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1 Introduction and Preliminaries

Cyclic contraction and best proximity point are among the popular topics in the fixed
point theory and have received considerable interest recently. The first result in this area
was reported by Kirk-Srinavasan-Veeramani [5] in 2003. Later, many authors continued
investigation and more results have been obtained, such as, [1-4,6-8]. The purpose of this
study is to generalize the definition of the cyclic Meir Keeler contraction and give a fixed
point theorem for this mapping.

We first define the cyclic map and best proximity point.

Definition 1.1. Let A and B be non-empty subsets of a metric spa&e d) andT : A U
B — AU B. T is called cyclic map ifl (A) C B andT'(B) C A.

A pointz € AU B is called a best proximity point ifl(x,Tz) = d(A, B) where
d(A, B) = inf{d(a,b) : a € A,b € B}. In 2003, Kirk-Srinavasan-Veeramani [5] proved
the following fixed point theorem for a cyclic map.

Theorem 1.1. Let A and B be non-empty closed subsets of a complete metric $paes.
Suppose thdl’ : AUB — AU B is a map satisfying'(A) ¢ BandT(B) C A and there
existsk € (0,1) such thatd(Tz, Ty) < kd(z,y) forall z € Aandy € B. Then,T has a
unique fixed point il N B.
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2 Main Results

In this section we introduce different types of cyclic contractions and prove fixed point
theorems for these maps.

Definition 2.1. (See [4]) LetA and B be non-empty subsets of a metric spa&e d). A
cyclicmapT : AU B — AU B is said to be a cyclic contraction if there exists (0, 1)
such that

d(Tz, Ty) < kd(x,y), Vx € A, Vy € B (2.1)

We generalize the above definition in the following way:

Definition 2.2. Let A and B be non-empty subsets of a metric spa&ed). A cyclic map
T : AUB — AUB is said to be a Kannan Type cyclic contraction if there exists(0, %)
such that

d(Tz,Ty) < k[d(Tz,x) + d(Ty,y)],YVe € A, Vy € B (2.2)

The following illustrative examples show that a map can be a cyclic contraction but not
a Kannan type cyclic contraction and vise versa.

Example 2.1. Consider the Euclidean ordered space= R with the usual metric. Sup-
poseA = [-1,0] andB = [0,1] and letT": AU B — AU B be defined byi'z = —% for
allx € AUB. ltis clear that fork < % T is cyclic contraction but not Kannan type cyclic
contraction.

Example 2.2. Consider the Euclidean ordered spa€e= R with the usual metric. Sup-
poseA = B = [0, 1] and defineél’ : AUB — AU B by

Tx:{

Forx = % andy = 1, cyclic contraction condition fails. However, is Kannan type
cyclic contraction.

if x =1,
if x €10,1).

[T

Next, we give fixed point theorem for a Kannan type cyclic contraction which can be
regarded as a generalization of Theorem 1.1.

Theorem 2.1. Let A and B be non-empty closed subsets of a complete metric §péed
and letT : AU B — AU B be a Kannan type cyclic contraction. Th&hhas a unique
fixed pointinA N B.
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Proof. Fix x € A. Due to (2.2) we have
d(T%z, Tx) < k[d(T?z, Tx) + d(Tx, x)], (2.3)

which impliesd(T?z, Tz) < td(Tx, ), wheret = £ and clearlyt € (0,1). Thus, we
haved(T" 1z, T"x) < t"d(Tx, ). Consequently,

Zd(T"Hx,T"m) < (Z t”) d(Tz,z) < cc.
n=1 n=1

Obviously,{T"xz} is a Cauchy sequence. Hence, there existsA U B such thatl"z —
z. Notice that{T?"z} is a sequence i and{T?" 'z} is a sequence i and that both
sequences tend to same limitRegarding thatl and B are closed, we concludec ANB.
Hence, AN B # ().

To show that: is a fixed point, we claim thaf'z = z. Observe that

d(Tz, z) = lim d(Tz T?"z) <k lim [d(T* 2, T*" 'z) 4+ d(Tz,2)] < kd(Tz, z)

n—oo n—oo

which is equivalent tq1 — k)d(Tz, z) = 0. Sincek € (0, 1), thend(T'z, z) = 0 which
impliesTz = z.

To prove the uniqueness of assume that there existse A U B such that # w and
Tw = w. Taking into account thaf' is a cyclic, we getv € AN B. From

d(z,w) =d(Tz,Tw) = k[d(Tz,z) + d(Tw,w)] =0,
we conclude that = w and hence is the unique fixed point df". O

Remark 2.1. Notice that the point in the proof of Theorem2.1 is a proximity point.
Indeed.d(A, B) = 0 sinceA N B # (). Regarding that is the fixed pointd(T'z, z) = 0.

Corollary 2.1. LetT be a self map on a complete metric spé&e d). If for somexr € X,
there exists & € (0, 1) such that

d(Tz,Ty) < k[d(Tz,z) + d(Ty,y)], Vz,y € X (2.4)
then,T" has a unique fixed point.
We introduce a new cyclic contraction in the following way:

Definition 2.3. Let A and B be non-empty subsets of a metric sp&&ed). A cyclic map
T : AUB — AU B is said to be a Chatterjee Type cyclic contraction if there exists
k € (0, 1) such that

d(Tz,Ty) < k[d(Tz,y) +d(Ty,x)], Ve € A, Yy € B (2.5)
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For the map defined in Definition 2.3, we obtain another generalization of Theorem 1.1:

Theorem 2.2. Let A and B be non-empty closed subsets of a complete metric Spaaé
andT : AU B — AU B be a Chatterjee type cyclic contraction. Th€rhas a unique
fixed pointinA N B.

Proof. Fix x € A. From (2.5), we have

d(T?*z,Tx) < k[d(T?z,x) +d(Tz,Tx)] = kd(T?z, ) 2.6)
< k[d(T?z, Tx) + d(Tz, )], '
and thus
d(T?z,Tx) < td(Tz,x), (2.7
wheret = 2. Since0 < k < 1, then0 < ¢ < 1. Inductively, we obtain
d(T" e, T"2) < t"d(Tx, x).
Then,

Z d(T" e, Trz) < <Z t") d(Tz,z) < co.
n=1

n=1
So,{T™z} is a Cauchy sequence. Hence, there existsA U B such thal™z — z. Here
{T?"x} is a sequence id and{7>"~ 'z} is a sequence i and both sequences have the
same limitz. SinceA andB are closed;z € AN B. S0,AN B # ).
Now, we show thaf’z = z. Notice that
d(Tz,z) = lim d(Tz,T*"z) <k lim [d(Tz, T*"'2) + d(T*"z, z)] < kd(T'z, 2)

n—oo n—oo

which is equivalent tg1 — k)d(T'z, z) < 0. Sincek € (0, 1), thend(T'z, z) = 0 and thus
Tz = z.

For the uniqueness af, assume that there exists € A U B such thatz # w and
Tw = w. However, sincd’ is a cyclic, we getv € AN B. Then,

d(z,w) = d(Tz,Tw) < k[d(Tz,w) + d(Tw, z)] = k[2d(z,w)]
yields(1—2k)d(z,w) < 0and hence = w, which completes the proof of uniquenes&l

Definition 2.4. Let A and B be non-empty subsets of a metric spa&ed). A cyclic map
T: AUB — AU Biis said to be a Reich type cyclic contraction if there exists (0, %)
such that

d(Tz,Ty) < kld(z,y) + d(Tx,z) + d(Ty,y)], Yo € A, Yy € B (2.8)
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In what follows, we state and prove the fixed point theorem for a Reich type cyclic
contraction.

Theorem 2.3. Let A and B be non-empty closed subsets of a complete metric §péed
andT : AU B — AU B be a Reich type cyclic contraction. Th&hhas a unique fixed
pointin AN B.

Proof. Takex € A. From (2.8) it follows that
d(T?z,Tx) < k[d(z, Tz) + d(T?z, Tx) + d(Tz, )] (2.9)

and sod(T?z, Tx) < td(Tx,z), wheret = 2% and clearlyt € (0,1). Thus we have
d(T"Hz, T"z) < t"d(Tz, ). Consequently,

Zd(T"+1x,T"x) < (Z t”) d(Tz,z) < 0.
n=1 n=1

Hence {T™z} is a Cauchy sequence. Then, there existssaA U B such thatlz — z.
Notice that{T?"z} is a sequence il and{7T?"~ 'z} is a sequence il having the same
limit z. As A andB are closed, we concludec A N B, thatis,A N B is nonempty.

We now show thaf"z = z. Observe that

d(Tz,2) =lim, o d(Tz, T*z)
< klimy, oo [d(z, T?" " tz) + d(T?"2, T*" 12) + d(Tz, 2)]
< kd(Tz,z)

which is equivalent t¢1—k)d(T'z, z) < 0. Regarding: € (0, 3) implies thatd(T'z, z) = 0
and thusl'z = z.

To prove the uniqueness of the fixed pointassume that there existse A U B such
thatz # w andTw = w. Taking into account thaf’ is a cyclic, we getv € AN B. It
follows from

d(z,w) = d(Tz,Tw) = k[d(z,w) + d(Tz,z) + d(Tw, w)]

that (1 — k)d(z,w) < 0 wherek € (0, 3). Thusz = w and hence: is the unique fixed
point of T". 0

The following corollary is a special case of Theorem 2.3.

Corollary 2.2. LetT be a self map on a complete metric sp&&g d). If for somex € X,
there exists & € (0, ) such that

d(Tz, Ty) < kld(z,y) + d(Tz,z) + d(Ty,y)], Vz,y € X (2.10)

then,T" has a unique fixed point.
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The last cyclic contraction considered in this section isGhet type cyclic contraction
defined below.

Definition 2.5. Let A and B be non-empty subsets of a metric spa&ed). A cyclic map
T : AUB — AU Bis said to be &iri¢ type cyclic contraction if there existskae (0,1)
such that

d(Tx,Ty) < kM (z,y),Yz € A, Vy € B (2.11)

whereM (z,y) = max{d(z,y),d(T'z,z),d(Ty,y)}
The fixed point theorem of th@iric type cyclic contraction reads as follows.

Theorem 2.4. Let A and B be non-empty closed subsets of a complete metric paaé
andT : AUB — AU B be aCiri¢ type cyclic contraction. Thell has a unique fixed
pointin AN B.

Proof. Takex € A. Due to (2.11), we have
d(Tx, Ty) < kM(x,y) (2.12)

If M(x,y) = d(z,y), Theorem 1.1 implies the desired result. Consider the tage y) =
d(Tz,x), then fory = Tz, the expression (2.12) turns into

d(Tz, T?z) < kd(Tx, x) (2.13)

which implies thatd(T" !z, T"x) < k"d(Tx,x) and hence

Z d(T" e, Trz) < <Z t") d(Tz,z) < co.
n=1

n=1
So,{T™z} is a Cauchy sequence which converges to a limit,zsayA U B. The sequence
{T?"z} isin A and the sequencg ™"~ 'z} is in B and both sequences tend to same limit

2. From the fact thad and B are closed, we concludee A N B. Hence, AN B # ).
Now from,

d(Tz,z) =lim, .. d(Tz, T?"x)
< klim, oo M(2,T?" '2) = klim,, .o, d(Tz, 2)
< kd(Tz, z)

it follows that (1 — k)d(T'z, z) = 0, wherek € (0, 1) which yieldsd(T 'z, z) = 0 and thus
Tz = z. For the uniqueness proof af assume that there exisis € A U B such that
z # w andTw = w. The magl' is a cyclic, sow € AN B. Then

d(z,w) = d(Tz,Tw) = kM(z,w) =d(z,Tz) =0,

implying z = w which completes the uniqueness proof.
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Consider the last cas®/ (z,y) = d(Ty,y), then fory = Tx, the expression (2.12)
turns into

d(Tx, T?x) < kd(T?z, Tx) (2.14)
which is impossible sincé € (0,1). O
Finally, we state the following corollary.

Corollary 2.3. Let A and B be non-empty closed subsets of a complete metric paeé
andletT : AUB — AUBwithT(A) C BandT(B) C A. Suppose that there exists
k € (0,1) such that

d(Tz,Ty) < ku(z,y),Ve € A, Yy € B (2.15)

whereu(z,y) € {d(z,y),d(Tz,z),d(Ty,y)}. ThenT has a unique fixed pointiA N B.

3 Cyclic Meir-Keeler Contractions

In this section we introduce a generalization of cyclic Meir-Keeler contraction and a
fixed point theorem for this contraction.

Definition 3.1. (See [4]) Let(X, d) be a metric space, andland B be nonempty subsets
of X. Assume thal’ : AU B — A U B is a cyclic map such that for eaeh> 0, there
existso > 0 such that

d(z,y) <d(A,B)+e+ 6 implies d(Tz,Ty) < d(A,B) +¢,Vx € A, Vy € B (3.1)
ThenT is said to be a cyclic Meir-Keeler contraction.
The definition of a generalized Reich type cyclic Meir-Keeler contraction reads as:

Definition 3.2. Let (X, d) be a metric space, and and B be nonempty subsets of.
Assume thafl’ : AU B — AU B is a cyclic map such that, for somec A, and for each
e > 0, there exist® > 0 such that

R(z,y) < d(A,B) +¢+6

3.2
implies d(Tz,Ty) < d(A,B) +¢,Vx € A, Vy € B, (3.2)

whereR(z,y) = 3[d(z,y) + d(Tz,z) + d(Ty,y)]. ThenT is said to be a generalized
Reich type cyclic Meir-Keeler contraction.

Next, we prove the following propositions which we need in the proof of the fixed point
theorem.



Best Proximity Point on Different Type Contractions 565

Proposition 3.1. Let A and B be nonempty and closed subsets of a metric space X and let
T: AUB — AU B be a generalized Reich type cyclic Meir-Keeler contraction. ¢f A
satisfies condition (3.2), thel{(T" 'z, T"z) — d(A, B), asn — oo.

Proof. Suppose thaf’ is generalized Reich type cyclic Meir-Keeler contraction. Take
x € A for which (3.2) holds. Since eitheror n + 1 is even, then for each € A, we have
$d(Tre, T o) + d(T" 2, T ) + d(T"z, T" 'z)] > d(A, B).

Consider the case

1
g[d(T”x, T )+ d(T" 2, T"x) + d(T"z, T" '2)] = d(A, B).

Then due to (3.2) we hav&T" 1z, T"x) < d(A, B) + ¢ which is equivalent to
1
d(T" e, Trx) < g[d(:r"a:, T o) +d(T" e, T ) 4+ d(T 2, T" 2)] +&.
Thus we have
d(T" e, Trz) < d(T™2, T" 'z), ase — 0.

Now, consider the other case, that is,

1

g[d(T”;c, T )+ d(T" 2, T x) + d(T"z, T" 'z)] > d(A, B).
Setey = :[d(T"x, T 'z) + d(T" 'z, T"x) + d(T"z, T" 'z)] — d(A, B) > 0. Ac-
cording to (3.2), for thigy, there exist$; such that

1
d(T" 'z, T"2) < d(A, B)+e, = g[d(T”x,T"’lsc)er(T”Hx,T”;z:)er(T"az,T"’lx)].

Henced(T" 1z, Tmz) < d(T"xz, T" 'z) foralln € N.

Lets, = d(T" "z, T"x). Clearly{s,} is a non-increasing sequence bounded below
by d(A, B). Therefore{s,, } converges to somewith s > d(A, B).

We now show that = d(A, B) by assuming the contrary, that is, > d(A4, B).
Sete = s —d(A,B) > 0. Then, there exist§ > 0 for which (3.2) holds. Since
{d(T"H 1z, T"z)} — s, there exist &y € N such that

1
s < g[d(T"x,T"_lx)—l—d(T"“J;,T"Hx)—kd(T"Hx,T"x)] < e+d(A, B)+6, Vn > ny.

Thus,
d(T" 2z, T"'2) < d(A,B) +¢ = s, ¥n > ng

which is a contradiction. Hence= d(A, B). O

Proposition 3.2. Let A and B be nonempty and closed subsets of a metric spaaed let
T: AUB — AU B be a Reich type cyclic Meir-Keeler contraction. Let algel, B) = 0.
Then, for eaclz > 0, there exist:; € N andé > 0 such that

d(TPz,T%) < ¢ + 6 implies d(TP 'z, T z) < e (3.3)

forp7q > ni.
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Proof. Takex € X for which (3.2) is satisfied. SincE is a Reich type cyclic Meir-Keeler
contraction, then for a given > 0, there exist® > 0 for which (3.2)holds, that is,

Hd(z,y) + d(Tx,z) + d(Ty,y)] <+

oo (3.4)
implies d(Tz,Ty) <e, Vx € A, Vy € B

Without loss of generality we can choose< €. Regardingl(A, B) = 0 and making use
of Proposition 3.1, one can choose € N in a way that

)
d(T"z, T" M 2) < 2 for eachn > n;. (3.5)

We claim thatd(T?x, T9z) < ¢ + § impliesd(T?P ™z, T z) < . Takep, ¢ € N such
thatp,q > nq. Suppose thad(TPz,Tz) < € + §. Without loss of generality we may
assumelPx € A andT%x € B with p = 2n andq = 2m — 1. Otherwise, interchange
the indices respectively. Thus we ha¥@”?z, Tx) = d(T?"z, T?*" 'x) < e + 4, for
m > n. Then, from(3.5) we get

1 , 1 5 4
—[d(T*™ e, T?"x) +d(T* ™2, T*™ ta)+d(T* o, T?"x)] < g[s—l—é—i—f—i—f] < e+d.

3 - 2 2
(3.6)
Consider (3.4) under the assumptipa= T2"z. The inequality (3.6) yields

d(T* g, T?Mg) = d(TP 2, T r) < e
Therefore, we conclude that for a given> 0, there existi; € N andé > 0 such that
d(TPz,T%) < ¢+ implies d(TP™'2, T z) < ¢ (3.7)
wherep, ¢ > n. O

Theorem 3.1. Let X be a complete metric space, addand B non-empty, closed subsets
of X such thatd(A, B) = 0. LetT : AU B — A U B be a Reich type cyclic Meir-Keeler
contraction. Then, there exists a unique fixed point, say A N B, such that for each:
satisfying (3.2), the sequen¢&2"x} converges ta.

Proof. Takex € A. We will show that{7T™x} is a Cauchy sequence. Assume the contrary.
Then there exists an> 0 and a subsequend@ ™z} of {T™x} for which

(T D g, T+ ) > 2¢, (3.8)
For thise, there exist$ > 0 such that
R(z,y) < e+ 0 implies d(Tz,Ty) < e (3.9)

where R(z,y) = i[d(z,y) + d(Tz,x) + d(Ty,y)]. Setr = min{e,é} andd,, =
d(T™z, T™+1z). Due to Proposition 3.1, one can choegec N such that

dp = d(T™z, T" ) < 2, for m > nyg. (3.10)
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Now, letn(i) > no. Suppose that(7""z, T+ ~1z) < ¢ 4+ L. From the triangle
inequality we have

d(Tn(z)x7Tn(z+1)I) < d(Tn(i)$7Tn(i+1)71I) + d(Tn(i+1)fll,7Tn(i+1)x)

) (3.11)
<e+ 5 +dpgt1)-1 < 2,

which contradicts the assumption (3.8). Thus, there are valuesatisfyingn(i) < k <
n(i + 1) such thad(T"Wz, T*z) > ¢ + L. Assume that(T"Vz, 70O +1z) > ¢ + L.
Thend,,;y = d(T"Wz, T"(V+1z) > e+ L > r+ £ > = which contradicts (3.10). Hence,
there are values df with n(i) < k < n(i + 1) such thatl(T"), T*z) < ¢ + £ wherek
andn(i) have the opposite parity. Choose the smallest intégeith £ > n(i) satisfying
d(T" Wz, Tkz) > £ + £. Then,

AT, TF12) < & + g (3.12)

Thus,

r
2
Hence, there exists an integesatisfyingn(i) < k < n(i + 1) such that

d(Tn(i)x7Tk71$) < d(T”(i)x,Tkilx)+d(Tkill’,Tk1') <e+ +£ = 5+% (313)

: 3
et % < d(T"Dg, TFz) < e + Z’". (3.14)

Making use of the inequalities

d(T" D, Trz) < e + ?j{ <e+r

AT Dz, T+ gy = d, ;) < g <etr

d(T*z, T 'z) = d), < 2 <e+r
we conclude

R(T"Wz, Trx) = ${d(T" Dz, TFx) + d(T" D, T" O+ 1) 4+ d(T*+ 2, TF)]

<ile+r+e+r+e+r]=c+r
(3.15)

implying d(T™"W+1g, T*+11) < . But, on the other hand

d(TrO+ g TrHg) > d(TrO g, TFz) — d(TOz, T+ ) — d(Tkz, T+ )

which contradicts the preceding inequality. Therefof@&"z} is a Cauchy sequence.
Hence,{T"xz} converges to some € A. Consider now the sequen¢é(7?" 'z, z)}.
From

0 <d(T* ', z2) <d(T* 'z, T?*"z) + d(T*"z, 2) (3.16)
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it clearly converges to zero, that iBm,, .o, d(7?" 'z,z) = 0. Since{T?*"" 1z} is a
sequence im3, it converges to: € B. However, bothA and B are closed, so, we get
z€ ANB.

Let us show now that is a fixed point ofl’, that is, Tz = z. First we observe that

d(T?"x, Ty) < R(T*" o, y) if T?" o #y. (3.17)

Actually, it suffices to show that (3.2) is equivalent to the following condition: For each
e > 0 there exist$ > 0 such that

R(T*™ 1z, y)<e+4

3.18
impliesd(T?*"z, Ty) <e,n €N,y € A (3.18)

whereR(T?*" 'z, y) = 3[d(T*" 'z, y) + d(T?"x, T?" ') + d(Ty,y)] and recall that
d(A, B) = 0.

If T?2"~'x = y then R(T?"~'x,y) = 0 and thus (3.17) is satisfied. Suppose that
R(T?>"'z,y) # 0 and fixe < R(T*'z,y). Choose & > 0 such that (3.18)
holds. Notice that ifR(T?" 'z,y) < d(T?"z,Ty), we get a contradiction with (3.18).
Then clearly, (3.2) implies (3.18). Now let (3.18) hold. F¥"~'z,y € AU B and
e > 0. If R(T?" 'z,y) < ¢, we haved(T?*"z, Ty) < R(T*"~'z,y) and consequently
d(T?"x,Ty) < € because of (3.18). IR(T?*"~1z,y) > ¢, then (3.2) follows immediately.
Thus, (3.18) and (3.2) are equivalent provided that, B) = 0.

Making use of (3.17) we have,

d(Tz,2) =lim, e d(T?x,T2) < lim,_ o R(T* 1x,2).
<limyp oo $[d(T* 1, 2) + d(T?* 2, T*"z) + d(T'z, 2)]

which implies that/(T'z, z) < $d(T'z, z). But this is impossible, hen€z = z. Lastly, we
show: is a unique fixed point of. Assume that there exists € A N B such that: # w
andTw = w. From (3.17) it follows thatl(w, z) < R(z,w) = $[d(z,w) + d(Tz,z) +
d(Tw,w)] = 3d(z,w) which clearly implies: = w. O
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