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Abstract: An initial value boundary problem for the Liouville equativith nonlinear dynamic boundary conditions which desesib
velocity of changing on time of the probability of particlaswalls that confines the particles. These velocities andimear functions
of the density of the probability of particles to occupied ffat walls. The attractor of the problem has been constiu@teis attractor
contains periodic piecewise constant functions with findeuntable or uncountable points of discontinuities on aoge which
propagates along characteristics of the Liouville equatile call such elements of the attractor by the distribstioirelaxation, pre-
turbulent and turbulent type, correspondingly — by the sifasation of Sharkovsky. There are also random distrilmgiof particles,
which can be produced by the nonlinear feedback on the wittls.results has been obtained by the reduction of the proldem
dynamical system which is described by system of differexgpeations, depending on coordinates and momenta as of @@t is
shown that the changing of these parameters leads to paridaidg bifurcations of elements of the attractor on 4 - disienal torus.
The problem is solved in class of quasi-periodic functions.

Keywords: Hamiltonian systems Liouville equatione initial value boundary problena asymptotic solutions of relaxation, pre-
turbulent and turbulent type asymptosi@eriodic piecewise constant distributionsystem of difference equatiomsattractor.

1 Introduction walls. It is shown that there are surface induced
o ) ] spatial-temporal distributions of density of particle. We
In Hamiltonian systems, there is a separation between oétydy a structure of attractor of the problem. Similar
slow and fast degrees of freedom. R. Mackay assumegoundary problem for the transport equation with one
that the fast variables have the Anosov mixing dynamicsspatial variable first has been considered by Sharkovsky
A. P0||t| and A. TOI’Cini reVieW the ConceptS Of Stable [2] by method of reduction Of a boundary prob'em to a
chaos, that is, 'the presence of irregular behaviour evenyifference equation with continuous time. In typical
though the dynamics is still locally stable’ (se&],p.8).  cases, an initial problem for difference equation admits an
The transition to chaos in the Hamiltonian systems isattractor which contains deterministic piecewise cortstan
different than for dissipative systems. In integrable orperiodic functions with finite, countable or uncountable
non-chaotic Hamiltonian systems the motion is points of discontinuites on a period. For special
‘quasiperiodic’. A typical example of integrable parameters, there are also random functions which are
Hamiltonian  systems is  harmonic  oscillator. elements of attractoi3[4,5]. In [2] has been considered
Spatial-temporal chaos take place when dynamicyiso similar problem for two non connected linear
behaviour exhibits both spatial disorder and temporalyansport equations with nonlinear functional boundary

disorder. An attractor of initial boundary value problem conditions and has been shown that elements of attractor
contains asymptotic stable waves or pulses, which argan pe represented as the functions

called solitons.
In this paper, we consider an initial boundary value
problem for the linear Liouville equation with differentia u(xy,t) = @ (x+aust,y +as2t), (1)
dynamic boundary conditions. Such problem describes
distributions of probability of free particles in confined
medium with process of recombination of patrticle at a flat V(X,Y,t) = P(X+ agit,y+ axat) 2
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whereas,a12,a21,a22 € R. It is shown that such problem For one dimensional initial boundary value problem
can be reduced to the study of structure of attractor of onesimilar asymptotic has been considered for the
difference equation with two arguments, so that Cahn-Hilliard equation which describes the evolution of
one component of binary mixture8][or binary alloys B,
W(z+b,7+c) = fiw(z 1)], (3)  9]. For 3D - the Cahn-Hilliard equation, similar results
has been obtained in the pap&f]. A similar boundary
problem in Hamiltonian Mechanics has been considered
in paper [L1].
In Section 1, it will be considered boundary problem
u=v as y=0, v=f[u as y=1 (4) Withthe HamiltoniarH(p):= 1p? not depending om. It
is shown that asymptotic solutions have the form
The problem has been considered in the region< x < u(x,t) :=u(p,t —x/p) for every finitep and the function
©, 0<y<1t>0((see, (@], p.257).thas been shownthat u(p,{) = P(p,{) in C? - norm for almost all points
equation 8) by transformation of variable can be reduced { € R I", wherel™ is a set of points of discontinuities.

whereb,c € R, and functionf is given by the boundary
conditions

to the difference equation is finite, countable or uncountable. Such limit solutions
are typical for higher dimensional Hamiltonian systems
w(o,0) = f(w(og,6 —1) (5)  with finite or infinite localized vibrations (se€l §], p.15),

but we show that such type asymptotic distributions exists

also for one-dimensional Hamiltonian systems.The

structure of/” depends on the topological structure of

boundary nonlinear functions. The limit functi{p, {)

is piecewise constant periodic function. In Section 2, it

will be considered boundary problem with the

HamiltonianH (p) := 3p? + $x%, depending orx. It is

shown that asymptotic solutions have the form

u(x, p,t) := ui(t — x/p) + u2(t — arccop), whereuy ()

- - and uy(n) are piecewise constant periodic functions. In

Xtagt=0a, y+aud=p. ©6) Sectiog )3 it will be considered some properties of

In this paper, the above results will be generalised onhyperbolic structural stable mags : R> — R? to which

the bounded regiofx € [0,1],y € [0,1]) for the Liouville  the considered initial boundary value problems can be

equation with Hamiltonians H(x,p) = %pz and  reduced. In Section 4, applications for boundary problems

H(x,p) = %(XZ — p?). Introduction of flat walls at point  Of physics of condensed matter has been considered.

y = 0 andy = 1 with nonlinear dynamic boundary

conditions and depending of the Hamiltonian xoiteads

to the fact that the boundary problem admits the reductior? For mulation of problem

to the system of nonlinear difference equations,

depending onx,p as on 'parameters’, wherg,p are  |et us consider a dynamic system with coordinates

coordinate and impulse of trajectories of correspondingg = (q;,...,q,) (this can be Cartesian coordinates, angles,

dynamic systems. Thus the boundary problem is reducedrc length of a curve and so on) and momentum
to the study of asymptotic behaviour of trajectories of p — (P1,.--, Pn), Wherei = 1,2,....n. The Lagranhian is

with initial conditionwg(o, 8) on interval—1,0).

If we considero as a parameter and equati&) és an
ordinary difference equation, it can be shown tivédr, 6)
tends toN - periodic functionw* (g, 8), whereN is least
common multiple of periods of attractive circles of the
map f. In origin variables a limit function
u*(x,y;t) : Rx [0,1] x RT — 2N has equal values on
characteristics

system of difference equations 7]: L =T —U, whereT := T(q,q) is the kinetic energy and
U :=U(q) is the potential energy. The Euler equation is
U(X, p7t+1): f[u(x7 p7t)]7 u(t)ecz('7'7R+7Rn)7n227 d oL oL
" (%) -5 @

where x,p € [0,I] x [0,1] can be considered as
parameters. We confined itself by the study of hyperbolicEquation g) is equivalent to equatiorgs= Hp andp = Hg,
or Anosov type systems. It means that a set ofwhereH := pp—L. This equation is called the variational
non-wandering points of the mdp: R" — R"is finite and ~ form of the classical mechanics or the Lagrange form (see,
hyperbolic. Then we can considgrp as parameters so [17], p.7).
that equation?) is an ordinary difference equation. As a The motion of particles of mechanical system can be
result, solution of equation7) tends toN - periodic  described by the Liouville equation
function u*(x,p,t) as t — o. A limit function Then a functionu(x, p) determines a probability
u*(x, p,t) € AT almost all points € R*, whereA" isaset  u(x, p)d"™xd"p, so that a system can be found in a phase
of attractive fixed points of the map, excluding finite,  space volumeé"xd"p. The Liouville equation equation is
countable or uncountable set of pointse I'. Thus the
limit function u*(x,p,t) is asymptotic ? - periodic du du 2 /du.  du \

T Zl =0, 9)

=

piecewise constant function (seg},[p. 258). ax it ap "
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where u(x, p) determines a probabilitu(x, p)d"xd"p to
find a particles in a regiond"qd"p. The Liouville
equation follows from the continuity equation

@ + Q =0
ot = ox
for a flow of particlesJ = vu, wherev is a velocity of

particles. Indeed, fromB§ and (0) it follows that
ou 2

o5 (5 50) -

opi
If we assume thak; ‘is independent fromg and p; is
independent fronp;, then the Liouville equation and the
continuity equation are identical.

(10)

0(UXi)
O%i

+

(11)

and we again obtain the Liouville equation. But this is true
only if g not depends og."
Next, we consider the functional boundary conditions

u(0,y,t) = @1full,y;t)], olu(x,1,1)], (18)

where®y, @, : R® — R! are given functions. We assume
that there is an open bounded intervat R! such that
®i(1) € 1,P,(1) € 1. Then we can prove that solutions
exist in the region := {0 < x < 11,0 <y < I} for any
t>0ifly =1, =1I. (The casd; # |, will be considered
later).

These boundary conditions can be obtained from the
dynamic boundary conditions

u(x,0,t) =

Thus, the Hamiltonian mechanics use parameters

(a,p) € Ry x RY, wherep is a generalized momentum,
andq is a generalized position. In Newtonian mechanics
the position x should be expressed in rectangular
coordinates, but in Hamiltonian mechanics, a positijpn

u=filu as x=0, w="fu as x=l. (19)

‘Indeed, we assume that system of ordinary differential

equation 19) has a first integral

generally, does not to be expressed in rectangular _
coordinates. This gives greater freedom in the choice of WIu(,t),ull,t)] = u, (20)
coordinates corresponding to the description of thewhereu =W[u(0,0),u(l,0)]. Next, we assume that there
dynamic system. Below we defing(s) := x(s) and  areu,ve |, wherel is an open bounded interval, apde
p(s) := p(s), wheres ¢ R! is a parameter. Then the R! such that functional relatior20) is globally solvable,

HamiltonianH : R} x RY — R! generates trajectories:

X(t) = Hp(x(t),p(t)), p(t) = —Hx(x(t), p(t)), (12)

where the Hamiltonian is equal to the total energy of the

!

system. Thus this approach use the Hamiltonian canonic
equations which are equivalent to the Lagrange form o
variational equation. Then fron9)it follows that

du
5 (X0, p(D)

If u:=u(x,p,t), then we obtain that

0.

(13)

@.
(9xxt

ou . Jdu Jdu

du du u, _9u_, du
ap™ = 3t TP

Ju
&=t - de—p. (14)

Thus, we have the Liouville, or transport equation

u L ou | oH

ot ox  “dp
The Liouville equation follows also for the determination
of the Poisson brackets

+Hp 0. (15)

_dudH JuodH

- dqdp dpaq’

But if variablesq and p satisfies to the Hamiltonian
equations, the

[u,H] (16)

du

rl

JoH

W-F[U,H],

17)

so that

u(0,t) = @, [v(0,t)], t>0, (21)

where @, : | — | is a given function. As a result, we
obtain the functional boundary conditions. But the
ifferential boundary conditions have a simple physical
ense, because these conditions describes velocity of a
probability to find particles at a given points of
boundaries of the dynamic system.

Here, we consider a family of real analytic maps
@, ;1 — 1. We are considering all orbits of this map for
each fixedu € R, and orbits of typical points, and limit
sets of these orbits. Led(u) is a set of limit points of the
sequences, @ U], CDﬁ[u], .... Then, as shown ir?], there
are the following types of orbits: (1Q[u] is a periodic
orbit with multiplier with absolute value< 1; (2)
w(x) = w(c), wherec is a critical point of®@,, so that
@}, [c] = 0 with the properties: (ip(c) is the Cantor set,
(i) w(c) has zero Lebesque measure, @ic) is equal to
a finite union of interval$ = |Jp_qln, wheren=1,2,...,
which contains a point, so that®, is topologically
transitive that is there are orbits, which are dende in

The simplest case is whehy, is unimodal. It means
that @, has one extremum, and the Schwarzian derivative

[

These maps are called b$ - unimodal. A simplest
example is the logistic mag, (u) = pu(1—u).

3

2

@' (u)

¢///
Sou(u) = 5 = @/, (u)

G

2
) <0. (22)
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It is known that if a regionU € R", and f 1= (f1,f,) when components of limit solutions of
A(u) = (a1(u),...,an(u)) is a smooth vector field in equations 30), (31) are piecewise constant periodic
U, up € U, A(ug) # 0, then there is a neighbourhood of functions with finite or infinite points of discontinuities
the point up such that the system of antinomic  on periods.

differential equations has — 1 functional independent If @&, = uld, whereldis identical map angl € R, then
first integrals. from (41),(42) it follows that this system is decomposed on
Now we suppose thatHp = a1, Hy =a and letp := two difference equations of the form:
y, whereay, a, € RL. Then solutions of equatior§) have
the form:
P1(X.1) + d2(y,t) = Pu[p1(x,t —1/a1) + d2(y,1)], (32)
H(Xayat) ::¢(t_X/a]_,t—y/a2). (23)
Let ¢({,n) == ¢1({) + ¢2(n), where { =t — x/a, d2(y,t) = pda(y,t —1/ay). (33)

n =t —y/ay,. Note that functionsp;, ¢, are constants

along linest —x/a; = ¢1,t —y/a, = ¢y, ¢1,¢, € RE. This  If || < 1 thengy(y,t) — 0 ast — +o, and from B2) it
allows, using the functional boundary conditions, to follows with a given accuracy the limit difference
obtain the following functional relations: equation:

d1(xt) = 6D1[¢1(x,t — |/a1)] (34)

For unimodal map®; : | — |, asymptotic solutions of
equation 84) are piecewise constanf'l/a; - periodic
distributions, whereN is least common multiple of
P10 1) + P2(y,t) = Po[Pa(X,t) + da(y,t —1/a2)]. (25)  periods of attractive circles oby, with finite or infinite
) points of discontinuities on period§][ If |u| > 1, then
Let us define P2(y,t) — 0 ast — +oo. If |u| = 1, then we have/a; -
periodic solutions of equatior34).
This statement will be proved in the next subsection.

$1(X,t) + P2(y,t) = P [da (Xt —1/a1) + d2(y,1)], (24)

Fri=Y1(x,1) +Ya(y,t) — @1 X (X t —1/21) + Ya(y;1)],
(26)

3 Quadratic potential
F2 = Y1(x 1) + Ya(Wt) — P2 Ya(X, 1) + Xo(yt —1/a2)],
(27)  In this section, we consider a quantum oscillator with
whereF := (F1,F,), so thatF : R2 x R2 — R2. Next, we  hamiltonianH (x, p) = 3 (x? + p?), so that
assume that at a neighbourhood of a pdid,Yo) we
have F ¢ C? F(Xo,Yo) = 0, and determinant X=Hp=p, p=-—Hx=-X (35)

. JF H
T := det]| 5y (X0, Yo) | is equal to with the initial conditions

T = @) [Xq, Yo D[Y1, Xo] — D[Xq, Ya] — B5[Y1,Xp] # 0. X(to) =Xo,  P(to) = po. (36)
. (_28) For the harmonic oscillator, we have
Then there are neighbourhoddse RV € R? of points
Xo, Yo, and a magf : U — V such thatf € C?, and x(t) x(to)
p(t) ‘ - p(to)

This is matrix which represents a clockwise rotation
through an anglewt, so that points in thex— p plane
move in circle with frequencw. It means that each initial
region rotates around an origin &R p plane. Hence, this
or(x,t) = Fada(xt—1/an), da(y,t — | /ag)], (30) rcigi:ggr\lfggi)i].shape as it rotates in a plane, and areas are
The Hamiltonian on trajectories of equatior&b) is
constant. It means that the Hamiltonian system has a first
d2(y.t) = Fa[dr(xt —1/a1), $a(y,t —1/ag)],  (31)  integraldW(x, p) = 0. Solutions are(t) = psint, p(t) =
pcog, wherep € R, and trajectories of the Hamiltonian
where f1, f» : R2 — Rl are known functions. Thus we equations are on the lines
obtain difference equations with delay arguments if
aj,a, > 0. It is known ] conditions on the map X(t) + pA(t) = p?(t) +X3(t) = p? (38)

coswt sinwt
—sinwt coswt

. (37)
FX,Y)=0 & Y=f(X) (29)

for eachX € U andY € V. The mapf (X) is determined
by the system of difference equations:
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wherep € R". Below, for simplicity, we assume that= Next, we assume thap; # Id, but @, := Id. then we
1. Then the Liouville equation equation for the probability get that
of particle can be written as:

du du du d1(%t) + d2(p,t) = D11 (x,t — 1 /p) + d2(p,t —arccod].
ot Pax ViI-Pgn = (44)
If 11/p = arcsirl, = A, where 0< p < 1, then solutions

It is a particular example of the general scheme.of equation 44 can be determined step by step, iterating
Indeed, projection on th& - space of solutions of the an initial functionh(t) = ¢1(x,t —A) + ¢2(p,t —A) on
Hamiltonian is called by a characteristic, or extremal.interva”_A,o)_ We definew(x, p,t) = ¢1(x,t) + ¢2(p,t).
Suppose that there arg andty such that fort € [0,ty)  Then equation 44) can be written as autonomic
there is a neighbourhood of a poipg in the p - space  difference equation
@ (Xo) such that a mam(t,xo, Po) — X(t,Xo,Po) is a
diffeomorphism froma (Xp) onto its image. Then this
image contains a neighbourhooD(Xp) which not
depends on t. For example, the equatigns: —x and
X = p can be written as a differential forrdx — pdp = 0,
wherex, p # 0. Then the Hamiltoniati := (x? + p? is

0. (39)

w(x, p,t) = &1 [w(x,t —1/p)], teR", (45)

where®; : | — | is a given function. We assume thét €
C2(1,1) and the initial functiorh(t) € C(1,1), and

constant on the circles? + p?> = p2 and we have the W(x, p,0) = @y [W(x,—1/p)], (46)
diffeomorphismp — ++/1 — p2.

This observation has important application for the oy
construction of local field of extremals, so that it is a main W (x,p,0) = @1 [w(x, ~I /p)]W (x,~I/p),  (47)
technique for the construction of WKB - type asymptotic
for solutions of equationdlp, 16]:

w'(x, p,0) = @ w(x, —I /p)]W (x,—I /p)?+ (48)
N _n (x, dix) u (40) @} w(x, 1 /PIW (x,~1/p)
] o for eachx, p € (0,1). _ _

whereH is the Hamiltonian. Let us define a separatbr:= (J,-oP~, whereP~ is

Solutions of this equation have the form the closure of a set of attractive points of the n#@pThe

ux, p,t) := u) + uz(n), where { =t —x/p and  separator determines the structure of pre-images of
n =t — arccop. where impulse |[p| < 1 and repelling fixed points of ama@ : 1 — | on intervall. For
0 < arccop < 1. As in Section 1, substituting this example, if ® is monotone with two attractive fixed
representation of a solution in the functional boundarypoints and one repelling fixed pointa~, then
conditions, as we obtain the following functional D = ®~'(a”) is unique point onl. If ®(u) is
relations: non-monotone orl; C |, wherel; := [a;,a ], so that
®"(u) < 0 asu € I3, anda™ is an attractive fixed point.
ThenD is countable set with limit poira™. The union of
pre-images of repelling fixed points dndetermines the
set of points of discontinuities of the corresponding
limit function u(t) of the difference equation ds— +c
(see, Fig.1).

Now we assume that the mag, is structural stable.
Then there is a finite numb&™ of attractive fixed points
wherel? +12 = 1. of the map. If®;, has an attractive circle of period 1, then

The structure of an attractor for this system is studieda solutionw(t) of the difference equation tends to a
as well as in Section 1. But in this section it will be done unique attractive fixed point. If there is an attractive lgirc
the more concrete prove of a scenario of reduction ofof period 1, which is formed by pointa;,ay, then a
these functional relations to a system of nonlinearsolution tends to a piecewise constant periodic

¢1(X7t) + ¢2(p7t) = ®1[¢1(X7t - ll/p) + ¢2(p7t)]7 (41)

$1(%,t) + d2(p,t) = D2[P1(X,1) + P2(p,t — arccosy)],
(42)

difference equations. Indeed, if distribution ag — o0 in C? - metric for almost all points
@, =, :=1d:z—zze R, then from @2) it follows t € R". If the separatoD has only attractive circles of
that periods 2 i = 0,1, ..., then the seD is countable, and a

solution tends to an asymptotid' 2 periodic piecewise
constant function with countable set of points of

¢1(X%t) = da(xt—11/p), ¢2(p,t) = dp2(p,t —arccosy),
(43)

and from @3) it follows that a solution of the problem is
sum ofly/p and arcsify - periodic functions.

discontinuities on a period, whefd is least common
multiple of periods of attractive circles of the man. If

I/p # arcsinl, then there aremn € Z* such that
ml /p= narcsifl = g, whereq € Z*. As a result, there are
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asymptotic 2q - periodic piecewise constant functions Then a set of non-wandering points s
with countable set of points of discontinuities on a period. Q[f] = Per[f] = Fix[fN] for each integerN, and

If &, # Id, then we can apply the results of previews Q[f] = AT(JA™|JAF, where AT A~ A* are sets of
Section 2. The difference is only in the delay argumentsattractive, repelling and saddle type points of the r¥p
in the corresponding systems of difference equations —ThenG can be represented &= Jac (1) W®(a) where
between form of the characteristits-x/p =Const and  ws(a) = {u € G|limm . f™[u] = a} is a stable

t—arccop = congt. As a result, we obtain the system of manifold of fixed pointa of the mapfN. Indeed, since
independent difference equations with continuous time. IfQ[f] is finite, then each point € G is attracted by finite
@, = Id, then we obtain the previous result. In general, set, according to the Sharkovsky theoreh pach point

solutions of these equations are asymptotie@nd 22 - | ¢ G is attracted by a circle of the majp From this it
periodic piecewise constant functions with finite or follows existence of the finite limitd]

countable set of points of discontinuities on a period,
where N is least common multiple of periods of lim fNI[u] := f*[u] (51)
attractive circles of the ma@, k=1,2. oo

wheref*[u] € Q[f]. For eachu(x, p,t) € H, and each ¢
X, p € P this limit exists. Then each solution of the system

4 Asymptotic behaviour of system of of difference equations tends to the function

difference equations

In this section, it will be considered hyperbolic dynamics jiToo [1u(x, p.tNJ) = (% p,t)[[e = 0 (52)

of structural stable dynamic systems (Fig.1l), which ) " , ,
appears as a source of impredicative behaviagf, put ~ for each fixedt € R™,x € X, p € P. Relation 62) is not
we consider only a case when two-dimensional mapuniformontand

describing behavior of solutions of initial boundary value

problem, produce asymptotic solutions of relaxation type
(Fig.2). Solutions of difference equations are generated
by initial functions h(x, p,t) where x,p € R can be

considered as parameters. In two-dimensional case, fne behavior of limit solutions in points of discontinugie
separator is determined &(x, p) = Un-o f "A*(X,P),  can be characterized in the Hausdorff or Schorohod
where f : (ug,uz) — ((f1fur], f2[u2])) andA+(x.p) is @ metrics (see, ], but for our goals it is enough to know
set of saddle points of codimensional one. Then a set ofhat in a neighbourhood of the points of discontinuities

points  of  discontinuities is  determines  as the convergence to a limit solution is not uniform.
r(x,p) = f~1(D[x, p]). (Below parameters, p will be

omitted). The curvédn(t) can be determined by the initial
data of the boundary problem by method of
characteristics. An initial curve
h(X7 p7t) = (hl(xa pat)ahZ(Xv pvt)) on interval [—l/p,O)
satisfies to the transversal conditiat(t)/dt # 0 as

t € . The separatob and the sef are closed nowhere
dense sets op-1/p,0). Iterating the mag : R? — R?, we
obtain that

lim sup [[u(x, p,tNj) —u*(x, p,t)[|ge #0.  (53)
J=+oteoN)

5 Example 1

In this section, we consider a difference equation which
depends on the spatial variabteas on 'parameter’. For
usual difference equation (non-depending on parameter),
there are piecewise constant asymptotic periodic
solutions. But for this type of equations, initial data
Up(x,t) for t € [-A,0) must be done ifR2. For example,
u(x, p,t) = flh(x,p,t —np/l)], x,peR, f:R®—R%  itcan be paraboloid. If in@ - case a sef of points of
(49)  discontinuities contains points, that D2 case a sef\
We assume that6[7]: 1) there isG C R? such that we obtain a closed curve. As a result, there aie -2
f(G) C G; 2) the differentialDf [u] is continuous orG; structures as 'white-black’ spots with the boundary
3) a setf~1[u is finite for eachu € G; 4) a set of veR2

non-wandering points of the magd is finite and Let us consider the difference equation
hyperbolic; 4) no trajectories going from saddle to saddle.
A point u € R? is non-wandering if for a neighbourhood u(x,t) = flu(x,t —A)] (54)

U (u) existsm > 0 such thatf™U)NU # 0. A map is
hyperbolic if a spectrar(Df"[u]) N{|u|} # 1, whereg is
empty set. We suppose thatx, p,t) € C3(R",G) for
eachxe X andp € P if f € C?, and consider a set of
initial functions

where A > 0, and f < C?(I,1). Here,
u(x,t) : [0,1] x [-A,0) — I. Asymptotic properties of
solutions of equation 54) can be determined by
asymptotic properties of trajectories of dynamic system
which are produced by the mdp Indeed, letf has two

. attractive fixed pointsy,az and one repelling fixed point
H = {h(t) e C3(|—I/p),G)|h(—I/p) = f [n(0)]}. (50)  ay, so that< a; < a, < ag and|ay,a,] C I. Let us define
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an initial functionh(x,t) : [0,1] x [-A,0) — I. Then for
each fixedx we can use the above theory of difference
equations for one argument.

For two argument, the corresponding approval must
be modified, but this modification is simple. Indeed, let us”

The system produce a ma, , : R? — R?, so that
Dy (UW) = (U +w+ A, bw). (57)

set of non-wandering points of the mag, y, is

consider as above the separator of the niamso that
D(f) :=Up=oP~, whereP~ is a set of repelling points of
the mapf. Then the set of curves of discontinuities is
I := f~1(D). Let the initial datah(x,t) € I on rectangle
[0,1] x [-A,0). Then the sefl” consists finite, countable

or uncountable 'manifolds’ of discontinuities. It means

that structure of the sét can be very complex. It depends
on the topological forms of the initial functiomand the
mapf.

Let us consider simple example. lifx,t) is a plane
andf is monotone, thefi :=h(x,t) € ap € P~ is a strait
line. As a result, a limit solution of difference equation
tends to the functionf * (x,t) = ayJas if h(xt) # ap,
andf « (x,t) is interval[a, ag] if h(x,t) # az (see, Fig.2).
In this case/ is a straight line. Next, if(x,t) = x? 4t2
on [0,1] x [-A,0), that is paraboloid, than a sét is a
circle S= {x,t : x> +1t2 = a,}. In this case, we obtain
limit oscillations of relaxation type. If is nonmonotone,
then there is a countable set of pre-imadge8[g of the
circle Swith limit circle S*. In this case, we obtain limit
oscillations of pre-turbulent type (by terminology of
Sharkovsky 2]. Similarly, we can consider a system of
difference equations which produce a hyperbolic ndap
on a space of smooth functions. We can also consider
‘parameter’x as vector inR". Of course, there are not of

Q(®, p) = Fix®, p = (u3,0), whereu; is a fixed point
of the mapd, :u— U2+ A.
Let us define an initial curve

y(h(t)) :={(u,w) e RZ:u(t) = (h(t),we R}, t € [0,2I /V)},

(58)
where a vector-functioh(t) is determined by the initial
data of the initial value boundary problem.

If A > 1/4the mapp, has not fixed points and, hence,
for each initial curven(t) in R? given in the interval 6< t <
A), solutions of the problem is such thai(t), w(t)) — o
ast — o. For A(x) < —2 each pointu, € I, Q(¢,\<X))
go out from the interval ) under an action of iterations
of the map¢,. Here,l, = (—Bo,Bo), wherefio =1/2+
\/1/4— A is the repelling fixed point of the mag, . It
means that each component of the solution tends to infinity
ast — oo,

Solutions are bounded if and only #2 < A < 1/4.
For A = —2 fixed points arg8p = 2 andf3; = 1. Indeed, if
|Up| < 2, then there i® such thatup = +2cosh. Then
Uy = £2cos?6y. If 6y is commensurate with
m—6p = B, ((mn) = 1 (that is m/n is irreducible
fraction). In this case, there are numbki@ndi such that
2 (2 — 1) = 0(modn). Then, beginning from some
number, we obtain a circle. For almost all (with respect of

general theory for such difference equations, but solstion the  Lebesque measure), this sequence is uniformly
can be found with help of computer, applying method of distributed in the interval.

iteration of initial dateh(xy, ..., Xn, P1, -+, Pn, ).

This example shows that for the initial boundary

‘There is a sef\ such that for almoat € A trajectories
{¢',}2, are placed o\ everywhere dense. Trajectories

prob|em appears newCRdimensional type of asymptotic on /A are unstable, but the sét are Stable generally. |t
solutions. But in reality the problem is reduced to the Méans thatA attracts almost all trajectories from its

functional dependent systems of equations, depending oﬂiazighbourhoods. Foh = —2 the setA is the interval

x andp as on parameters. The theory of such equations id
not developed. Indeed, such equations produce a maf

@ : R? — R? with parameters, p. But in particular case,

= [—2,2]. It means that any solution tendstas-  to
function pi({,p1n), where ¢ t — x/V and
n =t+x/V. This function is equal-2,2] on the interval

for the Henon map, an attractor of problem is one (¢ +d,n +Q) for each givend > 0. The number of

the next section.

5.1 Example 2
Let us consider the system

u(x,t) = u3(x,t —A) +w(x,t) + A, (55)

w(t+A4) = bw(t), (56)

whereb = €* a < 0 andA € RL. Solutions of systemb6)
can be find step by step if initial datag(X,t), wo(x,t) are
known on interval[-A,0) for eachx € J, whereJ is
interval.

of trajectories exists not only fod = —2, but for
continuum values ok.

If —3/4< A < 1/4,theng(l,) C I, and there is the
fixed attractive point3; on this interval. It means that
(u(t),w(t) — o) ast — oo. If —=5/4 < A < 3/4, then the
fixed pointB; become repelling, but instead dnappears
an attractive circle of the period 2 which consists from the
two points B3 = —1/2 + /-3/4—A. For the
two-dimensional map®, , it means that the set of
attractive fixed points i = {(2f3,,0),(2B3,0)}. The
set of saddle fixed points consists from the unique point
P = {(2B1,0)}. Then vectors, corresponding to these
eigenvalues, are (1,00 and (0,1) (Fig.1). If
—3/4 < A <5/4, then forAy < A < Apy1,n=0,1,2,...
the mapg, has an attractive circle of the periot dut all
another circles are repelling. For the system of difference
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o ¢ is an angular variable on the- circle. Then the map
S TTis 2 - periodic. Thus, we can represent torusras

w=7g)

sl

Fig. 22 Computer modelling of attractor of relaxation type in
X, p,t - space.

equations it means that(t) tends to a 2 - periodic
piecewise constant function amgx,t) tends to zero.

6 Physical interpretation of problem

The problem can be generalised on the casenof

dimensional cub¢0, 2" C R"(¢4, ..., ¢n) with identified
opposite sites on the cube. Then a quasi-periodic motion
onT"is a projection of a line with the magg, so that

¢i(t) = ¢i(to) + wit. (60)

Trajectories, which are produced by equalitiég)( we
call by a winding of the torus. If the Hamiltonian is

= mpz + %‘qz, wherep,q € R, then along trajectories
of the Hamiltonian systemdH|q(t), p(t)]/dt = O or
H(q,p) = E, whereE is an energy of system. Thus, the
energy E is defined on ellipsesM, so that
+p?+ 202 = E, whereE € R*.

Let us consider a variablf, so that

qt) = Ecosq& (), pt)=+vV2Emsing(t). (61)

Then from the Hamilton equations it follows that
o (t) = /2t + ¢ (to), whereg (to) € [0,2m) is determined
by initial conditionsq(tp), p(tp). For simplicity, in the
above sections has been considered a case when
a=m=1, ¢(to) =0 andp = v/2E = 1. In this case, the
iso-energetic surface is a circle, and we get a first integral
f% =1q2+ p? = 1. In general case, we obtain a sphere
Sl

For oscillator withn - degree of freedom, we have
independent integrals

a 1
fi(a,p) = 5o +5pF. (62)

where f; is an energy of - th oscillator. Then a phase
space of trajectories of the Hamilton system is a product
of ellipses or circles. If we consider a spag®, g, p, then
trajectories foliates the product of circl€ x &, where

St ={q,p|q® + p* = 1} and & = {q,p|q? + p? = 1}.
Thus, we have 4 - dimensiondf, p,g,p) - space. A
projection of this space orig,p) - space determines
characteristic of the hyperbolic transport equation. Thus
the energy of the Hamilton system is conserved along the
characteristic. The energy changes only at the boundaries
or flat walls which confides particles of a physical system.
The law of changing between 'numbers’ of particles is
determined by functional two-points boundary conditions
asq is fixed at the walls, op is fixed at the walls (see,
Sections 2,3). The dynamic boundary conditions
describes probabilities of 'particle production’ or 'pahke

quantum oscillators. Indeed, let us consider the system ofnihilation” at the walls confined the physical systems.

the Hamiltonian equations

q._a_H p _0_H i
I—dpi7 1 — dqi’ (At RS

Now we consider a torug", so thatT" = St x ...St, and
let there is a mapr: R" — T", r1(¢) = ¢ mod 2w, where

n. (59)

Similar problems, in applications to the radio-physics,
has been studied in works of Kuznetsov et dliz,[L8] by
method of reduction of the boundary problem to the
system of difference equations in real or complex spaces.
In applications to the polymer mixtures, the same
boundary condition are introduced by Binder et all9,|
20]. For polymers and binary alloys method of reduction
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to the difference equations has been applied in paj@ers [ [13] Hamiltonian Systems with Three or More Degrees of
9l. Freedom, Edited by C. Siop NATO ASI Series, Series C:
Mathematical and Physical Seri&83, Kluver Acadamy
Publishers, 1994.
: [14] D. Morin, Introduction to Classical Mechanics, With
7 Conclusion Problems and Solutions, Cambridge University Press, 2007.

Th for th . fi f Hamiltoni hani [15] V.N. Kolokoltsov, Semiclassical Analysis for Diffusis
'F:Sd or _e tr)nalndequa |0nd_q amldonlan mlecl anlcsf and Stochastic Processes, (Lecture Notes in Mathematics,
with dynamic boundary conditions and general class o Springer, Berlin, 2000.

the initial conditions, the attractor of relaxation, 0[16]\/.P. Maslov, Mtthodes opratorielles. Mir, Moscow, 1997
pre-turbulent and turbulent type has been constructed. |y French).

The attractor contains piecewise constant periodic sipatiqﬂ] 0.B. Isaeva, S.P. Kuznetsov and V.I. Ponomarenko, Tp01
temporal wave functions with finite, countable or Phys. Rev. E64, 055201- 055209 (2011).

uncountable 'points’ of discontinuities on a period. The [18] 0.B. Isaeva, lzv. VUZov PND, Applied Nonlinear
problem has been reduced to the study of asymptotic  Dynamics9, 129-146 (2011).

behavior of trajectories offl and D dynamic hyperbolic  [19] S. Puri and K. Binder, Journal of Statistical Physiés 145-

structural stable systems. It is shown that i -lcase the 172 (1994).
solutions of the problem satisfies to the famous[20]S. Puri and K. Binder, Physics Revew.4, 5359-5377
Sharkovsky ordering. In @ - case, period-doubling (1994).

bifurcations of solutions take place. D2 case situation
is more complex because there are not of the Sharkovsky
ordering, but there are distributions of relaxation type fo
which a computer simulation (see, Fig.2) has been done.
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