log {—log (1-%)}].

Since the parameté involved in the limit of random variable € x < 6, so we will estimate it by the maximum order
statisticxy,). The above equations cannot be solved analytically, ratheamalytical software is required to solve them
numerically. In this paper the estimates and the standaodsssf GBU model are obtained usifg | anguage.

6 Simulation study

In this section, a simulation study is carried out to exantireeperformance of the MLEs of the GBU parameters. We
generate 1000 samples of sime25, 50, 100 and 500 of the GBU model for fix8d= 0.5. The evaluation of estimates is
based on the mean of the MLEs of the model parameters and te sqeared error (MSE) of the MLEs. The empirical
study was conducted witR-software and the results are presented in Tdbl€he values in Tabléd indicate that the
estimates are quite stable and more importantly the valtibe @stimates are close to the true values for the theselsamp
sizes. It can be observed from Talilthat the MSEs decreasemscreases. From this simulation study we conclude that
the maximum likelihood method is appropriate for estimgtine GBU parameters. In fact, the MSEs of the parameters
tend to be closer to the true parameter values whieereases. This fact supports that the asymptotic nornstillition
provides an adequate approximation to the finite sampleilision of the MLEs. The normal approximation can be
improved by using bias adjustments to these estimatorsroXppations to the their biases in simple models can be
obtained analytically.

7 Applications of GBG model

In this section three real-life data sets are analyzed asmuirieal illustration of the newly proposed family. The firs
two data sets are based on complete observations (uncdhsdrie the third one is censored. We tried to show the
usefulness of the GBG model in different lifetime phenonmendn these three applications, the model parameters are
estimated by the method of maximum likelihood. The goodiuédi criterion: Akaike information criterion (AIC),
Bayesian information criterion(BIC) are used to compaerefhtoposed and competitive models. In general, the smaller
the values of these statistics, the better the fit to the d&plots of the fitted pdfs and cdfs of the models are displaye
for visual comparison. For all data sets, we use the sub-h®B& to compare it with the Weibull-uniform (WU),
Weibull-Burr XII (WBXII), beta-Burr Xl (BBXIl) and Kumarawamy-Burr XII (KwBXII) distributions. The required
computations are carried outRrpackages.
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Table 1: Means and MSEs for the of the MLEs of the parameters of the GBdem

c k n Mean MSE
[§ k [¢] c k [Z]

1 1 25 | 1.346 1.272 0.699 1.464 1.282 0.404
50 | 1.065 1.256 0.682 1.374 1.263 0.399
100 | 1.064 1.255 0.644 0.229 1.182 0.214
500 | 1.009 1.035 0.509 0.028 0.753 0.04(Q

2 1 25 | 2.271 0.762 0.51§ 1.964 1.792 0.093
50 | 2.024 0.902 0.509 1.020 1.087 0.062
100 | 2.022 0.956 0.507 0.915 0.483 0.026
500 | 2.012 0.966 0.501 0.501 0.175 0.004

2 05 25 | 1.606 0.145 0.78§ 0.776 0.556 0.878
50 | 1.783 0.216 0.548 0.539 0.492 0.157
100 | 1.849 0.376 0.514 0.256 0.267 0.059
500 | 1.977 0.404 0.503 0.123 0.129 0.034

05 3 25 | 0.535 2.764 0.459 0.237 0.111 0.038
50 | 0.511 2.915 0.463 0.136 0.061 0.02]
100 | 0.512 2.965 0.491] 0.082 0.026 0.005
500 | 0.498 3.007 0.499 0.016 0.015 0.002

7.1 Uncensored (complete) data sets
7.1.1 Data set 1: Birnbaum-Saunders data

The first data set was used by Birnbaum and Saunders (196%hwdurresponds to the fatigue time of 101
6061-T6aluminum coupons cut parallel to the direction dfimg and oscillated at 18 cycles per second (cps).
Bourguignon et al. (2014), and Torabi and Montazeri (201dylisd Birnbaum-Saunders data set and reported AIC
values as follows: Weibull-log-logistic (WLL) and logistiJniform (LU) distributions = 91982, beta-generalized
exponential (BGE) distribution = 92485, beta-exponential (BE) distribution = 92Q1, beta-normal (BN) distribution

= 920837, beta-Gumbel (BG) distribution = 92%6, Beta-Laplace (BL) distribution = 92125, beta-generalized half
normal (BGHN) distribution = 92577, beta-Birnbaum-Saunders (BBS) distribution =.88%, gamma-uniform (GU)
distribution =922745, beta-generalized Pareto (BGP) distribution =.023, beta-modified Weibull (BMW) distribution

= 923239, beta-Pareto (BP) distribution = 9838, respectively.

From Table 2, we see that the proposed model GBU has lowee @dl&IC and BIC as compared other models. Thus
our model provides better fit as compared to other modelsisadtita set. Figure 5(a) and Figure 5(b) show the plots of
the estimated pdfs and cdfs of GBU and other competitive isoéieom this we conclude that GBU estimated density
and cdf show good adjustment to the data set 1.

7.1.2 Data set 2: Breast Cancer data

The second real data set represents the survival times gfdti¥nts with breast cancer obtained from a large hospital i
a period from 1929 to 1938 (Lee, 1992). These data were prslistudied by Ramos et al. (2013) and Tahir et al.
(2014). They reported the AIC values for Kumaraswamy lagjdtic (KwLL) distribution = 1189937, beta log-logistic
(BLL) distribution = 1171861, Zografos-Balakrishnan log-logistic distributionBl4.) = 1167.063, exponentiated-
Weibull (EW) distribution = 116359, exponentiated-log-logistic (ELL) distribution = 171841 and
McDonald-log-logistic distribution (McLL) = 116661, McDonald-Weibull (McW) = 116@74, log-logistic =
1179199, gamma distribution = 116674, log-Normal (LN) distribution = 119867 respectively.

Table 3 indicates that the GBU model gives the best fit amdrmgladrs competitive model for data set 2. The estimated
pdfs and cdfs are presented in Figure 6(a) and Figure 6@pentively. Figure 6 also indicates that the GBU distritnuti
provides a better fit to the data as compared to other models.

7.2 Data set 3: Censored data set

In this section, we provide an application of the GBU modetémsored data set. The data are related to the times to
failure of 20 aluminum reduction cells. and the failure tgnig in units of 1000 (Lawless, 2003). Table 4 indicates that
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Fig. 5: Plots of the estimated (a) pdfs and (b) cdfs of GBU and othewpatitive models for data set 1.
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Fig. 6: Plots of the estimated (a) pdfs and (b) cdfs of GBU and othewpatitive models for data set 2.

Fig. 7: Plots of estimated cdfs of GBU and other competitive modaisiata set 3.
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Table 2: MLEs and their standard errors (in parentheses) for theseta.
Distribution MLEs AIC BIC
GBU(c,k) 5.848 1.075 215 - 910.211 915.421
(0.526) (0.116) - -
WU(a,bp) 1.184 2.782 215 - 945.090 950.301
(0.122) (0.181) - -
WBXII(c,k,a,B) 18.371 22.161 5.073 0.025 923.879 934.323
(116.891) (1.496) (1.048) (0.002)
BBXII(c,k,a, B) 66.295 51.750 0.815 31.009 916.923 927.343
(126.694)  (38.003) (0.261) (44.806)
KwBXIl(c,k,a,B)  793.469 588.060 20.290 0.048 915.017 925.438
(219.976) (227.223) (15.357) (0.002)
Table 3: MLEs and their standard errors (in parentheses) for thes#ta.
Distribution MLEs AIC BIC
GBU(c,k0) 1.183 3.505 160 - 1159.186 1164.777
(0.077) (0.340) - -
WU(a,bp) 1.405 0.691 160 - 1187.540 1193.132
(0.128) (0.042) - -
WBXII(c,k,a,B) 65.022 53.454 0.025 0.880 1166.053 1177.242
(292.673) (9.906) (0.011) (0.587)
BBXII(c,k,a, B) 0.418 159.033 0.366 28.783  1173.254 1184.437
(0.212) (104.782)  (0.075) (10.892)
KwBXIl(c,k, a,B) 32.582 341.059 0.169 1.687 1173.480 1184.663
(43.880)  (293.180) (0.115) (1.602)

Table 4: MLEs, their standard errors and goodness-of-fit statifticdata set 3.

Model Parameters MLE Standard error AIC BIC
GBU c 2.151 0.407 42.683  44.675
k 1.750 0.425
0 2.5 -
Wu a 0.566 0.160 45708  47.699
b 1.186 0.232
0 25 -
WBXII [§ 5.062 8.841 46.0746 50.057
k 1.791 1.386
a 2.090 2.062
B 0.239 0.280
BBXII c 0.363 0.551 46.094 50.077
k 4.372 20.586
a 1.739 2.066
B 8.431 12.365
KwBXII c 16.600 24.992 46.034 50.017
k 19.361 89.159
a 0.553 0.512
B 2.116 2.402
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the GBU model gives the best fit among all others competitive@hfor data set 3. Figure 7 also indicates that the GBU
distribution provides a better fit to the censored data agpeoed to other models.

8 Concluding remarks

In this paper, we proposed a new family of distributionsexhthegeneralized Burr-G familgf distributions. We obtained
some of its mathematical properties. Estimation of pararsedre dealt for both complete and censored samples. Four
special models are considered and the properties of onéaspeadel, thegeneralized Burr-unifornare obtained. A
simulation study is carried and the MLEs estimates are fauitk satisfactory. Three applications to real data sests al
reveals that the special model of the proposed family perédretter as compared to some other well-known models.
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Appendix A
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