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1 Introduction and Preliminaries

Cyclic contraction and best proximity point are among the popular topics in the fixed

point theory and have received considerable interest recently. The first result in this area

was reported by Kirk-Srinavasan-Veeramani [5] in 2003. Later, many authors continued

investigation and more results have been obtained, such as, [1–4,6–8]. The purpose of this

study is to generalize the definition of the cyclic Meir Keeler contraction and give a fixed

point theorem for this mapping.

We first define the cyclic map and best proximity point.

Definition 1.1. Let A andB be non-empty subsets of a metric space(X, d) andT : A ∪
B → A ∪B. T is called cyclic map ifT (A) ⊂ B andT (B) ⊂ A.

A point x ∈ A ∪ B is called a best proximity point ifd(x, Tx) = d(A,B) where

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. In 2003, Kirk-Srinavasan-Veeramani [5] proved

the following fixed point theorem for a cyclic map.

Theorem 1.1. LetA andB be non-empty closed subsets of a complete metric space(X, d).
Suppose thatT : A∪B → A∪B is a map satisfyingT (A) ⊂ B andT (B) ⊂ A and there

existsk ∈ (0, 1) such thatd(Tx, Ty) ≤ kd(x, y) for all x ∈ A andy ∈ B. Then,T has a

unique fixed point inA ∩B.



Best Proximity Point on Different Type Contractions 559

2 Main Results

In this section we introduce different types of cyclic contractions and prove fixed point

theorems for these maps.

Definition 2.1. (See [4]) LetA andB be non-empty subsets of a metric space(X, d). A

cyclic mapT : A ∪B → A ∪B is said to be a cyclic contraction if there existsk ∈ (0, 1)
such that

d(Tx, Ty) ≤ kd(x, y), ∀x ∈ A, ∀y ∈ B (2.1)

We generalize the above definition in the following way:

Definition 2.2. Let A andB be non-empty subsets of a metric space(X, d). A cyclic map

T : A∪B → A∪B is said to be a Kannan Type cyclic contraction if there existsk ∈ (0, 1
2 )

such that

d(Tx, Ty) ≤ k[d(Tx, x) + d(Ty, y)], ∀x ∈ A, ∀y ∈ B (2.2)

The following illustrative examples show that a map can be a cyclic contraction but not

a Kannan type cyclic contraction and vise versa.

Example 2.1. Consider the Euclidean ordered spaceX = R with the usual metric. Sup-

poseA = [−1, 0] andB = [0, 1] and letT : A ∪B → A ∪B be defined byTx = −x
3 for

all x ∈ A∪B. It is clear that fork ≤ 1
3 , T is cyclic contraction but not Kannan type cyclic

contraction.

Example 2.2. Consider the Euclidean ordered spaceX = R with the usual metric. Sup-

poseA = B = [0, 1] and defineT : A ∪B → A ∪B by

Tx =

{
1
4 if x = 1,
1
2 if x ∈ [0, 1).

For x = 15
16 andy = 1, cyclic contraction condition fails. However,T is Kannan type

cyclic contraction.

Next, we give fixed point theorem for a Kannan type cyclic contraction which can be

regarded as a generalization of Theorem 1.1.

Theorem 2.1. LetA andB be non-empty closed subsets of a complete metric space(X, d)
and letT : A ∪ B → A ∪ B be a Kannan type cyclic contraction. ThenT has a unique

fixed point inA ∩B.
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Proof. Fix x ∈ A. Due to (2.2) we have

d(T 2x, Tx) ≤ k[d(T 2x, Tx) + d(Tx, x)], (2.3)

which impliesd(T 2x, Tx) ≤ td(Tx, x), wheret = k
1−k and clearlyt ∈ (0, 1). Thus, we

haved(Tn+1x, Tnx) ≤ tnd(Tx, x). Consequently,

∞∑
n=1

d(Tn+1x, Tnx) ≤
( ∞∑

n=1

tn

)
d(Tx, x) < ∞.

Obviously,{Tnx} is a Cauchy sequence. Hence, there existsz ∈ A ∪B such thatTnx →
z. Notice that{T 2nx} is a sequence inA and{T 2n−1x} is a sequence inB and that both

sequences tend to same limitz. Regarding thatA andB are closed, we concludez ∈ A∩B.

Hence,A ∩B 6= ∅.
To show thatz is a fixed point, we claim thatTz = z. Observe that

d(Tz, z) = lim
n→∞

d(Tz, T 2nx) ≤ k lim
n→∞

[d(T 2nx, T 2n−1x) + d(Tz, z)] ≤ kd(Tz, z)

which is equivalent to(1 − k)d(Tz, z) = 0. Sincek ∈ (0, 1
2 ), thend(Tz, z) = 0 which

impliesTz = z.

To prove the uniqueness ofz, assume that there existsw ∈ A ∪B such thatz 6= w and

Tw = w. Taking into account thatT is a cyclic, we getw ∈ A ∩B. From

d(z, w) = d(Tz, Tw) = k[d(Tz, z) + d(Tw, w)] = 0,

we conclude thatz = w and hencez is the unique fixed point ofT .

Remark 2.1. Notice that the pointz in the proof of Theorem2.1 is a proximity point.

Indeed.d(A,B) = 0 sinceA ∩B 6= ∅. Regarding thatz is the fixed point,d(Tz, z) = 0.

Corollary 2.1. LetT be a self map on a complete metric space(X, d). If for somex ∈ X,

there exists ak ∈ (0, 1
2 ) such that

d(Tx, Ty) ≤ k[d(Tx, x) + d(Ty, y)], ∀x, y ∈ X (2.4)

then,T has a unique fixed point.

We introduce a new cyclic contraction in the following way:

Definition 2.3. Let A andB be non-empty subsets of a metric space(X, d). A cyclic map

T : A ∪ B → A ∪ B is said to be a Chatterjee Type cyclic contraction if there exists

k ∈ (0, 1
2 ) such that

d(Tx, Ty) ≤ k[d(Tx, y) + d(Ty, x)], ∀x ∈ A, ∀y ∈ B (2.5)
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For the map defined in Definition 2.3, we obtain another generalization of Theorem 1.1:

Theorem 2.2. LetA andB be non-empty closed subsets of a complete metric space(X, d)
andT : A ∪ B → A ∪ B be a Chatterjee type cyclic contraction. ThenT has a unique

fixed point inA ∩B.

Proof. Fix x ∈ A. From (2.5), we have

d(T 2x, Tx) ≤ k[d(T 2x, x) + d(Tx, Tx)] = kd(T 2x, x)
≤ k[d(T 2x, Tx) + d(Tx, x)],

(2.6)

and thus

d(T 2x, Tx) ≤ td(Tx, x), (2.7)

wheret = k
1−k . Since0 < k < 1

2 , then0 < t < 1. Inductively, we obtain

d(Tn+1x, Tnx) ≤ tnd(Tx, x).

Then,
∞∑

n=1

d(Tn+1x, Tnx) ≤
( ∞∑

n=1

tn

)
d(Tx, x) < ∞.

So,{Tnx} is a Cauchy sequence. Hence, there existsz ∈ A∪B such thatTnx → z. Here

{T 2nx} is a sequence inA and{T 2n−1x} is a sequence inB and both sequences have the

same limitz. SinceA andB are closed,z ∈ A ∩B. So,A ∩B 6= ∅.
Now, we show thatTz = z. Notice that

d(Tz, z) = lim
n→∞

d(Tz, T 2nx) ≤ k lim
n→∞

[d(Tz, T 2n−1x) + d(T 2nx, z)] ≤ kd(Tz, z)

which is equivalent to(1− k)d(Tz, z) ≤ 0. Sincek ∈ (0, 1
2 ), thend(Tz, z) = 0 and thus

Tz = z.

For the uniqueness ofz, assume that there existsw ∈ A ∪ B such thatz 6= w and

Tw = w. However, sinceT is a cyclic, we getw ∈ A ∩B. Then,

d(z, w) = d(Tz, Tw) ≤ k[d(Tz,w) + d(Tw, z)] = k[2d(z, w)]

yields(1−2k)d(z, w) ≤ 0 and hencez = w, which completes the proof of uniqueness.

Definition 2.4. Let A andB be non-empty subsets of a metric space(X, d). A cyclic map

T : A ∪B → A ∪B is said to be a Reich type cyclic contraction if there existsk ∈ (0, 1
3 )

such that

d(Tx, Ty) ≤ k[d(x, y) + d(Tx, x) + d(Ty, y)], ∀x ∈ A, ∀y ∈ B (2.8)
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In what follows, we state and prove the fixed point theorem for a Reich type cyclic

contraction.

Theorem 2.3. LetA andB be non-empty closed subsets of a complete metric space(X, d)
andT : A ∪ B → A ∪ B be a Reich type cyclic contraction. ThenT has a unique fixed

point inA ∩B.

Proof. Takex ∈ A. From (2.8) it follows that

d(T 2x, Tx) ≤ k[d(x, Tx) + d(T 2x, Tx) + d(Tx, x)] (2.9)

and sod(T 2x, Tx) ≤ td(Tx, x), wheret = 2k
1−k and clearlyt ∈ (0, 1). Thus we have

d(Tn+1x, Tnx) ≤ tnd(Tx, x). Consequently,

∞∑
n=1

d(Tn+1x, Tnx) ≤
( ∞∑

n=1

tn

)
d(Tx, x) < ∞.

Hence,{Tnx} is a Cauchy sequence. Then, there exists az ∈ A ∪ B such thatTnx → z.

Notice that{T 2nx} is a sequence inA and{T 2n−1x} is a sequence inB having the same

limit z. As A andB are closed, we concludez ∈ A ∩B, that is,A ∩B is nonempty.

We now show thatTz = z. Observe that

d(Tz, z) = limn→∞ d(Tz, T 2nx)
≤ k limn→∞[d(z, T 2n−1x) + d(T 2nx, T 2n−1x) + d(Tz, z)]
≤ kd(Tz, z)

which is equivalent to(1−k)d(Tz, z) ≤ 0. Regardingk ∈ (0, 1
3 ) implies thatd(Tz, z) = 0

and thusTz = z.

To prove the uniqueness of the fixed pointz, assume that there existsw ∈ A ∪ B such

thatz 6= w andTw = w. Taking into account thatT is a cyclic, we getw ∈ A ∩ B. It

follows from

d(z, w) = d(Tz, Tw) = k[d(z, w) + d(Tz, z) + d(Tw,w)]

that (1 − k)d(z, w) ≤ 0 wherek ∈ (0, 1
3 ). Thusz = w and hencez is the unique fixed

point ofT .

The following corollary is a special case of Theorem 2.3.

Corollary 2.2. LetT be a self map on a complete metric space(X, d). If for somex ∈ X,

there exists ak ∈ (0, 1
3 ) such that

d(Tx, Ty) ≤ k[d(x, y) + d(Tx, x) + d(Ty, y)], ∀x, y ∈ X (2.10)

then,T has a unique fixed point.
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The last cyclic contraction considered in this section is theĆirić type cyclic contraction

defined below.

Definition 2.5. Let A andB be non-empty subsets of a metric space(X, d). A cyclic map

T : A ∪B → A ∪B is said to be áCirić type cyclic contraction if there exists ak ∈ (0, 1)
such that

d(Tx, Ty) ≤ kM(x, y), ∀x ∈ A, ∀y ∈ B (2.11)

whereM(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)}

The fixed point theorem of théCirić type cyclic contraction reads as follows.

Theorem 2.4. LetA andB be non-empty closed subsets of a complete metric space(X, d)
andT : A ∪ B → A ∪ B be aĆiri ć type cyclic contraction. ThenT has a unique fixed

point inA ∩B.

Proof. Takex ∈ A. Due to (2.11), we have

d(Tx, Ty) ≤ kM(x, y) (2.12)

If M(x, y) = d(x, y), Theorem 1.1 implies the desired result. Consider the caseM(x, y) =
d(Tx, x), then fory = Tx, the expression (2.12) turns into

d(Tx, T 2x) ≤ kd(Tx, x) (2.13)

which implies thatd(Tn+1x, Tnx) ≤ knd(Tx, x) and hence

∞∑
n=1

d(Tn+1x, Tnx) ≤
( ∞∑

n=1

tn

)
d(Tx, x) < ∞.

So,{Tnx} is a Cauchy sequence which converges to a limit, sayz ∈ A∪B. The sequence

{T 2nx} is in A and the sequence{T 2n−1x} is in B and both sequences tend to same limit

z. From the fact thatA andB are closed, we concludez ∈ A ∩ B. Hence,A ∩ B 6= ∅.
Now from,

d(Tz, z) = limn→∞ d(Tz, T 2nx)
≤ k limn→∞M(z, T 2n−1x) = k limn→∞ d(Tz, z)
≤ kd(Tz, z)

it follows that(1− k)d(Tz, z) = 0, wherek ∈ (0, 1) which yieldsd(Tz, z) = 0 and thus

Tz = z. For the uniqueness proof ofz, assume that there existsw ∈ A ∪ B such that

z 6= w andTw = w. The mapT is a cyclic, sow ∈ A ∩B. Then

d(z, w) = d(Tz, Tw) = kM(z, w) = d(z, Tz) = 0,

implying z = w which completes the uniqueness proof.
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Consider the last caseM(x, y) = d(Ty, y), then fory = Tx, the expression (2.12)

turns into

d(Tx, T 2x) ≤ kd(T 2x, Tx) (2.14)

which is impossible sincek ∈ (0, 1).

Finally, we state the following corollary.

Corollary 2.3. LetA andB be non-empty closed subsets of a complete metric space(X, d)
and letT : A ∪ B → A ∪ B with T (A) ⊂ B andT (B) ⊂ A. Suppose that there exists

k ∈ (0, 1) such that

d(Tx, Ty) ≤ ku(x, y),∀x ∈ A, ∀y ∈ B (2.15)

whereu(x, y) ∈ {d(x, y), d(Tx, x), d(Ty, y)}. ThenT has a unique fixed point inA∩B.

3 Cyclic Meir-Keeler Contractions

In this section we introduce a generalization of cyclic Meir-Keeler contraction and a

fixed point theorem for this contraction.

Definition 3.1. (See [4]) Let(X, d) be a metric space, andA andB be nonempty subsets

of X. Assume thatT : A ∪ B → A ∪ B is a cyclic map such that for eachε > 0, there

existsδ > 0 such that

d(x, y) < d(A,B) + ε + δ implies d(Tx, Ty) < d(A,B) + ε,∀x ∈ A, ∀y ∈ B (3.1)

ThenT is said to be a cyclic Meir-Keeler contraction.

The definition of a generalized Reich type cyclic Meir-Keeler contraction reads as:

Definition 3.2. Let (X, d) be a metric space, andA andB be nonempty subsets ofX.

Assume thatT : A ∪B → A ∪B is a cyclic map such that, for somex ∈ A, and for each

ε > 0, there existsδ > 0 such that

R(x, y) < d(A,B) + ε + δ

implies d(Tx, Ty) < d(A,B) + ε, ∀x ∈ A, ∀y ∈ B,
(3.2)

whereR(x, y) = 1
3 [d(x, y) + d(Tx, x) + d(Ty, y)]. ThenT is said to be a generalized

Reich type cyclic Meir-Keeler contraction.

Next, we prove the following propositions which we need in the proof of the fixed point

theorem.
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Proposition 3.1. LetA andB be nonempty and closed subsets of a metric space X and let

T : A ∪B → A ∪B be a generalized Reich type cyclic Meir-Keeler contraction. Ifx ∈ A

satisfies condition (3.2), thend(Tn+1x, Tnx) → d(A,B), asn →∞.

Proof. Suppose thatT is generalized Reich type cyclic Meir-Keeler contraction. Take

x ∈ A for which (3.2) holds. Since eithern or n + 1 is even, then for eachx ∈ A, we have
1
3 [d(Tnx, Tn−1x) + d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] ≥ d(A,B).

Consider the case
1
3
[d(Tnx, Tn−1x) + d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] = d(A, B).

Then due to (3.2) we haved(Tn+1x, Tnx) < d(A, B) + ε which is equivalent to

d(Tn+1x, Tnx) <
1
3
[d(Tnx, Tn−1x) + d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] + ε.

Thus we have

d(Tn+1x, Tnx) ≤ d(Tnx, Tn−1x), as ε → 0.

Now, consider the other case, that is,

1
3
[d(Tnx, Tn−1x) + d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] > d(A, B).

Setε1 = 1
3 [d(Tnx, Tn−1x) + d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] − d(A,B) > 0. Ac-

cording to (3.2), for thisε1, there existsδ1 such that

d(Tn+1x, Tnx) < d(A, B)+ε1 =
1
3
[d(Tnx, Tn−1x)+d(Tn+1x, Tnx)+d(Tnx, Tn−1x)].

Hence,d(Tn+1x, Tnx) ≤ d(Tnx, Tn−1x) for all n ∈ N.

Let sn = d(Tn+1x, Tnx). Clearly{sn} is a non-increasing sequence bounded below

by d(A,B). Therefore{sn} converges to somes with s ≥ d(A,B).
We now show thats = d(A,B) by assuming the contrary, that is,s > d(A,B).

Set ε = s − d(A,B) > 0. Then, there existsδ > 0 for which (3.2) holds. Since

{d(Tn+1x, Tnx)} → s, there exist an0 ∈ N such that

s ≤ 1
3
[d(Tnx, Tn−1x)+d(Tn+2x, Tn+1x)+d(Tn+1x, Tnx)] < ε+d(A,B)+δ, ∀n ≥ n0.

Thus,

d(Tn+2x, Tn+1x) < d(A,B) + ε = s, ∀n ≥ n0

which is a contradiction. Hences = d(A,B).

Proposition 3.2. LetA andB be nonempty and closed subsets of a metric spaceX and let

T : A∪B → A∪B be a Reich type cyclic Meir-Keeler contraction. Let alsod(A,B) = 0.

Then, for eachε > 0, there existn1 ∈ N andδ > 0 such that

d(T px, T qx) < ε + δ implies d(T p+1x, T q+1x) < ε (3.3)

for p, q ≥ n1.
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Proof. Takex ∈ X for which (3.2) is satisfied. SinceT is a Reich type cyclic Meir-Keeler

contraction, then for a givenε > 0, there existsδ > 0 for which (3.2)holds, that is,

1
3 [d(x, y) + d(Tx, x) + d(Ty, y)] < ε + δ

implies d(Tx, Ty) < ε, ∀x ∈ A, ∀ y ∈ B
(3.4)

Without loss of generality we can chooseδ < ε. Regardingd(A,B) = 0 and making use

of Proposition 3.1, one can choosen1 ∈ N in a way that

d(Tnx, Tn+1x) <
δ

2
, for each n ≥ n1. (3.5)

We claim thatd(T px, T qx) < ε + δ impliesd(T p+1x, T q+1x) < ε. Takep, q ∈ N such

thatp, q ≥ n1. Suppose thatd(T px, T qx) < ε + δ. Without loss of generality we may

assumeT px ∈ A andT qx ∈ B with p = 2n andq = 2m − 1. Otherwise, interchange

the indices respectively. Thus we haved(T px, T qx) = d(T 2nx, T 2m−1x) < ε + δ, for

m ≥ n. Then, from(3.5) we get

1
3
[d(T 2m−1x, T 2nx)+d(T 2mx, T 2m−1x)+d(T 2n+1x, T 2nx)] ≤ 1

3
[ε+δ+

δ

2
+

δ

2
] < ε+δ.

(3.6)

Consider (3.4) under the assumptiony = T 2nx. The inequality (3.6) yields

d(T 2n+1x, T 2mx) = d(T p+1x, T q+1x) < ε.

Therefore, we conclude that for a givenε > 0, there existn1 ∈ N andδ > 0 such that

d(T px, T qx) < ε + δ implies d(T p+1x, T q+1x) < ε (3.7)

wherep, q ≥ n1.

Theorem 3.1. LetX be a complete metric space, andA andB non-empty, closed subsets

of X such thatd(A,B) = 0. LetT : A ∪ B → A ∪ B be a Reich type cyclic Meir-Keeler

contraction. Then, there exists a unique fixed point, sayz ∈ A ∩ B, such that for eachx

satisfying (3.2), the sequence{T 2nx} converges toz.

Proof. Takex ∈ A. We will show that{Tnx} is a Cauchy sequence. Assume the contrary.

Then there exists anε > 0 and a subsequence{Tn(i)x} of {Tnx} for which

d(Tn(i)x, Tn(i+1)x) > 2ε. (3.8)

For thisε, there existsδ > 0 such that

R(x, y) < ε + δ implies d(Tx, Ty) < ε (3.9)

where R(x, y) = 1
3 [d(x, y) + d(Tx, x) + d(Ty, y)]. Set r = min{ε, δ} and dm =

d(Tmx, Tm+1x). Due to Proposition 3.1, one can choosen0 ∈ N such that

dm = d(Tmx, Tm+1x) <
r

4
, for m ≥ n0. (3.10)
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Now, let n(i) ≥ n0. Suppose thatd(Tn(i)x, Tn(i+1)−1x) ≤ ε + r
2 . From the triangle

inequality we have

d(Tn(i)x, Tn(i+1)x) ≤ d(Tn(i)x, Tn(i+1)−1x) + d(Tn(i+1)−1x, Tn(i+1)x)
≤ ε + r

2 + dn(i+1)−1 < 2ε,
(3.11)

which contradicts the assumption (3.8). Thus, there are values ofk satisfyingn(i) ≤ k ≤
n(i + 1) such thatd(Tn(i)x, T kx) > ε + r

2 . Assume thatd(Tn(i)x, Tn(i)+1x) ≥ ε + r
2 .

Thendn(i) = d(Tn(i)x, Tn(i)+1x) ≥ ε+ r
2 ≥ r + r

2 > r
4 which contradicts (3.10). Hence,

there are values ofk with n(i) ≤ k ≤ n(i + 1) such thatd(Tn(i), T kx) < ε + r
2 wherek

andn(i) have the opposite parity. Choose the smallest integerk with k ≥ n(i) satisfying

d(Tn(i)x, T kx) ≥ ε + r
2 . Then,

d(Tn(i)x, T k−1x) < ε +
r

2
. (3.12)

Thus,

d(Tn(i)x, T k−1x) ≤ d(Tn(i)x, T k−1x)+d(T k−1x, T kx) < ε+
r

2
+

r

4
= ε+

3r

4
. (3.13)

Hence, there exists an integerk satisfyingn(i) ≤ k ≤ n(i + 1) such that

ε +
r

2
≤ d(Tn(i)x, T kx) < ε +

3r

4
. (3.14)

Making use of the inequalities

d(Tn(i)x, T kx) < ε +
3r

4
< ε + r

d(Tn(i)x, Tn(i)+1x) = dn(i) <
r

4
< ε + r

d(T kx, T k+1x) = dk <
r

4
< ε + r

we conclude

R(Tn(i)x, T kx) = 1
3 [d(Tn(i)x, T kx) + d(Tn(i)x, Tn(i)+1x) + d(T k+1x, T kx)]
≤ 1

3 [ε + r + ε + r + ε + r] = ε + r
(3.15)

implying d(Tn(i)+1x, T k+1x) < ε. But, on the other hand

d(Tn(i)+1x, T k+1x) ≥ d(Tn(i)x, T kx)− d(Tn(i)x, Tn(i)+1x)− d(T kx, T k+1x)
> ε + r

2 − r
4 − r

4 = ε

which contradicts the preceding inequality. Therefore,{Tnx} is a Cauchy sequence.

Hence,{Tnx} converges to somez ∈ A. Consider now the sequence{d(T 2n−1x, z)}.
From

0 ≤ d(T 2n−1x, z) ≤ d(T 2n−1x, T 2nx) + d(T 2nx, z) (3.16)
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it clearly converges to zero, that is,limn→∞ d(T 2n−1x, z) = 0. Since{T 2n−1x} is a

sequence inB, it converges toz ∈ B. However, bothA andB are closed, so, we get

z ∈ A ∩B.

Let us show now thatz is a fixed point ofT , that is,Tz = z. First we observe that

d(T 2nx, Ty) < R(T 2n−1x, y) if T 2n−1x 6= y. (3.17)

Actually, it suffices to show that (3.2) is equivalent to the following condition: For each

ε > 0 there existsδ > 0 such that

R(T 2n−1x, y) < ε + δ

impliesd(T 2nx, Ty) < ε, n ∈ N, y ∈ A
(3.18)

whereR(T 2n−1x, y) = 1
3 [d(T 2n−1x, y) + d(T 2nx, T 2n−1x) + d(Ty, y)] and recall that

d(A,B) = 0.

If T 2n−1x = y thenR(T 2n−1x, y) = 0 and thus (3.17) is satisfied. Suppose that

R(T 2n−1x, y) 6= 0 and fix ε ≤ R(T 2n−1x, y). Choose aδ > 0 such that (3.18)

holds. Notice that ifR(T 2n−1x, y) ≤ d(T 2nx, Ty), we get a contradiction with (3.18).

Then clearly, (3.2) implies (3.18). Now let (3.18) hold. FixT 2n−1x, y ∈ A ∪ B and

ε > 0. If R(T 2n−1x, y) < ε, we haved(T 2nx, Ty) ≤ R(T 2n−1x, y) and consequently

d(T 2nx, Ty) < ε because of (3.18). IfR(T 2n−1x, y) ≥ ε, then (3.2) follows immediately.

Thus, (3.18) and (3.2) are equivalent provided thatd(A,B) = 0.

Making use of (3.17) we have,

d(Tz, z) = limn→∞ d(T 2nx, Tz) < limn→∞R(T 2n−1x, z).
< limn→∞ 1

3 [d(T 2n−1x, z) + d(T 2nx, T 2n−1x) + d(Tz, z)]

which implies thatd(Tz, z) < 1
3d(Tz, z). But this is impossible, henceTz = z. Lastly, we

showz is a unique fixed point ofT . Assume that there existsw ∈ A ∩ B such thatz 6= w

andTw = w. From (3.17) it follows thatd(w, z) < R(z, w) = 1
3 [d(z, w) + d(Tz, z) +

d(Tw, w)] = 1
3d(z, w) which clearly impliesz = w.
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