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Abstract: In this paper a composite generalizer of the Pareto distoibis proposed and studied. The genesis of the beta ditbib
and transmuted map is used to develop the so-called betsnitaed Pareto (BTP) distribution. Several mathematicapguties
including moments, mean deviation, probability weightednments, residual life, distribution of order statisticglahe reliability
analysis are discussed. The method of maximum likelihopiddposed to estimate the parameters of the distributionllMgtrate the
usefulness of the proposed distribution by presentingoitdieation to model real-life data sets.
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1 Introduction

The Pareto distribution is named after economist Vilfredoeo who revealed it while modeling income data. Because
of its heavy tail properties it is widely used in modelinga&bm reliability, finance and actuarial sciences, ecomsmi
among others. Burroughs and Tebbefjsljscussed applications of the Pareto distribution in nindesarthquakes, forest
fire areas and oil and gas field sizes. Newm&n plso provided many other quantities measured in the phi/sicd
biological systems where the Pareto distribution has agtins. The probability density function (pdf) and cuntivia
distribution function (cdf) of a Pareto distribution is givby

a a
(X a,x) = Xa—)(fl 1)
and "
Gi(xa,%) =1~ (%) ; ()

respectively, wherg € (xp,»), a > 0 is the shape parameter axqd> 0 is the scale parameter.

A hierarchy of the Pareto distributions has been estaldisttarting from the classical Pareto (1) to Pareto (1V)
distributions with subsequent additional parameterdedléo location, shape and inequality. To add more flexjbitit
the Pareto distribution many of its generalizations haveeaped in the literature in last few years. To name a few,
Alzaatreh, Famoye and Le&][ proposed the Weibull-Pareto distribution, Bourguigndnaé [5] introduced the
Kumaraswamy-Pareto distribution, Alzaatreh, Famoye agel [B] introduced the Gamma-Pareto distribution, Akinsete,
Famoye and Leel] introduced the beta-Pareto distribution, Zea et a0] [studied the beta exponentiated Pareto
distribution, Mahmoudi 13] proposed the beta generalized Pareto distribution, EI{8} studied the Kumarswamy
exponentiated Pareto distribution, Tahir et dl9|[studied a new Weibull-Pareto distribution, Merovci andk&(14]
introduced transmuted Pareto distribution. In this aatiole propose a new generalizer which is obtained by the
composition of the genesis of beta distribution and trartatian map. We will execute this generalizer to the Pareto
distribution to develop the so-called beta transmuted tBadéstribution. This will be the beta generalizer of the
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transmuted Pareto (TP) distribution studied by Merovci Boka [L4]. A random variableX is said to have a transmuted
Pareto probability distribution with parameter> 0, a > 0 and|A| < 1, if its pdf is given by

g(x;a,xo,)\)z)j:igl [1—/\+2/\(§)a},x>xo. 3)

The corresponding cdf of the transmuted Pareto distribu§@iven by

- _ 1o (2 X0
G(x,a,xo,/\)_[l (x) H1+)\(X) },x>xo. (4)
Eugene, Lee and Famoy#@][used the beta distribution as a generator to develop theaked a family of beta-

generated (BG) distributions based on the following foratioh.
Let G(x) be the cumulative distribution function (cdf) of a randomiableX. Then the cdf of the beta-G random variable
is given by

S b-1
FO) =lax(@b) = g [ W ia-w® o ©)
wherea > 0 andb > 0 are shape parameters. Note théa, b) = (fm) is the incomplete beta function ratiBy(a, b) =
JwA1(1—w)P~1dw is the incomplete beta functioB(a,b) = <()i<)) is the beta function and (.) is the gamma

function.
The probability density function (pdf) of the Beta-G dibtrtion has the form

f(x) = G2 [1-G(x)]* g, 6)

This class of generalized distribution has received camaldle attention over the last years and several classical
distributions have been generalized using this formufatitle generalize the transmuted Pareto distribut®)ruging

this formulation in order to construct the beta transmutade® (BTP) distribution. We provide a comprehensive
description of mathematical properties of BTP distribntamd its application to analyze real data sets. The resteof th
paper is unfolded as follows. In Section 2 we define the BTRildigion and discuss some of its sub-models. In Section
3 we present the mixture representation of the BTP disidbutSection 4 discusses some structural and mathematical
properties of the BTP distribution such as the quantile, mois; mean deviation, residual life, distribution of thder
statistics etc. Parameter estimation procedures usingadetf maximum likelihood estimates are presented in Sectio
5. In Section 6 we study the elements of reliability analy&jsplication to model real world data is discussed in Sectio

7. Section 8 provides some concluding remarks.

2 The beta transmuted Pareto distribution

In this section we provide the formulation of the beta tranted Pareto distribution. By inserting)(into (5) the
cumulative distribution function of the beta-transmutede®o distribution with five parameters is given by

L]y
)

F0=5ap) W1 - w)* " tdw, )

wherex >Xp >0,[A| <1,a>0,a>0,b>0.
Using the incomplete beta function and the hyper-geomedméluent function, one can express the cdf in a closed form
as below (see Cordeiro and Nadaraj@h,[

(Gl a,x0,A))*

2 (L-Di(G(xa.%0,A)")

FO=""Ban 2 (a+ kK
Hence,
F) = (G(x;a,%0,A))%.2F1 (8,1 —Db,a+ 1;G(X; a,X0,A))
N aB(a,b) ’
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whereFi(c,d;€2) = i, (Ci‘;()‘s)k.% is the Gaussian hyper-geometric function whéek is the ascending factorial

defined by (assuming thét)o = 1)

(O = {C(C—I— 1)(c+2)---(c+k—1)

k=123,
1 k

1
0

Differentiating (7) with respect tox, we get the probability density function of the BTP disttibu given by

0= gy 42 ()] [ ()T a8 a e ()

B(a,b) xa+1 X X X

wherex > Xy >0,|A| <1,a >0,a>0andb>0.
The BTP distribution includes the following distributioas special case:

—for A =0, BTP reduces to BP distribution by Akinsete et &]. [
—fora=b=1, BTP reduces to TP distribution by Merovci and Pukéd] [

—for A =0 andb =1, BTP reduces to exponentiated Pareto by Nadard@h [
—fora=b=1andA =0, BTP reduces to Pareto distribution.

Figure 1 illustrates the graphical behavior of the pdf anel ¢df of BTP distribution for selected values of the
parameters, b,A anda with xg = 0.1. As we shall see in the sequel, this is a rather flexibleidigion and could be
useful to model different phenomena exhibited by real wddth.

—— a=1XA=-la=5b=5
—— a=21=-05a=2b=08
< 4 —— a=15X=0a=2b=08
—— a=21=05a=05b=05
a=05A=1a=2b=05
—— a=05A=08a=2b=1

a=1A=-1a=5b=5

a=2A=-05a=2b=08
—— a=15A=0a=2b=08
—— a=2)=05a=05b=05
1 a=05A=1a=2b=05

F)

a=05A=08a=2b=1

0.0 0.5 1.0 15 0 1 2 3 4 5

Fig. 1: pdf (left) and cdf (right) of BTP distribution for selectedlues of the parameters.

3 Mixture representation

In this section we find the series representations of the idftae pdf of the BTP distribution which will be useful to
study its mathematical characteristics. As we shall sele pdt and cdf of BTP distribution can be expressed in terms of
the Pareto distribution. By using)and the power series expansion df- w)°~1, we get

1 ex 4, 102 i (b—1\ [G(x)]3
samly W gy s e (* )
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with the binomial tern{bjl) = ,_(rb<_bi))” defined for any reab. Hence, 7) reduces to

(b R A ()7
F(x>_i;<_1>< | ) Bla.b)(a+)

Again, using the binomial expansion ff — (%) ]*" and[1+ A (22)*]*"', we have
- |+k a+i A (%) ol

2T ) e

© 1)+ a+ti AM(A=Gy(xak+1),%))

2 CO) OO e

[ee]

- 3 (29)" (10)

whereG; (x; o (K+1),Xo) is the Pareto cdf with shape parameték + 1) and the scale parameteyand

ad e (b=1\ [a+i\ [a+i Al
_ itk N
Wkl_iZo( Y < i >< k )( [ )B(a,b)(a+i)' (11)
Using the power series expansion we may express theBpds(below:

0= g o v (2 - (2] e ()] () oo (9]

<3555 (4 (O e () ()

Further lettingn=i+k+1, f(x) reduces to
o  m m-i B B 5 N |
m—o'zoz CI;Ea,t <ai 1) (akl> <m—|ik))\ (1—A)P-L-meisk
(%) " [a-apctear (22) %]
{(1 )\)x—1+2)\( ) } icm( ) (m+b)7 "

m=0

,X > Xo. 9

F(x)

where
2w (1) () (s ¢

4 Mathematical characterizations

In this section we provide some mathematical propertieh@BTP distribution including the moments, quantiles, mean
deviations, probability weighted moments, residual lifistribution of order statistic etc.

4.1 Moments and moment generating function

Moments are necessary and important in any statisticalysisalespecially in applications. It can be used to study the
most important features and characteristics of a disiohye.g., tendency, dispersion, skewness and kurtossngidhe
mixture representation described in section 3 rttle moment of the BTP random variab¥eis given by
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X0
o _ X0\ 0 o X o (m+b)
= [ X|@=A)xt+2A(2) x?t cm (= dx
J % famnx a2 () 3 en(3)
_ % Cm|: crm+crb Xr 1-am— abdx+2)\xgm+ab+a /wxrlamabadx]
m=0 XO X0
® —ab —am-ab
— Z Cm am+ab XO am-a +2)\Xgm+ab+d XB am-a “
o am+ab— am+ab+a-—r
hd 2A
= 15
z (am+ab—r+am+ab+a—r> (15)
if r < ab.

Similarly, the moment generating functionXfmay be obtained as below:

t) = /X:éXf(x)dx

/X: & [(1-Ax 2 (%)ax’l} % Cm (%)a(mb) dx

m=0

=S om [(1—A)xgm+°'b /Xo - L-am-abgy | o) xam-aba /Xo ey L-am-ab-agy

m=0

= Gn(—tx0)™ ) [(1— A )7 (—ab— am, —txo) + 2 (~txo) T (—ab— am— &, ~txo)], (16)
m=0

wheret < 0 andr (.,.) denotes the upper incomplete gamma function/ife,x) = [° e~'ts1dt.

4.2 Quantiles and random number generator

Quantiles are the points in a distribution that relates #r#ink order of values. The quantile function of a distributis
the real solution oF (xq) = qfor 0 < q < 1. The quantiles of BTP are obtained froi) &s

_1
a

A—1 1 )\ —4) b
Xq:XO( +y/(1+ (g, ))) | an

2A

wherelq‘l(a, b) is the inverse of the incomplete beta function with paramset@ndb. As shown in Zea et al2[J], the
functionlal(a, b) can be expressed as a power series

(@b)= 5 alaBia byl

whereq; = 1 and the remaining coefficients satisfy the following restom

i—1

T i2r (a—Z:;-i T(1-a) {r;(l— 3 2)UGi+1—r [F(1—a)(i—r)—r(r—1)]

+ :izqrqm_r_s[r(r —a)+s(a+b—-2)(i+1-r— s)]} ,
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whered»=11ifi=2,8,=0if i # 2. We can also find the expression of the inverse incompletefbaction on the
website: http://functions.wolfram.com/06.23.06.0@4 which is also mentioned by Pal and Tiensuwbsj.[

We use the inverse transformation method to generate ramdombers from the beta transmuted Pareto distribution as
F(x) = u, whereu ~ U (0,1). Solving the expressio(x) = u gives

A—1+ \/(1+/\)2—4/\ (Iit(ab)) o
2)

X=Xp , O<u<l1 (18)

wherel;%(a,b) is the inverse of the incomplete beta function. The shortogsof the classical skewness and kurtosis
are well-known in the literature. To illustrate the effedttbe parameterd ,a and b on skewness and kurtosis we
consider measures based on quantiles. The Bowley’s skewme&enney and Keepindl]] is one of the earliest
skewness measures defined in terms of the quantiles as below

_ Q3+ —-2Q Qo75—2Qos5+Qozs
Q3 —Q1 Qo.75— Qo.25
and the Moors kurtosis by Moor4¥) is defined as

(Ez—Es)+ (Es—Eq) _ Qosg75— Qo5+ Qoars— Qoazs
Ee—E> Qo.75— Qo.25 ’

whereQ(.) represents the quantiles and E(.) represents the octitrgeR2 displays the Bowley (B) skewness and Moors
(M) kurtosis as a function of the paramefefor a=b=5,a = 2 andxyp = 0.1.

B

M =

Bowley(B) skewness Moors(M) kurtosis
8
o f=—2
=} S
~—
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8 _ = =
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= T T T T T i T T T T T
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Fig. 2: Bowley skewness (left) and Moors kurtosis (right) of BTPudimition as a function oh.
(@© 2017 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 2, 243-258 (2017)Www.naturalspublishing.com/Journals.asp %NSP} 249

Similarly, Figure 3 displays the Bowley (B) skewness and kéod) kurtosis for different values ad andb with
A =0.2a=2andxy=0.1.

Bowley Skewness Moors kurtosis

Fig. 3: Bowley skewness (left) and Moors kurtosis (right) of BTPtdlmition as a function of the parameterandb.

From Figures 2 and 3 it is evident that both Bowley’s skewrass Moors kurtosis depend on the choice of the
parameters.

4.3 Mean Deviation

Let X be a beta transmuted Pareto random variable with nearkE (X) and mediarM. Note that we can find the mean
U by substitutingr = 1 in equation {5) provided thatab > 1. The mean deviation from the megm)(and the mean
deviation from the mediar) can be expressed as

o0 l,l 00
510 = [ b plt0dx= [0t dxt /p (x— ) F(x)dx = 2pF (1) — (k)] (19)

& (x) = /X: |x—M|f(x)dx:/XoM(M—x)f(x)dx+/Mw(x—M)f(x)dx:u—2J(M), (20)

whereF (.) is the cdf of the beta transmuted Pareto distribution Hbp= f;oxf (x)dx.
Similar to (15), we can computé(t) as below:

) = /txf(x)dx

X0
t a o a(m+b)
— -l X0\ %, -1 X0
_/Xoxx[(l Axte2a (2) }Wgocm(x) dx
© t t
X {(14) | xemBaxi2a [ x“<m+b+1>dx]
m=0 X0 X0
B icm (L-A)(2)amd (1 _A)xg  2At(5)a(meb+l) 2AXo . 21)
L 1-am—ab am+ab—-1 1-am-ab—a am+ab+a-1
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4.4 Probability weighted moments

The probability weighted moments are the expectations éitefunctions of a random variable and can be defined for
any random variable whose ordinary moments exist. (Bh@th probability weighted moments of a random variaKle
which follows BTP, says,, is defined by

psr = E{XF(X)"} = [io x°F (x)" f(x)dx. (22)
From (10), we have
= Wk|Vk+I = V\kap, (23)
wherev = (%)a andwp= 5  Wg. As mentioned in section 0.314 of Gradshteyn and Ryzh ffor any positive
kl:k+l=p
integerr,

;
p=0 p=0

where the coefficiemn:%r for p=1,2,3,.... can be determined from the recurrence equation

drp = (PWp)~ z {g(r+1) - p}Wadr,p—q (25)

andd;g = (w’g)’.

Thus we can obtaid; , fromdy o, ,dr p—1 and, therefore, froms, wi, - - -, wp,. Using equationsl), (23), (24) and @9),

equation 22) reduces to
gcm( ) e [(1—A)x—1+m(§)“x—1}dx

Psr = /X:XS<DZOWB(X) ) 2
- /X:)Cglciockp(é)o{p 2 Cm (%) " [(1_)‘)X71+2)‘ (%)axil] dx

m=0

= z z dr,pmeg(mb+p [(1 )\)/ x—LFs—am—ab— ade—I—Z)\XO/ x~1-a—am-ab- orp+st:|
p=0m=0 X0
© — —ab— _ - —ab—

_ z z dr meg(m+b+p) (1_)\) s—am—ab—ap 2)\)(8 XOCHrs am—ab—ap
p=0m=0 ’ am-+ab-+ap—s am+ab+ap+a—s
© © 1_/\ 2/\
p=0m=0 am+ab+ap—s am+ab+ap+a—s

wheres < ab.

4.5 Residual and reversed residual life

Let X be a BTP random variable arit{x) be its cdf ¢). Then then-th moment of the residual life of, say,m(t) =
E{(X —t)"X >t}, n=12,---is given by

_ i ° _+\Nn n k
mn(t)_R(t)/t( £)"dF (x / z{)() £F (x)dx
1 0 <n> i [ e am ab e
=== t CmXg 1-A / +n—k—am-abqy, | o) / a+n—k—am-abyy
R 2 \k Z ) X3
1 n o= n 1— ) )th—k-am-ab 2\ xatn—k-am-ab-a
a3 S () -peg e | G2 s }
1) Eoro K am+ab—n+k am+ab+a-n+k
_ L Z 2 (MY g (X0 | (1-A) 21 (2)°
B @kz()mzocm(k)(_l) ! (T) amtab_nik  amiab+ta-—nik 27)
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wheren < ab andR(t) = 1—F(t).

We setn = 1 in equation 27) to get mean residual life. The-th moments of the reversed residual life %f say,
Mn(t) =E [(X —t)"NX < t} fort >0andn=1,2,--- uniquely determin€& (x). We have

Ma(t) = % JRERE (28)

and follow similar steps that we used to derive the expres&d) to obtain a series expansion formula fd(t). We set
n=1in equation28) to get mean reversed residual life. The mean reversealdésd known as mean inactivity time or
mean waiting time.

4.6 Stress-strength model

The stress-strength model is widely used in many applioataf physics and engineering such as strength failure and
system collapse. In stress-strength modeling, weRiseP(X; < X;) as a measure of reliability of the system with
random stres¥, and strengttX;. Let X; andX; be two independent random variables with BXRr,xo,A,a;,b1) and
BTP(x; a,%o, A, az,by) distributions respectively. The reliability can be conguliby

R:/ f1(6a,%0,A,a1,b1)F2(X 0, %0, A, @2, bp) dx, (29)
)
wherefi(.) andF,(.) are the pdf and cdf of the BTP random variablgsand X, respectively. Note that the pdf of is
given by

. 1 el X0\9 1] o (1) (X0) oMby
06 a %0, a1,b) = [(L-A)x 422 (22) ' }ngocm (2)
and the cdf ofX; is given by

0 Xo1 (k)
F2(X 0, %0, A, 82, 00) = § w2 (22 :
k,Z:O Kl (x)

wherecﬁrlf andwl(d2> are given by

iEB alabli (ali_1> (alk )(mbi|_k>)‘m (L= APt
and
W = i;(—l)“rk (bzi—1> <a2k+i) (a2|+i) B(az,bj—)l(aﬂ—i) |

Hence, equatior2Q) reduces to

[oe]

R— g CSn)Wl(qz) a(k+|+m+b1){/m(l_)\)X—l—am—abl—ak—aldx+/wZAXgX—l—a—am—abl—ak—aldx
mk,[=0 X0 X0

S

1-A 2AX§ } (30)

_ < (W(ngk+l+m+bl){
mgzo K am-+ab;+ak+al ' a+am+aby+ak+all’

4.7 Order statistics

Let X3,Xp,---, Xy be a simple random sample from B{la,xg, A ,a,b) with cumulative distribution function7) and
probability density functiong) .
LetX(1),X(2)," -, X(n) denote the order statistics from this sample. Thefpdf (x) of ith order statistics is given by

fi;n(X) = m[l: (X)]i_l[l_ F(X)]n_if(x) (31)
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and the cdf is given by

n F(x) ) .
o = (1) P - Foo = [ gt @)

Substitutingv = (%)a and using 13), (23), (24), (25 and binomial expansions, equati@1) reduces to

fin(X) = mf(x)z(—l)s<n;i>F(x)”“
C[a-rxte2awcl @

g S () ()

_ [(1—BA(i>xn—ii+ +2A1)Vx—1} éo pi) l"z;(_l)s <n;i)cm dwsl’p] Jnibep
[(1 A) +2)\vvb o i}q ™ -

P

where (M p) = grrrp Seo(—1°("s)emivs-1p, divs1p = (PWe) 551 [ali +9) — P|Wydiss-1p-q and

chss-10= (W)= (3500~ D1 () gy

i+s—1

5 Parameter estimation

Several methods for parameter estimation have been propogke literature but the maximum likelihood method is
the most commonly employed method. The maximum likelihostiheators (MLES) enjoy desirable properties and can
be used for constructing confidence intervals for the modedpeters and also for hypothesis testing. So, we consider
the estimation of the unknown parameters for this familynfroomplete samples only by maximum likelihood. Let
X1,X2,- -+, %y be a random sample from the BTP distribution with observéaes;,x,, - ,x, and@ = (a,A,a,b,xo)"

be parameter vector. The likelihood function ®®may be expressed as

e e (3)7] - ()] e ()T () o (7)) 0

Therefore, the Iog-hkelihood function f@ becomes

L(O) =

1(©) =nIn(I" (a+b)) —nin (I (a)) —nin (I (b)) + nina +naln(xo) — (@ + 1) S"; Inx + 5", In (1—)\ +22 (%)“)

+(a—1) [z{‘zlln (1— (%)a) +3M1In (1+/\ (%)a)} +((b-1)3", [a In (%) +1In (1—/\ +A (%)G)k%)
Sincex € (Xp, »), the maximum likelihood estimator & is the first order statisti}z{(l>. Next we discuss the maximum

likelihood estimation forx, A, a, andb. We differentiate 85) with respect toa, A, a andb respectively to obtain the

elements of score vectqror, 2-, 9L SL) as below
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o i)~ a0+ 37y mﬂa_lmnlw

da @ =1 1 /\+2A(§ ()
a3 2(%)0_1 +«a—1)n-—ﬁgﬂj——+(b—1)n——Eﬁ)ﬁ:i—— (37)
) i;]_—)\—i—Z)\ (%)a S1142 Xl)a S1-2 42 (%)a

( i
2 nllatb) - ll/(a)]+iiln (2 <@>) +i=" (142 (%)) | (38)
Il aln( >+In< A4 (%)C{)] (39)

B njy(a+b)— )]+ Z

wherey(.) is the digamma function, |ep( ) = dX(Inl’( ).

The maximum likelihood estimatoits, A ,4,b of the unknown parameters, A, a, b respectively, can be obtained by
setting the score vector to zero and solvmg the system odlimear equations simultaneously. Since there is no closed
form solution of these non-linear system of equations, we ese numerical methods such as the quasi-Newton
algorithm to numerically optimize the log-likelihood fuian given in @5) to get the maximum likelihood estimates of
the parametere,A,a,b. To compute the standard error and the asymptotic confidieteeral, we use the usual large
sample approximation in which the maximum likelihood esifiars for© can be treated as being approximately normal.

6 Reliability analysis

The survival function, also known as the reliability furmetin engineering, of a probability distribution is the cheteristic
of an explanatory variable that maps a set of events, usasdigciated with mortality or failure of some system onteetim
It is the probability that the system will survive beyond aeified time. The reliability functiorR(t) is defined by
R(t) = 1—F(t), whereF(.) is the cdf of the distribution. The other characteristic mterest of a random variable is
its hazard rate function which is also known as instantaséailure rate of a random variab¥ which is an important
quantity characterizing life phenomenon. The hazard fondt(t) is defined as

__f®
"= T"Fm

whereF (.) andf(.) are, respectively, the cdf and pdf of the given distribuigsing equationsf) and @), the hazard rate
function of the BTP distribution can be expressed as

X0\ a

axe [1-2+22 ()] [1- ()] aa1 [ g @ ayqb-1
- B T o e

The flexibility of BTP distribution to model reliability datis illustrated by varying shape of reliability functioncbiimazard
rate function in Figure 4.
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Fig. 4: Reliability function (left) and hazard rate function (riglof BTP distribution.

Lemma 1 below provides the limiting behavior of the hazatd fanction.

Lemma 1. Ifh(t) isthe hazard function of the beta transmuted Pareto distribution, then

0, ifa>1
&&MU: i;gnﬁa 1
0o, ifa<1
and
Jﬂgh@):

Proof. First note thatt_l>ixrg‘(1— F(t))=1and

_ 0, ifa>1
aja—1 ’
lim [1—@) } ~J1ifa=1
=% t w, if a< 1.
Then we have
0, ifa>1
. f(t) a(l+A) o
dm h(t) = fim =r = M O = | wogtap)» T 2=1
0o, ifa< 1.

Sincetﬂmf(t) =0 andtﬂ)mF(t) =1, using L'Hospital’s rule we have

O i PO
M h(®) =i =@ = M, =5

Note thatf (t) = ¢(t=2°~1) and f/(t) = €(t~"~2). We have

i — lim O _ i @ttt
tlmh(t) _tlm T _tlmct—ar Ilm Czt =0,

wherec; andc, are non-zero constants.
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7 Application of beta transmuted Pareto distribution

In this section we illustrate the flexibility of the BTP didition to model both heavy tailed and approximately
symmetric data. We estimate the model parameters and atdcille goodness-of-fit statistics in order to assess the
model. Our first data corresponds to the exceedances of fleaklspinm?®/s) of the Wheaton river near Carcross in
Yukon Territory, Canada. of 72 exceedances measures forethies 1958-1984, rounded to one decimal place and are
provided below.

1.7,2.2,14.4,1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, B4 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7,
37.6,0.6,2.2,39.0,0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 011,46, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 1@N0,3.6,
5.6,30.8,13.3,4.2,25.5,3.4,11.9, 21.5, 27.6, 36.4,640,1.5, 2.5,27.4,1.0, 27.1, 20.2, 16.8,5.3, 9.7, 27%,27.0.

These data were analyzed by many authors including Chauladid Stephenes][ Akinsete et al. 1], Nadarajsh
[16], Merovci and Pukal4], Bourguignon et al.§], among others. We have chosen the same data in order to cempa
our results with other models proposed by these authors stifeae the parameters of the BTP model and compare its
appropriateness to model this data with its submodelsdirtubeta Pareto (BP), transmuted Pareto (TP), exponedtiat
Pareto (EP) and Pareto (P) distributions. The required coatipns use a scripddequacyModel of the R-package by
Marinho et al. L2]. Table 1 provides the estimated values and correspontingard errors (in parentheses) of the model
parameters.

Table 1: Estimated parameters and their standard errors- Wheawmdata.
model [ a b A a X0

BTP | 39118 173874  -0.8518 0.1159 0.1
(1.8159) (11.7365) (0.2588) (0.0509) -

BP 3.1473 857508 0 0.0088 0.1
(0.4993) (0.0001) - (0.0015) -

TP 1 1 0952  0.3490 0.1
- - (0.089) (0.072) -

EP 2.8797 1 0 0.4241 0.1
(0.4911) - - (0.0463) -

P 1 1 0 0.2438 0.1
- - - (0.0287) -

The model selection is carried out by measuring the Akaikerination criterion (AIC), the Bayesian information
criterion (BIC), the consistent Akaike information crige{CAIC) and the Hannan-Quinn information criterion (HQIC
Note that the smaller the values of goodness-of-fit meashedsetter the fit of the data. These measures are defined as

AIC = —20(0) + 2q, BIC = —2¢(©) +qIn(n),

HQIC = —2((8) +2qin(In(n)), CAIC=-2¢(®) + %n—l’

where ((©) denotes the log-likelihood function evaluated at the manrlikelihood estimatesq is the number of
parametersy is the sample size an@ denote the parameters. Thel, AIC, BIC, HQIC and CAIC statistics for each
model is provided in Table 2. We also provide the KolmogoSmirnov (KS) test statistic. It can be seen that BTP
distribution leads to a better fit than any of its submodels.

One can perform the Likelihood Ratio (LR) test in order toegsswhether BTP is superior than one of its submodels
to characterize the subject data. Table 3 provides thetsesfithe LR test (Null hypothesiHp) versus Alternative
hypothesisifa)).

In all cases we rejected the null hypothesis and concludeBhR is a superior distribution to model this data. Plots
comparing the exact BTP distribution with its submodels/itireaton river data is given in Figure 5. It is evident that the
BTP fits better than any of its submodels.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

256 N SS 2 S. Chhetri et al.: Beta Transmuted Pareto Distribution

Table 2: The AIC, CAIC, BIC, HQIC and KS test statistic-Wheaton rigzta.
Model statistics

—0(.,x) | AIC CAIC BIC HQIC KS

BTP 256.577 | 521.154| 521.760| 530.204 | 524.753| 0.1599
BP 283.700| 573.400| 573.753| 580.230| 576.119| 0.1747
TP 286.201| 576.402 | 576.575| 580.954 | 578.214| 0.2870
EP 287.300| 578.600| 578.774| 583.153| 580.413| 0.1987

P 303.100| 608.200| 608.257 | 610.477 | 609.106| 0.3324

Table 3: Results of likelihood ratio tests.

Model Ho Ha LR- test statistic df p-value
BTPvs.BP| A =0 A#£0 54.246 1 @00
BTPvs.TP| a=b=1 a#1l&b#1 59.248 2 0.000
BTPvs. EP| b=1&A =0 b+#1&A #0 61.446 2 0.000
BTPvs.P | a=b=1&A =0 a#1b#1&A #0 93.046 3 0.000
°] —— BTP Distribution
—— BP Distribution
° —— TP Distribution
3 EP Distribution 31
—— P Distribution
g T
S_ - < 4 —— Empirical-Distribution
° ° —— BTP Distribution
—— BP Distribution
—— TP Distribution
0 EP Distribution
g b K S T —— P Distribution
s | T T ; T T T T T g ]

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60

Flood Peaks Exceedance Flood Peaks Exceedance

Fig. 5: Fitted pdf (left) and cdf (right) of BTP distribution and gsbmodels for Wheaton river data.

Next, we consider a slightly bigger and approximately sytnimelata to present the usefulness of BTP distribution.
We compare the results with some of the models generated Rarato distribution. We consider the data from
Mahmoudi [L3] which represents the fatigue life of 6061-T6 aluminum cangocut parallel with the direction of rolling
and oscillated at 18 cycles per second. Recently, Alzaatet. [3] also used this data to illustrate the usefulness of
gamma-Pareto distribution. The estimated parameters of P Bistribution using this data are:
a=19.2490Q b= 30.5312 A = —0.7027 & = 0.8026 andkj = 70. The values of test statistic to measure the goodness of
the BTP distribution are provided in Table 4. Readers amrrrefl to Alzaatreh et al3] to compare and contrast the BTP
with Pareto, beta Pareto, beta generalized Pareto and timadPareto distribution. Note that the statistic for BTP is
the lowest of all the models discussed in Alzaatreh et3lb{it AIC value is slightly higher for BTP model than for
gamma-Pareto due to the presence of more parameters in BfRhibse in the gamma-Pareto model. The fitted pdf and
cdf of the BTP distribution for this data are provided in Fig. It is evident that BTP distribution fits very well the
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fatigue life of 6061-T6 aluminum coupons data. This exangulggests that the BTP distribution works well in fitting
approximately symmetric data too.

Table 4: The AIC, CAIC, BIC, HQIC and KS test statistic-fatigue life@061-T6 aluminum coupons data.
Model statistics

—0(.,X) AIC CAIC BIC HQIC KS

BTP 447.5226| 903.0453| 903.4663| 913.4660| 907.2627 | 0.0984

fatigue life of 6061-T6 aluminum coupons fatigue life of 6061-T6 aluminum coupons
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0.000
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Fig. 6: Fitted pdf (left) and cdf (right) of BTP distribution for figue life data.

8 Concluding remarks

In this study, we have introduced the so-called beta tratetni®areto (BTP) distribution. This is a generalizationhaf t
transmuted Pareto distribution using the genesis of the Oatribution. Many distributions including Pareto, beta
Pareto, transmuted Pareto and exponentiated Pareto amddethin this newly developed BTP distribution. Some
mathematical properties along with parameter estimatisnds of the subject distribution are discussed. We have
presented two examples to illustrate the application of ghkject distribution to model real world data. We have
compared the goodness-of-fit with its competitive modeld irhas been shown that BTP is superior to model both
heavy tailed and approximately symmetric data. We expéestody will serve as a reference and help to advance future
research in the subject area.
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