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Abstract: In this paper a composite generalizer of the Pareto distribution is proposed and studied. The genesis of the beta distribution
and transmuted map is used to develop the so-called beta transmuted Pareto (BTP) distribution. Several mathematical properties
including moments, mean deviation, probability weighted moments, residual life, distribution of order statistics and the reliability
analysis are discussed. The method of maximum likelihood isproposed to estimate the parameters of the distribution. Weillustrate the
usefulness of the proposed distribution by presenting its application to model real-life data sets.
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1 Introduction

The Pareto distribution is named after economist Vilfredo Pareto who revealed it while modeling income data. Because
of its heavy tail properties it is widely used in modeling data from reliability, finance and actuarial sciences, economics,
among others. Burroughs and Tebbens [4] discussed applications of the Pareto distribution in modeling earthquakes, forest
fire areas and oil and gas field sizes. Newman [17] also provided many other quantities measured in the physical and
biological systems where the Pareto distribution has applications. The probability density function (pdf) and cumulative
distribution function (cdf) of a Pareto distribution is given by

g1(x;α,x0) =
αxα

0

xα+1 , (1)

and

G1(x;α,x0) = 1−
(x0

x

)α
, (2)

respectively, wherex ∈ (x0,∞), α > 0 is the shape parameter andx0 > 0 is the scale parameter.
A hierarchy of the Pareto distributions has been established starting from the classical Pareto (I) to Pareto (IV)

distributions with subsequent additional parameters related to location, shape and inequality. To add more flexibility to
the Pareto distribution many of its generalizations have appeared in the literature in last few years. To name a few,
Alzaatreh, Famoye and Lee [2] proposed the Weibull-Pareto distribution, Bourguignon et al. [5] introduced the
Kumaraswamy-Pareto distribution, Alzaatreh, Famoye and Lee [3] introduced the Gamma-Pareto distribution, Akinsete,
Famoye and Lee [1] introduced the beta-Pareto distribution, Zea et al. [20] studied the beta exponentiated Pareto
distribution, Mahmoudi [13] proposed the beta generalized Pareto distribution, Elbatal [8] studied the Kumarswamy
exponentiated Pareto distribution, Tahir et al. [19] studied a new Weibull-Pareto distribution, Merovci and Puka [14]
introduced transmuted Pareto distribution. In this article we propose a new generalizer which is obtained by the
composition of the genesis of beta distribution and transmutation map. We will execute this generalizer to the Pareto
distribution to develop the so-called beta transmuted Pareto distribution. This will be the beta generalizer of the
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transmuted Pareto (TP) distribution studied by Merovci andPuka [14]. A random variableX is said to have a transmuted
Pareto probability distribution with parameterx0 > 0, α > 0 and|λ | ≤ 1, if its pdf is given by

g(x;α,x0,λ ) =
αxα

0

xα+1

[

1−λ +2λ
(x0

x

)α]
,x > x0. (3)

The corresponding cdf of the transmuted Pareto distribution is given by

G(x;α,x0,λ ) =
[

1−
(x0

x

)α][
1+λ

(x0

x

)α]
,x > x0. (4)

Eugene, Lee and Famoye [9] used the beta distribution as a generator to develop the so-called a family of beta-
generated (BG) distributions based on the following formulation.
Let G(x) be the cumulative distribution function (cdf) of a random variableX . Then the cdf of the beta-G random variable
is given by

F(x) = IG(x)(a,b) =
1

B(a,b)

∫ G(x)

0
wa−1(1−w)b−1dw, (5)

wherea > 0 andb > 0 are shape parameters. Note thatIy(a,b) =
By(a,b)
B(a,b) is the incomplete beta function ratio,By(a,b) =

∫ y
0 wa−1(1−w)b−1dw is the incomplete beta function,B(a,b) = Γ (a)Γ (b)

Γ (a+b) is the beta function andΓ (.) is the gamma
function.
The probability density function (pdf) of the Beta-G distribution has the form

f (x) =
1

B(a,b)
[G(x)]a−1[1−G(x)

]b−1
g(x). (6)

This class of generalized distribution has received considerable attention over the last years and several classical
distributions have been generalized using this formulation. We generalize the transmuted Pareto distribution (3) using
this formulation in order to construct the beta transmuted Pareto (BTP) distribution. We provide a comprehensive
description of mathematical properties of BTP distribution and its application to analyze real data sets. The rest of the
paper is unfolded as follows. In Section 2 we define the BTP distribution and discuss some of its sub-models. In Section
3 we present the mixture representation of the BTP distribution. Section 4 discusses some structural and mathematical
properties of the BTP distribution such as the quantile, moments, mean deviation, residual life, distribution of the order
statistics etc. Parameter estimation procedures using method of maximum likelihood estimates are presented in Section
5. In Section 6 we study the elements of reliability analysis. Application to model real world data is discussed in Section
7. Section 8 provides some concluding remarks.

2 The beta transmuted Pareto distribution

In this section we provide the formulation of the beta transmuted Pareto distribution. By inserting (4) into (5) the
cumulative distribution function of the beta-transmuted Pareto distribution with five parameters is given by

F(x) =
1

B(a,b)

∫

[

1−( x0
x )

α][
1+λ( x0

x )
α]

0
wa−1(1−w)b−1dw, (7)

wherex > x0 > 0, |λ | ≤ 1, α > 0, a > 0, b > 0.
Using the incomplete beta function and the hyper-geometricconfluent function, one can express the cdf in a closed form
as below (see Cordeiro and Nadarajah [7]),

F(x) =
(G(x;α,x0,λ ))a

B(a,b)
.

∞

∑
k=0

(1− b)k(G(x;α,x0,λ ))k)

(a+ k)k!
.

Hence,

F(x) =
(G(x;α,x0,λ ))a .2F1(a,1− b,a+1;G(x;α,x0,λ ))

aB(a,b)
,
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where2F1(c,d;e;z) = ∑∞
k=0

(c)k(d)k
(e)k

. zk

k! is the Gaussian hyper-geometric function where(c)k is the ascending factorial

defined by (assuming that(c)0 = 1)

(c)k =

{

c(c+1)(c+2) · · ·(c+ k−1) k = 1,2,3, · · ·
1 k = 0

Differentiating (7) with respect tox, we get the probability density function of the BTP distribution given by

f (x) =
1

B(a,b)

αxα
0

xα+1

[

1−λ +2λ
(x0

x

)α][
1−
(x0

x

)α]a−1[

1+λ
(x0

x

)α]a−1{(x0

x

)α [
1−λ +λ

(x0

x

)α]}b−1
, (8)

wherex > x0 > 0, |λ | ≤ 1, α > 0, a > 0 andb > 0.
The BTP distribution includes the following distributionsas special case:

–for λ = 0, BTP reduces to BP distribution by Akinsete et al. [1]
–for a = b = 1, BTP reduces to TP distribution by Merovci and Puka [14]
–for λ = 0 andb = 1, BTP reduces to exponentiated Pareto by Nadarajah [16]
–for a = b = 1 andλ = 0, BTP reduces to Pareto distribution.

Figure 1 illustrates the graphical behavior of the pdf and the cdf of BTP distribution for selected values of the
parametersa,b,λ andα with x0 = 0.1. As we shall see in the sequel, this is a rather flexible distribution and could be
useful to model different phenomena exhibited by real worlddata.
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Fig. 1: pdf (left) and cdf (right) of BTP distribution for selected values of the parameters.

3 Mixture representation

In this section we find the series representations of the cdf and the pdf of the BTP distribution which will be useful to
study its mathematical characteristics. As we shall see both pdf and cdf of BTP distribution can be expressed in terms of
the Pareto distribution. By using (5) and the power series expansion of(1−w)b−1, we get

1
B(a,b)

∫ G(x)

0
wa−1(1−w)b−1dt =

1
B(a,b)

∞

∑
i=0

(−1)i
(

b−1
i

)

[G(x)]a+i

a+ i
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with the binomial term
(b−1

i

)

= Γ (b)
Γ (b−i)i! defined for any realb. Hence, (7) reduces to

F(x) =
∞

∑
i=0

(−1)i
(

b−1
i

)

[

1−
(x0

x

)α ]a+i[
1+λ

( x0
x

)α ]a+i

B(a,b)(a+ i)
,x > x0. (9)

Again, using the binomial expansion of
[

1−
(x0

x

)α ]a+i
and

[

1+λ
( x0

x

)α ]a+i
, we have

F(x) =
∞

∑
i,k,l=0

(−1)i+k
(

b−1
i

)(

a+ i
k

)(

a+ i
l

)

λ l
( x0

x

)α(k+l)

B(a,b)(a+ i)

=
∞

∑
i,k,l=0

(−1)i+k
(

b−1
i

)(

a+ i
k

)(

a+ i
l

)

λ l(1−G1(x;α(k+ l),x0))

B(a,b)(a+ i)

=
∞

∑
k,l=0

wkl

(x0

x

)α(k+l)
, (10)

whereG1(x;α(k+ l),x0) is the Pareto cdf with shape parameterα(k+ l) and the scale parameterx0 and

wkl =
∞

∑
i=0

(−1)i+k
(

b−1
i

)(

a+ i
k

)(

a+ i
l

)

λ l

B(a,b)(a+ i)
. (11)

Using the power series expansion we may express the pdf (8) as below:

f (x) =
1

B(a,b)

αxα
0

xα+1

[

1−λ +2λ
(x0

x

)α][
1−
(x0

x

)α]a−1[

1+λ
(x0

x

)α]a−1{(x0

x

)α [
1−λ +λ

(x0

x

)α]}b−1

=
∞

∑
i=0

∞

∑
k=0

∞

∑
l=0

α(−1)i

B(a,b)

(

a−1
i

)(

a−1
k

)(

b−1
l

)

λ k+l(1−λ )b−1−l
{

(1−λ )x−1+2λ
(x0

x

)α
x−1
}(x0

x

)α(i+k+l+b)
.(12)

Further lettingm = i+ k+ l, f (x) reduces to

f (x) =
∞

∑
m=0

m

∑
i=0

m−i

∑
k=0

α(−1)i

B(a,b)

(

a−1
i

)(

a−1
k

)(

b−1
m− i− k

)

λ m−i(1−λ )b−1−m+i+k

×
(x0

x

)α(m+b) [

(1−λ )x−1+2λ
(x0

x

)α
x−1
]

=
[

(1−λ )x−1+2λ
(x0

x

)α
x−1
] ∞

∑
m=0

cm

(x0

x

)α(m+b)
, (13)

where

cm =
m

∑
i=0

m−i

∑
k=0

α(−1)i

B(a,b)

(

a−1
i

)(

a−1
k

)(

b−1
m− i− k

)

λ m−i(1−λ )b−1−m+i+k. (14)

4 Mathematical characterizations

In this section we provide some mathematical properties of the BTP distribution including the moments, quantiles, mean
deviations, probability weighted moments, residual life,distribution of order statistic etc.

4.1 Moments and moment generating function

Moments are necessary and important in any statistical analysis, especially in applications. It can be used to study the
most important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and kurtosis). Using the
mixture representation described in section 3, ther-th moment of the BTP random variableX is given by
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Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 2, 243-258 (2017) /www.naturalspublishing.com/Journals.asp 247

E(X r) =

∫ ∞

x0

xr f (x)dx

=

∫ ∞

x0

xr
[

(1−λ )x−1+2λ
(x0

x

)α
x−1
] ∞

∑
m=0

cm

(x0

x

)α(m+b)
dx

=
∞

∑
m=0

cm

[

(1−λ )xαm+αb
0

∫ ∞

x0

xr−1−αm−αbdx+2λ xαm+αb+α
0

∫ ∞

x0

xr−1−αm−αb−αdx

]

=
∞

∑
m=0

cm

[

(1−λ )xαm+αb
0

xr−αm−αb
0

αm+αb− r
+2λ xαm+αb+α

0
xr−αm−αb−α

0

αm+αb+α − r

]

= xr
0

∞

∑
m=0

cm

(

1−λ
αm+αb− r

+
2λ

αm+αb+α − r

)

(15)

if r < αb.

Similarly, the moment generating function ofX may be obtained as below:

MX (t) =
∫ ∞

x0

etx f (x)dx

=
∫ ∞

x0

etx
[

(1−λ )x−1+2λ
(x0

x

)α
x−1
] ∞

∑
m=0

cm

(x0

x

)α(m+b)
dx

=
∞

∑
m=0

cm

[

(1−λ )xαm+αb
0

∫ ∞

x0

etxx−1−αm−αbdx+2λ xαm+αb+α
0

∫ ∞

x0

etxx−1−αm−αb−αdx

]

=
∞

∑
m=0

cm(−tx0)
α(m+b) [(1−λ )Γ (−αb−αm,−tx0)+2λ (−tx0)

αΓ (−αb−αm−α,−tx0)] , (16)

wheret < 0 andΓ (., .) denotes the upper incomplete gamma function, i.e.Γ (s,x) =
∫ ∞

x e−tts−1dt.

4.2 Quantiles and random number generator

Quantiles are the points in a distribution that relates to the rank order of values. The quantile function of a distribution is
the real solution ofF(xq) = q for 0≤ q ≤ 1. The quantiles of BTP are obtained from (7) as

xq = x0





λ −1+
√

(1+λ )2−4λ
(

I−1
q (a,b)

)

2λ





− 1
α

, (17)

whereI−1
q (a,b) is the inverse of the incomplete beta function with parameters a andb. As shown in Zea et al. [20], the

functionI−1
q (a,b) can be expressed as a power series

I−1
q (a,b) =

∞

∑
i=1

qi[aB(a,b)q]
i
a ,

whereq1 = 1 and the remaining coefficients satisfy the following recursion

qi =
1

i2+(a−2)i+(1− a)

{

i−1

∑
r=2

(1− δi,2)qrqi+1−r [r(1− a)(i− r)− r(r−1)]

+
i−1

∑
r=1

i−r

∑
s=1

qrqi+1−r−s [r(r− a)+ s(a+ b−2)(i+1− r− s)]

}

,
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whereδi,2 = 1 if i = 2, δi,2 = 0 if i 6= 2. We can also find the expression of the inverse incomplete beta function on the
website: http://functions.wolfram.com/06.23.06.0004.01, which is also mentioned by Pal and Tiensuwan [18].
We use the inverse transformation method to generate randomnumbers from the beta transmuted Pareto distribution as
F(x) = u, whereu ∼U(0,1). Solving the expressionF(x) = u gives

x = x0





λ −1+
√

(1+λ )2−4λ
(

I−1
u (a,b)

)

2λ





− 1
α

, 0< u < 1 (18)

whereI−1
u (a,b) is the inverse of the incomplete beta function. The shortcomings of the classical skewness and kurtosis

are well-known in the literature. To illustrate the effect of the parametersλ ,a and b on skewness and kurtosis we
consider measures based on quantiles. The Bowley’s skewness by Kenney and Keeping [11] is one of the earliest
skewness measures defined in terms of the quantiles as below

B =
Q3+Q1−2Q2

Q3−Q1
=

Q0.75−2Q0.5+Q0.25

Q0.75−Q0.25

and the Moors kurtosis by Moors [15] is defined as

M =
(E7−E5)+ (E3−E1)

E6−E2
=

Q0.875−Q0.625+Q0.375−Q0.125

Q0.75−Q0.25
,

whereQ(.) represents the quantiles and E(.) represents the octiles. Figure 2 displays the Bowley (B) skewness and Moors
(M) kurtosis as a function of the parameterλ for a = b = 5,α = 2 andx0 = 0.1.
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Fig. 2: Bowley skewness (left) and Moors kurtosis (right) of BTP distribution as a function ofλ .
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Similarly, Figure 3 displays the Bowley (B) skewness and Moors (M) kurtosis for different values ofa andb with
λ = 0.2,α = 2 andx0 = 0.1.
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Fig. 3: Bowley skewness (left) and Moors kurtosis (right) of BTP distribution as a function of the parametersa andb.

From Figures 2 and 3 it is evident that both Bowley’s skewnessand Moors kurtosis depend on the choice of the
parameters.

4.3 Mean Deviation

Let X be a beta transmuted Pareto random variable with meanµ = E(X) and medianM. Note that we can find the mean
µ by substitutingr = 1 in equation (15) provided thatαb > 1. The mean deviation from the mean (µ) and the mean
deviation from the median (M) can be expressed as

δ1(x) =
∫ ∞

x0

|x− µ | f (x)dx =
∫ µ

x0

(µ − x) f (x)dx+
∫ ∞

µ
(x− µ) f (x)dx = 2[µF(µ)− J(µ)], (19)

δ2(x) =
∫ ∞

x0

|x−M| f (x)dx =
∫ M

x0

(M − x) f (x)dx+
∫ ∞

M
(x−M) f (x)dx = µ −2J(M), (20)

whereF(.) is the cdf of the beta transmuted Pareto distribution andJ(t) =
∫ t

x0
x f (x)dx.

Similar to (15), we can computeJ(t) as below:

J(t) =
∫ t

x0

x f (x)dx

=

∫ t

x0

x×
[

(1−λ )x−1+2λ
(x0

x

)α
x−1
] ∞

∑
m=0

cm

(x0

x

)α(m+b)
dx

=
∞

∑
m=0

cmxα(m+b)
0

[

(1−λ )
∫ t

x0

x−α(m+b)dx+2λ xα
0

∫ t

x0

x−α(m+b+1)dx

]

=
∞

∑
m=0

cm

[

(1−λ )t( x0
t )

α(m+b)

1−αm−αb
+

(1−λ )x0

αm+αb−1
+

2λ t( x0
t )

α(m+b+1)

1−αm−αb−α
+

2λ x0

αm+αb+α −1

]

. (21)
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4.4 Probability weighted moments

The probability weighted moments are the expectations of certain functions of a random variable and can be defined for
any random variable whose ordinary moments exist. The(s,r)th probability weighted moments of a random variableX
which follows BTP, sayρs,r, is defined by

ρs,r = E{X sF(X)r}=
∫ ∞

x0
xsF(x)r f (x)dx. (22)

From (10), we have

F(x) =
∞

∑
k,l=0

wklv
k+l =

∞

∑
p=0

w∗
pvp, (23)

wherev =
( x0

x

)α
andw∗

p = ∑
k,l:k+l=p

wkl . As mentioned in section 0.314 of Gradshteyn and Ryzhik [10], for any positive

integerr,
(

∞

∑
p=0

w∗
pvp

)r

=
∞

∑
p=0

dr,pvp, (24)

where the coefficientsdr,p for p = 1,2,3, .... can be determined from the recurrence equation

dr,p = (pw∗
0)

−1
p

∑
q=1

{q(r+1)− p}w∗
qdr,p−q (25)

anddr,0 = (w∗
0)

r.
Thus we can obtaindr,p from dr,0, · · · ,dr,p−1 and, therefore, fromw∗

0,w
∗
1, · · · ,w

∗
p. Using equations (13), (23), (24) and (25),

equation (22) reduces to

ρs,r =

∫ ∞

x0

xs

(

∞

∑
p=0

w∗
p

(x0

x

)α p
)r ∞

∑
m=0

cm

(x0

x

)α(m+b) [

(1−λ )x−1+2λ
(x0

x

)α
x−1
]

dx

=
∫ ∞

x0

xs
∞

∑
p=0

dr,p

(x0

x

)α p ∞

∑
m=0

cm

(x0

x

)α(m+b) [

(1−λ )x−1+2λ
(x0

x

)α
x−1
]

dx

=
∞

∑
p=0

∞

∑
m=0

dr,pcmxα(m+b+p)
0 ×

[

(1−λ )
∫ ∞

x0

x−1+s−αm−αb−α pdx+2λ xα
0

∫ ∞

x0

x−1−α−αm−αb−α p+sdx

]

=
∞

∑
p=0

∞

∑
m=0

dr,pcmxα(m+b+p)
0

[

(1−λ )
xs−αm−αb−α p

0

αm+αb+α p− s
+2λ xα

0
x−α+s−αm−αb−α p

0

αm+αb+α p+α− s

]

=
∞

∑
p=0

∞

∑
m=0

dr,pcmxs
0

[

1−λ
αm+αb+α p− s

+
2λ

αm+αb+α p+α− s

]

(26)

wheres < αb.

4.5 Residual and reversed residual life

Let X be a BTP random variable andF(x) be its cdf (7). Then then-th moment of the residual life ofX , say,mn(t) =

E
[

(X − t)n|X > t
]

, n = 1,2, · · · is given by

mn(t) =
1

R(t)

∫ ∞

t
(x− t)ndF(x) =

1
R(t)

∫ ∞

t

∞

∑
k=0

(

n
k

)

(−1)kxn−ktk f (x)dx

=
1

R(t)

n

∑
k=0

(

n
k

)

(−1)ktk
∞

∑
m=0

cmxα(m+b)
0

[

(1−λ )
∫ ∞

t
x−1+n−k−αm−αbdx+2λ xα

0

∫ ∞

t
x−1−α+n−k−αm−αbdx

]

=
1

R(t)

n

∑
k=0

∞

∑
m=0

cm

(

n
k

)

(−1)ktkxα(m+b)
0

[

(1−λ )tn−k−αm−αb

αm+αb− n+ k
+

2λ xα
0 tn−k−αm−αb−α

αm+αb+α − n+ k

]

=
1

R(t)

n

∑
k=0

∞

∑
m=0

cm

(

n
k

)

(−1)ktn
(x0

t

)α(m+b)
[

(1−λ )
αm+αb− n+ k

+
2λ
( x0

t

)α

αm+αb+α − n+ k

]

(27)
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wheren < αb andR(t) = 1−F(t).

We setn = 1 in equation (27) to get mean residual life. Then-th moments of the reversed residual life ofX , say,

Mn(t) = E
[

(X − t)n|X ≤ t
]

for t > 0 andn = 1,2, · · · uniquely determineF(x). We have

Mn(t) =
1

F(t)

∫ ∞

t
(t − x)ndF(x) (28)

and follow similar steps that we used to derive the expression (27) to obtain a series expansion formula forMn(t). We set
n = 1 in equation (28) to get mean reversed residual life. The mean reversed life is also known as mean inactivity time or
mean waiting time.

4.6 Stress-strength model

The stress-strength model is widely used in many applications of physics and engineering such as strength failure and
system collapse. In stress-strength modeling, we useR = P(X2 < X1) as a measure of reliability of the system with
random stressX2 and strengthX1. Let X1 andX2 be two independent random variables with BTP(x;α,x0,λ ,a1,b1) and
BTP(x;α,x0,λ ,a2,b2) distributions respectively. The reliability can be computed by

R =

∫ ∞

x0

f1(x;α,x0,λ ,a1,b1)F2(x;α,x0,λ ,a2,b2)dx, (29)

where f1(.) andF2(.) are the pdf and cdf of the BTP random variablesX1 andX2 respectively. Note that the pdf ofX1 is
given by

f1(x;α,x0,λ ,a1,b1) =
[

(1−λ )x−1+2λ
(x0

x

)α
x−1
] ∞

∑
m=0

c(1)m

(x0

x

)α(m+b1)

and the cdf ofX2 is given by

F2(x;α,x0,λ ,a2,b2) =
∞

∑
k,l=0

w(2)
kl

(x0

x

)α(k+l)
,

wherec(1)m andw(2)
kl are given by

c(1)m =
m

∑
i=0

m−i

∑
k=0

α(−1)i

B(a1,b1)

(

a1−1
i

)(

a1−1
k

)(

b1−1
m− i− k

)

λ m−i(1−λ )b1−1−m+i+k,

and

w(2)
kl =

∞

∑
i=0

(−1)i+k
(

b2−1
i

)(

a2+ i
k

)(

a2+ i
l

)

λ l

B(a2,b2)(a2+ i)
.

Hence, equation (29) reduces to

R =
∞

∑
m,k,l=0

c(1)m w(2)
kl xα(k+l+m+b1)

0

[

∫ ∞

x0

(1−λ )x−1−αm−αb1−αk−α ldx+
∫ ∞

x0

2λ xα
0 x−1−α−αm−αb1−αk−α ldx

]

=
∞

∑
m,k,l=0

c(1)m w(2)
kl xα(k+l+m+b1)

0

[ 1−λ
αm+αb1+αk+αl

+
2λ xα

0

α +αm+αb1+αk+αl

]

. (30)

4.7 Order statistics

Let X1,X2, · · · ,Xn be a simple random sample from BTP(x;α,x0,λ ,a,b) with cumulative distribution function (7) and
probability density function (8) .
Let X(1),X(2), · · · ,X(n) denote the order statistics from this sample. The pdff(i:n)(x) of ith order statistics is given by

fi:n(x) =
1

B(i,n− i+1)
[F(x)]i−1[1−F(x)]n−i f (x) (31)
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and the cdf is given by

Fi:n(x) =
n

∑
k=i

(

n
k

)

[F(x)]k[1−F(x)]n−k =

∫ F(x)

0

1
B(i,n− i+1)

t i−1(1− t)n−idt. (32)

Substitutingv =
( x0

x

)α
and using (13), (23), (24), (25) and binomial expansions, equation (31) reduces to

fi:n(x) =
1

B(i,n− i+1)
f (x)

n−i

∑
s=0

(−1)s
(

n− i
s

)

F(x)i+s−1

=

[

(1−λ )x−1+2λ vx−1
]

B(i,n− i+1)

∞

∑
m=0

cmvm+b
n−i

∑
s=0

(−1)s
(

n− i
s

)

(

∞

∑
p=0

w∗
pvp

)i+s−1

=

[

(1−λ )x−1+2λ vx−1
]

B(i,n− i+1)

∞

∑
m=0

cmvm+b
n−i

∑
s=0

(−1)s
(

n− i
s

)

(

∞

∑
p=0

di+s−1,pvp

)

=

[

(1−λ )x−1+2λ vx−1
]

B(i,n− i+1)

∞

∑
m=0

∞

∑
p=0

[

n−i

∑
s=0

(−1)s
(

n− i
s

)

cmdi+s−1,p

]

vm+b+p

=

[

(1−λ )+2λ v
]

vb

x

∞

∑
m=0

∞

∑
p=0

ci(m, p)vm+p, (33)

where ci(m, p) = 1
B(i,n−i+1) ∑n−i

s=0(−1)s
(n−i

s

)

cmdi+s−1,p, di+s−1,p = (pw∗
0)

−1 ∑p
q=1

[

q(i + s) − p
]

w∗
pdi+s−1,p−q and

di+s−1,0 = (w∗
0)

i+s−1 =
(

∑∞
j=0(−1) j

(b−1
j

)

1
B(a,b)(a+ j)

)i+s−1
.

5 Parameter estimation

Several methods for parameter estimation have been proposed in the literature but the maximum likelihood method is
the most commonly employed method. The maximum likelihood estimators (MLEs) enjoy desirable properties and can
be used for constructing confidence intervals for the model parameters and also for hypothesis testing. So, we consider
the estimation of the unknown parameters for this family from complete samples only by maximum likelihood. Let
X1,X2, · · · ,Xn be a random sample from the BTP distribution with observed valuesx1,x2, · · · ,xn andΘ = (α,λ ,a,b,x0)

T

be parameter vector. The likelihood function forΘ may be expressed as

L(Θ) = 1
(B(a,b))n ∏n

i=1
αxα

0
xα+1

i

[

1−λ +2λ
(

x0
xi

)α][
1−
(

x0
xi

)α]a−1[

1+λ
(

x0
xi

)α]a−1{(
x0
xi

)α [
1−λ +λ

(

x0
xi

)α]}b−1
(34)

Therefore, the log-likelihood function forΘ becomes

l(Θ) = n ln(Γ (a+ b))− n ln(Γ (a))− n ln(Γ (b))+ n lnα + nα ln(x0)− (α +1)∑n
i=1 lnxi +∑n

i=1 ln
(

1−λ +2λ
(

x0
xi

)α)

+(a−1)
[

∑n
i=1 ln

(

1−
(

x0
xi

)α)
+∑n

i=1 ln
(

1+λ
(

x0
xi

)α)]
+(b−1)∑n

i=1

[

α ln
(

x0
xi

)

+ ln
(

1−λ +λ
(

x0
xi

)α)]
(35)

Sincex∈ (x0,∞), the maximum likelihood estimator ofx0 is the first order statisticX(1). Next we discuss the maximum
likelihood estimation forα, λ , a, andb. We differentiate (35) with respect toα, λ , a andb respectively to obtain the

elements of score vector
(

∂ l
∂α ,

∂ l
∂λ ,

∂ l
∂a ,

∂ l
∂b

)T
as below
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∂ l
∂α

= n
α + n ln(x0)−∑n

i=1 ln(xi)+∑n
i=1

2λ
(

x0
xi

)α
ln
(

x0
xi

)

1−λ+2λ
(

x0
xi

)α +(a−1)∑n
i=1

(

x0
xi

)α
ln
(

x0
xi

)

(

x0
xi

)α
−1

+(a−1)∑n
i=1

λ
(

x0
xi

)α
ln
(

x0
xi

)

1+λ
(

x0
xi

)α +(b−1)

[

∑n
i=1 ln

(

x0
xi

)

+
λ
(

x0
xi

)α
ln
(

x0
xi

)

1−λ+λ
(

x0
xi

)α

]

, (36)

∂ l
∂λ

=
n

∑
i=1

2
(

x0
xi

)α
−1

1−λ +2λ
(

x0
xi

)α +(a−1)
n

∑
i=1

(

x0
xi

)α

1+λ
(

x0
xi

)α +(b−1)
n

∑
i=1

(

x0
xi

)α
−1

1−λ +λ
(

x0
xi

)α , (37)

∂ l
∂a

= n [ψ(a+ b)−ψ(a)]+
n

∑
i=1

ln

(

1−

(

x0

xi

)α)

+
n

∑
i=1

ln

(

1+λ
(

x0

xi

)α)

, (38)

∂ l
∂b

= n [ψ(a+ b)−ψ(b)]+
n

∑
i=1

[

α ln

(

x0

xi

)

+ ln

(

1−λ +λ
(

x0

xi

)α)]

, (39)

whereψ(.) is the digamma function, i.e.ψ(x) = d
dx (lnΓ (x)).

The maximum likelihood estimatorŝα, λ̂ , â, b̂ of the unknown parametersα,λ ,a,b respectively, can be obtained by
setting the score vector to zero and solving the system of nonlinear equations simultaneously. Since there is no closed
form solution of these non-linear system of equations, we can use numerical methods such as the quasi-Newton
algorithm to numerically optimize the log-likelihood function given in (35) to get the maximum likelihood estimates of
the parametersα,λ ,a,b. To compute the standard error and the asymptotic confidenceinterval, we use the usual large
sample approximation in which the maximum likelihood estimators forΘ can be treated as being approximately normal.

6 Reliability analysis

The survival function, also known as the reliability function in engineering, of a probability distribution is the characteristic
of an explanatory variable that maps a set of events, usuallyassociated with mortality or failure of some system onto time.
It is the probability that the system will survive beyond a specified time. The reliability functionR(t) is defined by
R(t) = 1−F(t), whereF(.) is the cdf of the distribution. The other characteristic of interest of a random variable is
its hazard rate function which is also known as instantaneous failure rate of a random variableX which is an important
quantity characterizing life phenomenon. The hazard function h(t) is defined as

h(t) =
f (t)

1−F(t)
,

whereF(.) and f (.) are, respectively, the cdf and pdf of the given distribution.Using equations (7) and (8), the hazard rate
function of the BTP distribution can be expressed as

h(t) =
αxα

0

tα+1

[

1−λ +2λ
( x0

t

)α
][

1−
(x0

t

)α
]a−1

B(a,b)I[
( x0

t )
α
{

1−λ+λ( x0
t )

α
}
](b,a)

[

1+λ
(x0

t

)α]a−1[(x0

t

)α {
1−λ +λ

(x0

t

)α }]b−1
. (40)

The flexibility of BTP distribution to model reliability data is illustrated by varying shape of reliability function and hazard
rate function in Figure 4.
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Fig. 4: Reliability function (left) and hazard rate function (right) of BTP distribution.

Lemma 1 below provides the limiting behavior of the hazard rate function.

Lemma 1. If h(t) is the hazard function of the beta transmuted Pareto distribution, then

lim
t→x0

h(t) =







0, if a > 1
(1+λ )α
x0B(a,b) , if a = 1
∞, if a < 1

and

lim
t→∞

h(t) = 0.

Proof. First note that lim
t→x0

(1−F(t)) = 1 and

lim
t→x0

[

1−
(x0

t

)α]a−1
=







0, if a > 1
1, if a = 1
∞, if a < 1.

Then we have

lim
t→x0

h(t) = lim
t→x0

f (t)
1−F(t) = lim

t→x0
f (t) =







0, if a > 1
α(1+λ )
x0B(a,b) , if a = 1
∞, if a < 1.

Since lim
t→∞

f (t) = 0 and lim
t→∞

F(t) = 1, using L’Hospital’s rule we have

lim
t→∞

h(t) = lim
t→∞

f (t)
1−F(t) = lim

t→∞
f ′(t)
− f (t)

Note thatf (t) = O(t−αb−1) and f ′(t) = O(t−αb−2). We have

lim
t→∞

h(t) = lim
t→∞

f (t)
1−F(t) = lim

t→∞
c1t−αb−2

c2t−αb−1 = lim
t→∞

c1
c2t = 0,

wherec1 andc2 are non-zero constants.
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7 Application of beta transmuted Pareto distribution

In this section we illustrate the flexibility of the BTP distribution to model both heavy tailed and approximately
symmetric data. We estimate the model parameters and calculate the goodness-of-fit statistics in order to assess the
model. Our first data corresponds to the exceedances of flood peaks (inm3/s) of the Wheaton river near Carcross in
Yukon Territory, Canada. of 72 exceedances measures for theyears 1958-1984, rounded to one decimal place and are
provided below.

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7,
37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6,
5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7,64.0,1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8,5.3, 9.7, 27.5, 2.5, 27.0.

These data were analyzed by many authors including Choulakian and Stephenes [6], Akinsete et al. [1], Nadarajsh
[16], Merovci and Puka [14], Bourguignon et al. [5], among others. We have chosen the same data in order to compare
our results with other models proposed by these authors. We estimate the parameters of the BTP model and compare its
appropriateness to model this data with its submodels including beta Pareto (BP), transmuted Pareto (TP), exponentiated
Pareto (EP) and Pareto (P) distributions. The required computations use a scriptAdequacyModel of the R-package by
Marinho et al. [12]. Table 1 provides the estimated values and corresponding standard errors (in parentheses) of the model
parameters.

Table 1: Estimated parameters and their standard errors- Wheaton river data.

model a b λ α x0

BTP 3.9118 17.3874 -0.8518 0.1159 0.1
(1.8159) (11.7365) (0.2588) ( 0.0509) -

BP 3.1473 85.7508 0 0.0088 0.1
(0.4993) (0.0001) - (0.0015) -

TP 1 1 -0.952 0.3490 0.1
- - (0.089) (0.072) -

EP 2.8797 1 0 0.4241 0.1
(0.4911) - - (0.0463) -

P 1 1 0 0.2438 0.1
- - - (0.0287) -

The model selection is carried out by measuring the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), the consistent Akaike information criteria (CAIC) and the Hannan-Quinn information criterion (HQIC).
Note that the smaller the values of goodness-of-fit measuresthe better the fit of the data. These measures are defined as

AIC = −2ℓ(Θ̂)+2q, BIC =−2ℓ(Θ̂)+ q ln(n),

HQIC = −2ℓ(Θ̂)+2q ln(ln(n)), CAIC =−2ℓ(Θ̂)+
2qn

n− q−1
,

whereℓ(Θ̂) denotes the log-likelihood function evaluated at the maximum likelihood estimates,q is the number of
parameters,n is the sample size andΘ denote the parameters. The,−ℓ, AIC, BIC, HQIC and CAIC statistics for each
model is provided in Table 2. We also provide the Kolmogorov-Smirnov (KS) test statistic. It can be seen that BTP
distribution leads to a better fit than any of its submodels.

One can perform the Likelihood Ratio (LR) test in order to assess whether BTP is superior than one of its submodels
to characterize the subject data. Table 3 provides the results of the LR test (Null hypothesis (H0) versus Alternative
hypothesis (Ha)).

In all cases we rejected the null hypothesis and conclude that BTP is a superior distribution to model this data. Plots
comparing the exact BTP distribution with its submodels forWheaton river data is given in Figure 5. It is evident that the
BTP fits better than any of its submodels.
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Table 2: The AIC, CAIC, BIC, HQIC and KS test statistic-Wheaton riverdata.
Model statistics

−ℓ(.,x) AIC CAIC BIC HQIC KS
BTP 256.577 521.154 521.760 530.204 524.753 0.1599
BP 283.700 573.400 573.753 580.230 576.119 0.1747
TP 286.201 576.402 576.575 580.954 578.214 0.2870
EP 287.300 578.600 578.774 583.153 580.413 0.1987
P 303.100 608.200 608.257 610.477 609.106 0.3324

Table 3: Results of likelihood ratio tests.

Model H0 Ha LR- test statistic df p-value
BTP vs. BP λ = 0 λ 6= 0 54.246 1 0.000
BTP vs. TP a = b = 1 a 6= 1&b 6= 1 59.248 2 0.000
BTP vs. EP b = 1&λ = 0 b 6= 1&λ 6= 0 61.446 2 0.000
BTP vs. P a = b = 1&λ = 0 a 6= 1,b 6= 1&λ 6= 0 93.046 3 0.000
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Fig. 5: Fitted pdf (left) and cdf (right) of BTP distribution and itssubmodels for Wheaton river data.

Next, we consider a slightly bigger and approximately symmetric data to present the usefulness of BTP distribution.
We compare the results with some of the models generated fromPareto distribution. We consider the data from
Mahmoudi [13] which represents the fatigue life of 6061-T6 aluminum coupons cut parallel with the direction of rolling
and oscillated at 18 cycles per second. Recently, Alzaatrehet al. [3] also used this data to illustrate the usefulness of
gamma-Pareto distribution. The estimated parameters of BTP distribution using this data are:
â = 9.2490, b̂ = 30.5312, λ̂ =−0.7027, α̂ = 0.8026 and ˆx0 = 70. The values of test statistic to measure the goodness of
the BTP distribution are provided in Table 4. Readers are referred to Alzaatreh et al. [3] to compare and contrast the BTP
with Pareto, beta Pareto, beta generalized Pareto and the gamma-Pareto distribution. Note that the−ℓ statistic for BTP is
the lowest of all the models discussed in Alzaatreh et al. [3] but AIC value is slightly higher for BTP model than for
gamma-Pareto due to the presence of more parameters in BTP than those in the gamma-Pareto model. The fitted pdf and
cdf of the BTP distribution for this data are provided in Figure 6. It is evident that BTP distribution fits very well the
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fatigue life of 6061-T6 aluminum coupons data. This examplesuggests that the BTP distribution works well in fitting
approximately symmetric data too.

Table 4: The AIC, CAIC, BIC, HQIC and KS test statistic-fatigue life of 6061-T6 aluminum coupons data.
Model statistics

−ℓ(.,x) AIC CAIC BIC HQIC KS
BTP 447.5226 903.0453 903.4663 913.4660 907.2627 0.0984
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Fig. 6: Fitted pdf (left) and cdf (right) of BTP distribution for fatigue life data.

8 Concluding remarks

In this study, we have introduced the so-called beta transmuted Pareto (BTP) distribution. This is a generalization of the
transmuted Pareto distribution using the genesis of the beta distribution. Many distributions including Pareto, beta
Pareto, transmuted Pareto and exponentiated Pareto are embedded in this newly developed BTP distribution. Some
mathematical properties along with parameter estimation issues of the subject distribution are discussed. We have
presented two examples to illustrate the application of thesubject distribution to model real world data. We have
compared the goodness-of-fit with its competitive models and it has been shown that BTP is superior to model both
heavy tailed and approximately symmetric data. We expect this study will serve as a reference and help to advance future
research in the subject area.
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