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1 Introduction 

The Erlang distribution is continuous probability distribution that has wide range of applicability, primarily due to its 

relation to the exponential and Gamma distributions. The Erlang distribution was developed by A. K. Erlang (1909) to 

scrutinize the number of telephone calls that could be made at the same time to switching station operators. This effort 

on telephone traffic engineering has been expanded to consider waiting times in queuing systems in general. Queuing 

theory originated when Erlang (1909) published his fundamental paper which is related to the study of telephone traffic 

obstruction. If the durations of individual calls are exponentially distributed, then the duration of successive calls is the 

Erlang distribution.  The probability function of the Erlang distribution is  
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Where and  are the shape and the scale parameters, respectively, such that  is a positive integer number.  

Mean and variance of Erlang distribution is given as  

 

Mean =    and    Variance = 2  

The Concept of weighted distributions can be traced to the work of Fisher (1934), in relation with his studies on how 

methods of ascertainment can persuade the form of distribution of recorded observations. Later it was introduced and 

formulated in general form by Rao (1965), in connection with modeling statistical data where the usual practice of using 

standard distributions for the purpose was not found to be apposite. Rao in his paper identified different situations that 

can be modeled by weighted distributions. These situations refer to instances where the recorded observations cannot be 

considered as a random sample from the original distributions. This may occur due to non-observability of some events 

or damage caused to the original observation resulting in a reduced value, or adoption of a sampling procedure which 

gives unequal chances tothe units in the original. The usefulness and applications of weighted distributions to biased 

samples in various areas including medicine, ecology, reliability, and branching processes can be seen in Patil and Rao 

(1978), Gupta and Kirmani (1990), Gupta and Keating(1985). For more important results of weighted distribution you 

can see also (Oluyede and George (2000), Ghitany and Al-Mutairi (2008), Ahmed, Reshi and Mir (2013), Broderick X. 
S., Oluyede and Pararai (2012), Oluyede and Terbeche M (2007), Sofi Mudasir and S.P Ahmad (2015), Ghitany et al. 

(2016), Zahida et al. (2016). 
 

 Suppose X is a non-negative random variable with its probability density function )(xf , then the 
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probability density function of the weighted random variable Xwis given by 
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      )(xw is a non-negative weight function and  dxxfxww );()(  for continuous series and    

       );()(  xfxww for discrete series. The probability function of the Erlang distribution is 
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 Substitute the value of equations (2), (3), and (4) in equation (1), we get 
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This is the required probability density function of weighted Erlang distribution, Where and  are the 

shape and scale parameters of the distribution.The cumulative distribution function corresponding to (5) is 

given as 
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2 Some particular cases of weighted Erlang distribution  

i) If θ=0 in (5), we get Erlang distribution 
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ii)  If θ=1 in (5), we get length biased Erlang distribution 
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iii)  If θ=2 in (5), we get area biased Erlang distribution 
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iv)  If θ=0, λ=1 in (5), we get exponential distribution 
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                        Figure 1.The pdf of weighted Erlang under different values of scale parameter β 
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                                 Figure 2.The pdf of weighted Erlang distribution under different values of shape Parameter λ 
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                    Figure 3.The pdf of weighted Erlang distribution under different values of Parameters

  
Figure 1 shows the pdf of weighted Erlang distribution under different values of scale parameter. From the figure it is 

clear that by changing the value of scale parameter, there is only change in the origin (scale) of the distribution and has 

no effect on the shape of the distribution. From figure 2, it is clear that there is effect on the shape of the distribution on 

changing the value of shape parameter. Also it is clear from the figure 3 that there is effect on the shape and origin of the 

distribution on changing the values of the parameters.    

 

3 Reliability Analysis 

The reliability function of weighted Erlang distribution is denoted by R(t) and is defined as 

 

              R(t) = 1 - F(t) 
 

 

One of the characteristic in reliability analysis is the hazard rate function denoted by h(t) and is defined as 
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4 Moments and Moment Generating Function   

In this section, the 
thr non-central moment and moment generating function have been derived. 

Theorem 4.1:If a random variable X has weighted Erlang distribution, then the 
thr non-central moment is 

given by the following  
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Proof: The thr moment of weighted Erlang distribution about origin is obtained as 
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On solving the above integral, we  
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This completes the proof. 

 

If r=1 in equation (7), we get 

 

               
  1

                 This is the mean of the weighted Erlang distribution.

 If r=2 in equation (7), we get 
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     Therefore, the variance is given by

 
      

2
122    

 

              2

 
      



J. Stat. Appl. Pro. Lett. 4, No. 3, 109-122 (2017) / http://www.naturalspublishing.com/Journals.asp  115 
 

 

        © 2017 NSP 

Natural Sciences Publishing Cor. 
 

If r=3, 4 in equation (7), we get 
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Theorem 4.2: let X have a weighted Erlang distribution with pdf given in (5), then the moment generating function  

(MGF) is given by 
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 Proof: By definition 
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Using Taylor series 
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Now by using the equation (7) in the above equation, we get 
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This is the required MGF of weighted Erlang distribution 

. 

 5 Standard Deviation and Coefficient of Variation

  
 Standard deviation is defined as the positive square root of variance. Symbolically,

2  . We have 
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 Also, the coefficient of variation is defined as the ratio of standard deviation to mean. Usually, it is denoted by 

 C.V and is given by 
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6 Coefficient of Skewness and Kurtosis 
 
Denote it by C.S, the coefficient of skewness enables us to know if the distribution under study is 

symmetric or not, it is defined by 
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The skewness is zero for symmetric distribution, positive for skewed right distribution, and negative if the 

distribution is skewed towards left.
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Substitute the value of equations (9) and (10) in equation (8), we get 
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Denoted by C.K, the coefficient of kurtosis measures the flatness of the top of the curve and is defined by 
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The kurtosis is equal to zero for the normal distribution, positive for the more tall and slim curves than the  

normal one in the neighborhood of the mode, in this case the distribution is said to be leptokurtic. It is  

negative for platykurtic distributions (flatter than the normal distribution). 

  
Wehave 
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Substitute the value of equations (9) and (12) in equation (11), we get 
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7 Harmonic mean of weighted Erlang distribution 

 
The harmonic mean denoted by H is given as 
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8 Shannon’s Entropy of the Weighted Erlang Distribution 

 
The concept of Shannon’s entropy is the central role of information theory, sometimes referred as measure of 

uncertainty. The entropy of a random variable is defined in terms of its probability distribution and can be 

shown to be a good measure of randomness or uncertainty. For deriving the Shannon’s entropy of the weighted 

Erlang distribution, we need the following two definitions that more details of this can be found in Thomas J.A. 

et.al.(1991). 

 

Definition 1: The entropy of a discrete alphabet random variable f defined on the probability space (Ω, β, P) is 

defined by 
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Theorem 8.1: let X have a weighted Erlang distribution with the following probability density function 
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Then Shannon’s entropy of weighted Erlang distribution is 
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Proof: Shannon’s entropy is defined as  
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By putting the value of equations (14) and (15) in equation (13), we get 
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This completes the proof. 

 

9 Entropy Estimation of Weighted Erlang Distribution 

In order to introducing an approach for model selection, we remember Akaike and Bayesian information criterion based on 

entropy estimation. 

The Akaike information criterion (AIC) was developed by Hirotugu Akaike, originally under the name “an information 

criterion”. It was first announced by Akaike at a (1971)symposium, the proceedings of which werepublished in (1973). The 

AIC is a measure of relative quality of a statistical model for a given set of data. That is, given a collection of models for the 

data, AIC estimates the quality of each model relative to each of the other models. Hence AIC provides a means for model 

selection. 

Suppose that we have a statistical model of some data. Let L be the maximized value of the likelihood function for the model. 

Let K be the number of estimated parameters in the model. Then the AIC value of the model is the following 

   )(22 LLogKAIC            (16) 

Given a set of candidate models for the data, the preferred model is the one which has the minimum AIC value. 

The Bayesian information criterion (BIC) or Schwarz criterion is a criterion for model selection among a finite set of models; 

the model with the lowest BIC value is preferred. It is based, in part on the likelihood function and it is closely related to the 

AIC. The BIC was developed by Gideon E. Schwarz and published in a (1978) paper, where he gave a Bayesian argument for 

adopting it. The BIC is formally defined as 
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                                     )(2)( LLognKLogBIC                                                           (17) 

Where, n is the number of observations or equivalently the sample size. 

 

Now, likelihood function of equation (5) is given as 
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By taking log on both sides, we get 
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  (18) 

  
On comparing equations (13) and (18), we get 
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Thus from equations (16) and (17), we have 
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10 Numerical Example 

This section illustrates the usefulness of weighted Erlang distribution to real data to see how our model works 

in practice. For analysis we take the sample of 20 observations from Mendenhall andHader (1958) mixture 

datarecorded about times to failure for ARC-1 VHF communication transmitter receivers of a single 

commercial airline. Following is the set of 20 observations:  

          152, 528, 424, 208, 536, 40, 8, 224, 112, 72, 72, 72, 112, 360, 120, 552, 104, 384, 464, 552 
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   Table 1.  AIC, BIC and AICC Criteria of weighted Erlang and other Related Distributions. 

 

 

 

 

 
 

 

 

 

 

 

11 Conclusions 

                We consider the entropy estimation of weighted Erlang distribution and based on this calculate theAIC and BIC using 

the real data set.  From the above tables, it has been observed that the weighted Erlang distribution have the smallest 

AIC and BIC values as compared to Erlang and exponential distribution. Hence we can conclude that the weighted 

Erlang distribution gives better results and estimates as compared to exponential and Erlang distributions for the data set 

which we used in this paper. 
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