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Abstract: An initial value boundary problem for the Liouville equation with nonlinear dynamic boundary conditions which describes
velocity of changing on time of the probability of particlesat walls that confines the particles. These velocities are nonlinear functions
of the density of the probability of particles to occupied the flat walls. The attractor of the problem has been constructed. This attractor
contains periodic piecewise constant functions with finite, countable or uncountable points of discontinuities on a period, which
propagates along characteristics of the Liouville equation. We call such elements of the attractor by the distributions of relaxation, pre-
turbulent and turbulent type, correspondingly — by the classification of Sharkovsky. There are also random distributions of particles,
which can be produced by the nonlinear feedback on the walls.The results has been obtained by the reduction of the problemto
dynamical system which is described by system of differenceequations, depending on coordinates and momenta as of parameters. It is
shown that the changing of these parameters leads to period doubling bifurcations of elements of the attractor on 4 - dimensional torus.
The problem is solved in class of quasi-periodic functions.

Keywords: Hamiltonian systems• Liouville equation• initial value boundary problem• asymptotic solutions of relaxation, pre-
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1 Introduction

In Hamiltonian systems, there is a separation between of
slow and fast degrees of freedom. R. Mackay assumes
that the fast variables have the Anosov mixing dynamics.
A. Politi and A. Torcini review the concepts of stable
chaos, that is, ’the presence of irregular behaviour even
though the dynamics is still locally stable’ (see, [1],p.8).
The transition to chaos in the Hamiltonian systems is
different than for dissipative systems. In integrable or
non-chaotic Hamiltonian systems the motion is
’quasiperiodic’. A typical example of integrable
Hamiltonian systems is harmonic oscillator.
Spatial-temporal chaos take place when dynamic
behaviour exhibits both spatial disorder and temporal
disorder. An attractor of initial boundary value problem
contains asymptotic stable waves or pulses, which are
called solitons.

In this paper, we consider an initial boundary value
problem for the linear Liouville equation with differential
dynamic boundary conditions. Such problem describes
distributions of probability of free particles in confined
medium with process of recombination of particle at a flat

walls. It is shown that there are surface induced
spatial-temporal distributions of density of particle. We
study a structure of attractor of the problem. Similar
boundary problem for the transport equation with one
spatial variable first has been considered by Sharkovsky
[2] by method of reduction of a boundary problem to a
difference equation with continuous time. In typical
cases, an initial problem for difference equation admits an
attractor which contains deterministic piecewise constant
periodic functions with finite, countable or uncountable
points of discontinuities on a period. For special
parameters, there are also random functions which are
elements of attractor [3,4,5]. In [2] has been considered
also similar problem for two non connected linear
transport equations with nonlinear functional boundary
conditions and has been shown that elements of attractor
can be represented as the functions

u(x,y, t) = ϕ(x+ a11t,y+ a12t), (1)

v(x,y, t) = ψ(x+ a21t,y+ a22t) (2)
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wherea11,a12,a21,a22 ∈ R. It is shown that such problem
can be reduced to the study of structure of attractor of one
difference equation with two arguments, so that

w(z+ b,τ + c) = f [w(z,τ)], (3)

whereb,c ∈ R, and functionf is given by the boundary
conditions

u = v as y = 0, v = f [u] as y = 1. (4)

The problem has been considered in the region−∞ < x <
∞,0< y< 1, t > 0 (see, ([2], p.257). It has been shown that
equation (3) by transformation of variable can be reduced
to the difference equation

w(σ ,θ ) = f (w(σ ,θ −1) (5)

with initial conditionw0(σ ,θ ) on interval−1,0).
If we considerσ as a parameter and equation (5) as an

ordinary difference equation, it can be shown thatw(σ ,θ )
tends toN - periodic functionw∗(σ ,θ ), whereN is least
common multiple of periods of attractive circles of the
map f . In origin variables a limit function
u∗(x,y, t) : R × [0,1] × R+ → 2N has equal values on
characteristics

x+ a21t = α, y+ a22t = β . (6)

In this paper, the above results will be generalised on
the bounded region(x ∈ [0,1],y ∈ [0,1]) for the Liouville
equation with Hamiltonians H(x, p) = 1

2 p2 and
H(x, p) = 1

2(x
2 − p2). Introduction of flat walls at point

y = 0 and y = 1 with nonlinear dynamic boundary
conditions and depending of the Hamiltonian onx leads
to the fact that the boundary problem admits the reduction
to the system of nonlinear difference equations,
depending onx, p as on ’parameters’, wherex, p are
coordinate and impulse of trajectories of corresponding
dynamic systems. Thus the boundary problem is reduced
to the study of asymptotic behaviour of trajectories of
system of difference equations [6,7]:

u(x, p, t+1)= f [u(x, p, t)], u(t)∈C2(·, ·,R+,Rn), n≥ 2,
(7)

where x, p ∈ [0, l] × [0,1] can be considered as
parameters. We confined itself by the study of hyperbolic
or Anosov type systems. It means that a set of
non-wandering points of the mapf : Rn → Rn is finite and
hyperbolic. Then we can considerx, p as parameters so
that equation (7) is an ordinary difference equation. As a
result, solution of equation (7) tends to N - periodic
function u∗(x, p, t) as t → ∞. A limit function
u∗(x, p, t) ∈ A+ almost all pointst ∈ R+, whereA+ is a set
of attractive fixed points of the mapf , excluding finite,
countable or uncountable set of pointst∗ ∈ Γ . Thus the
limit function u∗(x, p, t) is asymptotic 2N - periodic
piecewise constant function (see, [2], p. 258).

For one dimensional initial boundary value problem
similar asymptotic has been considered for the
Cahn-Hilliard equation which describes the evolution of
one component of binary mixtures [8] or binary alloys [8,
9]. For 3D - the Cahn-Hilliard equation, similar results
has been obtained in the paper [10]. A similar boundary
problem in Hamiltonian Mechanics has been considered
in paper [11].

In Section 1, it will be considered boundary problem
with the HamiltonianH(p) := 1

2 p2 not depending onx. It
is shown that asymptotic solutions have the form
u(x, t) := u(p, t − x/p) for every finitep and the function
u(p,ζ ) ⇒ P(p,ζ ) in C2 - norm for almost all points
ζ ∈ R+ Γ , whereΓ is a set of points of discontinuities.Γ
is finite, countable or uncountable. Such limit solutions
are typical for higher dimensional Hamiltonian systems
with finite or infinite localized vibrations (see, [13], p.15),
but we show that such type asymptotic distributions exists
also for one-dimensional Hamiltonian systems.The
structure ofΓ depends on the topological structure of
boundary nonlinear functions. The limit functionP(p,ζ )
is piecewise constant periodic function. In Section 2, it
will be considered boundary problem with the
Hamiltonian H(p) := 1

2 p2 + 1
2x2, depending onx. It is

shown that asymptotic solutions have the form
u(x, p, t) := u1(t − x/p) + u2(t − arccosp), whereu1(ζ )
and u2(η) are piecewise constant periodic functions. In
Section 3, it will be considered some properties of
hyperbolic structural stable mapsΦ : R2 → R2 to which
the considered initial boundary value problems can be
reduced. In Section 4, applications for boundary problems
of physics of condensed matter has been considered.

2 Formulation of problem

Let us consider a dynamic system with coordinates
q = (q1, ...,qn) (this can be Cartesian coordinates, angles,
arc length of a curve and so on) and momentum
p = (p1, ..., pn), wherei = 1,2, ...,n. The Lagranhian is
L = T −U , whereT := T (q, q̇) is the kinetic energy and
U :=U(q) is the potential energy. The Euler equation is

d
dt

(

∂L
∂ q̇

)

=
∂L
∂q

. (8)

Equation (8) is equivalent to equations ˙q=Hp andṗ=Hq,
whereH := pṗ−L. This equation is called the variational
form of the classical mechanics or the Lagrange form (see,
[12], p.7).

The motion of particles of mechanical system can be
described by the Liouville equation

Then a function u(x, p) determines a probability
u(x, p)dnxdn p, so that a system can be found in a phase
space volumednxdn p. The Liouville equation equation is

du
dt

=
∂u
∂ t

+
n

∑
i=1

(

∂u
∂xi

ẋi +
∂u
∂ pi

ṗi

)

= 0, (9)
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whereu(x, p) determines a probabilityu(x, p)dnxdn p to
find a particles in a regiondnqdn p. The Liouville
equation follows from the continuity equation

∂u
∂ t

+
∂J
∂x

= 0 (10)

for a flow of particlesJ = vu, wherev is a velocity of
particles. Indeed, from (9) and (10) it follows that

∂u
∂ t

+
n

∑
i=1

(

∂ (uẋi)

∂xi
+

∂ (uṗi)

∂ pi

)

= 0. (11)

If we assume that ˙xi is independent fromxi and ṗi is
independent frompi, then the Liouville equation and the
continuity equation are identical.

Thus, the Hamiltonian mechanics use parameters
(q, p) ∈ R1

q × R1
p, where p is a generalized momentum,

andq is a generalized position. In Newtonian mechanics,
the position x should be expressed in rectangular
coordinates, but in Hamiltonian mechanics, a positionq,
generally, does not to be expressed in rectangular
coordinates. This gives greater freedom in the choice of
coordinates corresponding to the description of the
dynamic system. Below we defineq(s) := x(s) and
p(s) := p(s), where s ∈ R1 is a parameter. Then the
HamiltonianH : R1

x ×R1
p → R1 generates trajectories:

ẋ(t) = Hp(x(t), p(t)), ṗ(t) =−Hx(x(t), p(t)), (12)

where the Hamiltonian is equal to the total energy of the
system. Thus this approach use the Hamiltonian canonical
equations which are equivalent to the Lagrange form of
variational equation. Then from (9) it follows that

du
dt

(x(t), p(t))≡ 0. (13)

If u := u(x, p, t), then we obtain that

du
dt

=
∂u
∂ t

+
∂u
∂x

ẋt +
∂u
∂ p

ṗt =
∂u
∂ t

+Hp
∂u
∂x

−Hx
∂u
∂ p

. (14)

Thus, we have the Liouville, or transport equation

∂u
∂ t

+Hp
∂u
∂x

−Hx
∂H
∂ p

= 0. (15)

The Liouville equation follows also for the determination
of the Poisson brackets

[u,H] =
∂u
∂q

∂H
∂ p

− ∂u
∂ p

∂H
∂q

. (16)

But if variables q and p satisfies to the Hamiltonian
equations, the

du
dt

=
∂H
∂ t

+[u,H], (17)

and we again obtain the Liouville equation. But this is true
only if q not depends on ˙q.

Next, we consider the functional boundary conditions

u(0,y, t) = Φ1[u(l,y, t)], u(x,0, t) = Φ2[u(x, l, t)], (18)

whereΦ1,Φ2 : R3 → R1 are given functions. We assume
that there is an open bounded intervalI ⊂ R1 such that
Φ1(I) ∈ I,Φ2(I) ∈ I. Then we can prove that solutions
exist in the regionΠ := {0 < x < l1,0 < y < l2} for any
t > 0 if l1 = l2 = l. (The casel1 6= l2 will be considered
later).

These boundary conditions can be obtained from the
dynamic boundary conditions

ut = f1[u] as x=0, ut = f2[u] as x=l. (19)

Indeed, we assume that system of ordinary differential
equation (19) has a first integral

W [u(0, t),u(l, t)] = µ , (20)

whereµ = W [u(0,0),u(l,0)]. Next, we assume that there
areu,v ∈ I, whereI is an open bounded interval, andµ ∈
R1 such that functional relation (20) is globally solvable,
so that

u(0, t) = Φµ [v(0, t)], t > 0, (21)

where Φµ : I → I is a given function. As a result, we
obtain the functional boundary conditions. But the
differential boundary conditions have a simple physical
sense, because these conditions describes velocity of a
probability to find particles at a given points of
boundaries of the dynamic system.

Here, we consider a family of real analytic maps
Φµ : I → I. We are considering all orbits of this map for
each fixedµ ∈ R, and orbits of typical points, and limit
sets of these orbits. Letω(u) is a set of limit points of the
sequencesu,Φµ [u],Φ2

µ [u], .... Then, as shown in [2], there
are the following types of orbits: (1)ω [u] is a periodic
orbit with multiplier with absolute value≤ 1; (2)
ω(x) = ω(c), wherec is a critical point ofΦµ , so that
Φ ′

µ [c] = 0 with the properties: (i)ω(c) is the Cantor set,
(ii) ω(c) has zero Lebesque measure, (iii)ω(c) is equal to
a finite union of intervalsI =

⋃n
k=0 In, wheren = 1,2, ...,

which contains a pointc, so that Φµ is topologically
transitive that is there are orbits, which are dense inI.

The simplest case is whenΦµ is unimodal. It means
thatΦµ has one extremum, and the Schwarzian derivative
Ŝ is:

ŜΦµ(u) :=
Φ ′′′

µ (u)

Φ ′
µ(u)

− 3
2

(

Φ ′′′
µ (u)

Φ ′
µ(u)

)2

< 0. (22)

These maps are called byS - unimodal. A simplest
example is the logistic mapΦµ(u) = µu(1− u).
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It is known that if a region U ∈ Rn, and
A(u) = (a1(u), ...,an(u)) is a smooth vector field in
U, u0 ∈ U, A(u0) 6= 0, then there is a neighbourhood of
the point u0 such that the system ofn antinomic
differential equations hasn − 1 functional independent
first integrals.

Now we suppose that−Hp = a1, Hx = a2 and letp :=
y, wherea1,a2 ∈ R1. Then solutions of equation (15) have
the form:

H(x,y, t) := ϕ(t − x/a1, t − y/a2). (23)

Let ϕ(ζ ,η) := ϕ1(ζ ) + ϕ2(η), where ζ = t − x/a1,
η = t − y/a2. Note that functionsϕ1, ϕ2 are constants
along linest − x/a1 = c1, t − y/a2 = c2, c1,c2 ∈ R1. This
allows, using the functional boundary conditions, to
obtain the following functional relations:

ϕ1(x, t)+ϕ2(y, t) = Φ1[ϕ1(x, t − l/a1)+ϕ2(y, t)], (24)

ϕ1(x, t)+ϕ2(y, t) = Φ2[ϕ1(x, t)+ϕ2(y, t − l/a2)]. (25)

Let us define

F1 := Y1(x, t)+Y2(y, t)−Φ1[X1(x, t − l/a1)+Y2(y, t)],
(26)

F2 := Y1(x, t)+Y2(y, t)−Φ2[Y1(x, t)+X2(y, t − l/a2)],
(27)

whereF := (F1,F2), so thatF : R2×R2 → R2. Next, we
assume that at a neighbourhood of a point(X0,Y0) we
have F ∈ C2, F(X0,Y0) = 0, and determinant
T := det|| ∂F

∂Y (X0,Y0)|| is equal to

T := Φ ′
1[X1,Y2]Φ ′

2[Y1,X2]−Φ ′
1[X1,Y2]−Φ ′

2[Y1,X2] 6= 0.
(28)

Then there are neighbourhoodsU ∈ R2V ∈ R2 of points
X0,Y0, and a mapf : U →V such thatf ∈C2, and

F(X ,Y ) = 0 ⇔ Y = f (X) (29)

for eachX ∈ U andY ∈ V . The mapf (X) is determined
by the system of difference equations:

ϕ1(x, t) = f1[ϕ1(x, t − l/a1),ϕ2(y, t − l/a2)], (30)

ϕ2(y, t) = f2[ϕ1(x, t − l/a1),ϕ2(y, t − l/a2)], (31)

where f1, f2 : R2 → R1 are known functions. Thus we
obtain difference equations with delay arguments if
a1,a2 > 0. It is known [6] conditions on the map

f := ( f1, f2) when components of limit solutions of
equations (30), (31) are piecewise constant periodic
functions with finite or infinite points of discontinuities
on periods.

If Φ2 = µId, whereId is identical map andµ ∈ R, then
from (41),(42) it follows that this system is decomposed on
two difference equations of the form:

ϕ1(x, t)+ϕ2(y, t) = Φ1[ϕ1(x, t − l/a1)+ϕ2(y, t)], (32)

ϕ2(y, t) = µϕ2(y, t − l/a2). (33)

If |µ | < 1 thenϕ2(y, t) → 0 ast → +∞, and from (32) it
follows with a given accuracy the limit difference
equation:

ϕ1(x, t) = Φ1[ϕ1(x, t − l/a1)]. (34)

For unimodal mapΦ1 : I → I, asymptotic solutions of
equation (34) are piecewise constant 2N l/a1 - periodic
distributions, whereN is least common multiple of
periods of attractive circles ofΦ1, with finite or infinite
points of discontinuities on periods [6]. If |µ | > 1, then
ϕ2(y, t) → ∞ ast → +∞. If |µ | = 1, then we havel/a1 -
periodic solutions of equation (34).

This statement will be proved in the next subsection.

3 Quadratic potential

In this section, we consider a quantum oscillator with
hamiltonianH(x, p) = 1

2(x
2+ p2), so that

ẋ = Hp = p, ṗ =−Hx =−x (35)

with the initial conditions

x(t0) = x0, p(t0) = p0. (36)

For the harmonic oscillator, we have
∣

∣

∣

∣

x(t)
p(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

cosωt sinωt
−sinωt cosωt

∣

∣

∣

∣

∣

∣

∣

∣

x(t0)
p(t0)

∣

∣

∣

∣

. (37)

This is matrix which represents a clockwise rotation
through an angleωt, so that points in thex − p plane
move in circle with frequencyω . It means that each initial
region rotates around an origin onx− p plane. Hence, this
region keeps shape as it rotates in a plane, and areas are
conserved [14].

The Hamiltonian on trajectories of equations (35) is
constant. It means that the Hamiltonian system has a first
integraldW (x, p) = 0. Solutions arex(t) = ρ sint, p(t) =
ρ cost, whereρ ∈ R, and trajectories of the Hamiltonian
equations are on the lines

ẋ2(t)+ ṗ2(t) = p2(t)+ x2(t)≡ ρ2 (38)
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whereρ ∈ R+. Below, for simplicity, we assume thatρ =
1. Then the Liouville equation equation for the probability
of particle can be written as:

∂u
∂ t

+ p
∂u
∂x

−
√

1− p2 ∂u
∂ p

= 0. (39)

It is a particular example of the general scheme.
Indeed, projection on thex - space of solutions of the
Hamiltonian is called by a characteristic, or extremal.
Suppose that there arex0 and t0 such that fort ∈ [0, t0)
there is a neighbourhood of a pointp0 in the p - space
ϖt(x0) such that a mapp(t,x0, p0) → x(t,x0, p0) is a
diffeomorphism fromϖt(x0) onto its image. Then this
image contains a neighbourhoodD(x0) which not
depends on t. For example, the equations ˙p = −x and
ẋ = p can be written as a differential formxdx− pd p = 0,
wherex, p 6= 0. Then the HamiltonianH := 1

2(x
2 + p2 is

constant on the circlesx2 + p2 = ρ2 and we have the
diffeomorphismp →±

√

1− p2.
This observation has important application for the

construction of local field of extremals, so that it is a main
technique for the construction of WKB - type asymptotic
for solutions of equations [15,16]:

∂u
∂ t

= H

(

x,
∂
∂x

)

u (40)

whereH is the Hamiltonian.
Solutions of this equation have the form

u(x, p, t) := u(ζ ) + u2(η), where ζ = t − x/p and
η = t − arccosp. where impulse |p| < 1 and
0 < arccosp < π . As in Section 1, substituting this
representation of a solution in the functional boundary
conditions, as we obtain the following functional
relations:

ϕ1(x, t)+ϕ2(p, t) = Φ1[ϕ1(x, t − l1/p)+ϕ2(p, t)], (41)

ϕ1(x, t)+ϕ2(p, t) = Φ2[ϕ1(x, t)+ϕ2(p, t −arccosl2)],
(42)

wherel2
1 + l2

2 = 1.
The structure of an attractor for this system is studied

as well as in Section 1. But in this section it will be done
the more concrete prove of a scenario of reduction of
these functional relations to a system of nonlinear
difference equations. Indeed, if
Φ1 = Φ2 := Id : z → z, z ∈ R1, then from (42) it follows
that

ϕ1(x, t) = ϕ1(x, t − l1/p), ϕ2(p, t) = ϕ2(p, t −arccosl2),
(43)

and from (43) it follows that a solution of the problem is
sum ofl1/p and arcsinl2 - periodic functions.

Next, we assume thatΦ1 6= Id, but Φ2 := Id. then we
get that

ϕ1(x, t)+ϕ2(p, t) =Φ1[ϕ1(x, t− l/p)+ϕ2(p, t−arccosl].
(44)

If l1/p = arcsinl2 = ∆ , where 0< p < 1, then solutions
of equation (44 can be determined step by step, iterating
an initial functionh(t) = ϕ1(x, t − ∆) + ϕ2(p, t − ∆) on
interval[−∆ ,0). We definew(x, p, t) = ϕ1(x, t)+ϕ2(p, t).
Then equation (44) can be written as autonomic
difference equation

w(x, p, t) = Φ1[w(x, t − l/p)], t ∈ R+, (45)

whereΦ1 : I → I is a given function. We assume thatΦ1 ∈
C2(I, I) and the initial functionh(t) ∈C2(I, I), and

w(x, p,0) = Φ1[w(x,−l/p)], (46)

w′(x, p,0) = Φ ′
1[w(x,−l/p)]w′(x,−l/p), (47)

w′′(x, p,0) = Φ ′′
1 [w(x,−l/p)]w′(x,−l/p)2+ (48)

Φ ′′
1 [w(x,−l/p)]w′(x,−l/p)

for eachx, p ∈ (0,1).
Let us define a separatorD :=

⋃

n≥0 P̄−, whereP̄− is
the closure of a set of attractive points of the mapΦ. The
separator determines the structure of pre-images of
repelling fixed points of a mapΦ : I → I on intervalI. For
example, if Φ is monotone with two attractive fixed
points and one repelling fixed pointa−, then
D = Φ−1(a−) is unique point on I. If Φ(u) is
non-monotone onI1 ⊂ I, where I1 := [a+,a−], so that
Φ ′′(u) < 0 asu ∈ I1, anda+ is an attractive fixed point.
ThenD is countable set with limit pointa+. The union of
pre-images of repelling fixed points onI determines the
set of points of discontinuitiesΓ of the corresponding
limit function u(t) of the difference equation ast → +∞
(see, Fig.1).

Now we assume that the mapΦ1 is structural stable.
Then there is a finite numberP+ of attractive fixed points
of the map. IfΦ1 has an attractive circle of period 1, then
a solution w(t) of the difference equation tends to a
unique attractive fixed point. If there is an attractive circle
of period 1, which is formed by pointsa1,a2, then a
solution tends to a piecewise constant periodic
distribution ast →+∞ in C2 - metric for almost all points
t ∈ R+. If the separatorD has only attractive circles of
periods 2i, i = 0,1, ..., then the setD is countable, and a
solution tends to an asymptotic 2N - periodic piecewise
constant function with countable set of points of
discontinuities on a period, whereN is least common
multiple of periods of attractive circles of the mapΦ1. If
l/p 6= arcsinl, then there arem,n ∈ Z+ such that
ml/p = narcsinl = q, whereq ∈ Z+. As a result, there are
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asymptotic 2Nq - periodic piecewise constant functions
with countable set of points of discontinuities on a period.

If Φ2 6= Id, then we can apply the results of previews
Section 2. The difference is only in the delay arguments
in the corresponding systems of difference equations —
between form of the characteristicst − x/p = Const and
t −arccosp = const. As a result, we obtain the system of
independent difference equations with continuous time. If
Φ2 = Id, then we obtain the previous result. In general,
solutions of these equations are asymptotic 2N1 and 2N2 -
periodic piecewise constant functions with finite or
countable set of points of discontinuities on a period,
where Nk is least common multiple of periods of
attractive circles of the map̃Φk, k = 1,2.

4 Asymptotic behaviour of system of
difference equations

In this section, it will be considered hyperbolic dynamics
of structural stable dynamic systems (Fig.1), which
appears as a source of impredicative behaviour [13], but
we consider only a case when two-dimensional map,
describing behavior of solutions of initial boundary value
problem, produce asymptotic solutions of relaxation type
(Fig.2). Solutions of difference equations are generated
by initial functions h(x, p, t) where x, p ∈ R can be
considered as parameters. In two-dimensional case, a
separator is determined asD(x, p) =

⋃

n≥0 f−nA±(x, p),
where f : (u1,u2) → (( f1[u1], f2[u2])) and A±(x, p) is a
set of saddle points of codimensional one. Then a set of
points of discontinuities is determines as
Γ (x, p) = f−1(D[x, p]). (Below parametersx, p will be
omitted). The curveh(t) can be determined by the initial
data of the boundary problem by method of
characteristics. An initial curve
h(x, p, t) = (h1(x, p, t),h2(x, p, t)) on interval [−l/p,0)
satisfies to the transversal conditiondh(t)/dt 6= 0 as
t ∈ Γ . The separatorD and the setΓ are closed nowhere
dense sets on[−l/p,0). Iterating the mapf : R2 → R2, we
obtain that

u(x, p, t) = f n[h(x, p, t−np/l)], x, p ∈ R, f : R2 → R2.
(49)

We assume that [6,7]: 1) there is G ⊂ R2 such that
f (G) ⊂ G; 2) the differentialD f [u] is continuous onG;
3) a set f−1 [u] is finite for eachu ∈ G; 4) a set of
non-wandering points of the mapf is finite and
hyperbolic; 4) no trajectories going from saddle to saddle.
A point u ∈ R2 is non-wandering if for a neighbourhood
U(u) existsm > 0 such thatf m(U)

⋂

U 6= 0. A map is
hyperbolic if a spectraσ(D f r [u])

⋂{|u|} 6= 1, whereφ is
empty set. We suppose thatu(x, p, t) ∈ C2(R+,G) for
eachx ∈ X and p ∈ P if f ∈ C2, and consider a set of
initial functions

H̆ = {h(t) ∈C2([−l/p),G) |h(−l/p) = f [h(0)]}. (50)

Then a set of non-wandering points is
Ω [ f ] = Per[ f ] = Fix[ f N ] for each integer N, and
Ω [ f ] = A+⋃A−⋃A±, where A+,A−,A± are sets of
attractive, repelling and saddle type points of the mapf N .
ThenG can be represented asG =

⋃

a∈Ω [ f ]W
s(a) where

W s(a) = {u ∈ G | limm→+∞ f mN [u] = a} is a stable
manifold of fixed pointa of the map f N . Indeed, since
Ω [ f ] is finite, then each pointu ∈ G is attracted by finite
set, according to the Sharkovsky theorem [2], each point
u ∈ G is attracted by a circle of the mapf . From this it
follows existence of the finite limit [6]

lim
j→+∞

f N j [u] := f ∗[u] (51)

where f ∗[u] ∈ Ω [ f ]. For eachu(x, p, t) ∈ H̆, and eachx ∈
X , p ∈ P this limit exists. Then each solution of the system
of difference equations tends to the function

lim
j→+∞

||u(x, p, tN j)− u∗(x, p, t)||R2 = 0 (52)

for each fixedt ∈ R+,x ∈ X , p ∈ P. Relation (52) is not
uniform ont and

lim
j→+∞

sup
t∈[0,N)

||u(x, p, tN j)− u∗(x, p, t)||R2 6= 0. (53)

The behavior of limit solutions in points of discontinuities
can be characterized in the Hausdorff or Schorohod
metrics (see, [2], but for our goals it is enough to know
that in a neighbourhood of the points of discontinuitiesΓ
the convergence to a limit solution is not uniform.

5 Example 1

In this section, we consider a difference equation which
depends on the spatial variablex as on ’parameter’. For
usual difference equation (non-depending on parameter),
there are piecewise constant asymptotic periodic
solutions. But for this type of equations, initial data
u0(x, t) for t ∈ [−∆ ,0) must be done inR2. For example,
it can be paraboloid. If in 1D - case a setΓ of points of
discontinuities contains points, that in 2D - case a set∆
we obtain a closed curve. As a result, there are 2D -
structures as ’white-black’ spots with the boundary
ν ∈ R2.

Let us consider the difference equation

u(x, t) = f [u(x, t −∆)] (54)

where ∆ > 0, and f ∈ C2(I, I). Here,
u(x, t) : [0, l] × [−∆ ,0) → I. Asymptotic properties of
solutions of equation (54) can be determined by
asymptotic properties of trajectories of dynamic system
which are produced by the mapf . Indeed, letf has two
attractive fixed pointsa1,a3 and one repelling fixed point
a2, so that≤ a1 < a2 < a3 and[a1,a2] ⊂ I. Let us define
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an initial functionh(x, t) : [0, l]× [−∆ ,0) → I. Then for
each fixedx we can use the above theory of difference
equations for one argument.

For two argument, the corresponding approval must
be modified, but this modification is simple. Indeed, let us
consider as above the separator of the mapf , so that
D( f ) :=

⋃

n≥0P−, whereP− is a set of repelling points of
the map f . Then the set of curves of discontinuities is
Γ := f−1(D). Let the initial datah(x, t) ∈ Γ on rectangle
[0, l]× [−∆ ,0). Then the setΓ consists finite, countable
or uncountable ’manifolds’ of discontinuities. It means
that structure of the setΓ can be very complex. It depends
on the topological forms of the initial functionh and the
map f .

Let us consider simple example. Ifh(x, t) is a plane
and f is monotone, thenΓ := h(x, t) ∈ a2 ∈ P− is a strait
line. As a result, a limit solution of difference equation
tends to the function:f ∗ (x, t) = a1

⋃

a3 if h(x, t) 6= a2,
and f ∗ (x, t) is interval[a1,a3] if h(x, t) 6= a2 (see, Fig.2).
In this case,Γ is a straight line. Next, ifh(x, t) = x2+ t2

on [0, l]× [−∆ ,0), that is paraboloid, than a setΓ is a
circle S = {x, t : x2 + t2 = a2}. In this case, we obtain
limit oscillations of relaxation type. Iff is nonmonotone,
then there is a countable set of pre-imagesf−n[S] of the
circle S with limit circle S∗. In this case, we obtain limit
oscillations of pre-turbulent type (by terminology of
Sharkovsky [2]. Similarly, we can consider a system of
difference equations which produce a hyperbolic mapΦ
on a space of smooth functions. We can also consider a
’parameter’x as vector inRn. Of course, there are not of
general theory for such difference equations, but solutions
can be found with help of computer, applying method of
iteration of initial datah(x1, ...,xn, p1, ..., pn, t).

This example shows that for the initial boundary
problem appears new 2D dimensional type of asymptotic
solutions. But in reality the problem is reduced to the
functional dependent systems of equations, depending on
x andp as on parameters. The theory of such equations is
not developed. Indeed, such equations produce a map
Φ̃ : R2 → R2 with parametersx, p. But in particular case,
for the Henon map, an attractor of problem is one
dimensional. The corresponding example will be done in
the next section.

5.1 Example 2

Let us consider the system

u(x, t) = u2(x, t −∆)+w(x, t)+λ , (55)

w(t +∆) = bw(t), (56)

whereb = ea, a < 0 andλ ∈ R1. Solutions of system (55)
can be find step by step if initial data(u0(x, t),w0(x, t) are
known on interval[−∆ ,0) for eachx ∈ J, where J is
interval.

The system produce a mapΦλ ,b : R2 → R2, so that

Φλ ,b : (u,w)→ (u2+w+λ ,bw). (57)

A set of non-wandering points of the mapΦλ ,b is
Ω(Φλ ,b) = FixΦλ ,b = (u∗λ ,0), whereu∗λ is a fixed point
of the mapϕλ : u → u2+λ .

Let us define an initial curve

γ(h(t)) := {(u,w)∈R2 : u(t)= (h(t), w∈R1, t ∈ [0,2l/V )},
(58)

where a vector-functionh(t) is determined by the initial
data of the initial value boundary problem.

If λ > 1/4 the mapϕλ has not fixed points and, hence,
for each initial curveh(t) in R2 given in the interval 0< t <
∆), solutions of the problem is such that(u(t),w(t))→ ∞
as t → ∞. For λ (x) < −2 each pointuλ ∈ Īλ Ω(ϕλ (x))
go out from the intervalIλ (x) under an action of iterations
of the mapϕλ . Here,Iλ = (−β0,β0), whereβ0 = 1/2+
√

1/4−λ is the repelling fixed point of the mapϕλ . It
means that each component of the solution tends to infinity
ast → ∞.

Solutions are bounded if and only if−2 < λ ≤ 1/4.
For λ = −2 fixed points areβ0 = 2 andβ1 = 1. Indeed, if
|u0| < 2, then there isθ0 such thatu0 = ±2cosθ0. Then
un = ±2cos2nθ0. If θ0 is commensurate with
π − θ0 = m

n π , ((m,n) = 1 (that is m/n is irreducible
fraction). In this case, there are numbersk andi such that
2i(2k − 1) ≡ 0(mod n). Then, beginning from some
number, we obtain a circle. For almost all (with respect of
the Lebesque measure), this sequence is uniformly
distributed in the interval.

There is a setΛ such that for almostu ∈ Λ trajectories
{ϕ i

−2}∞
i=0 are placed onΛ everywhere dense. Trajectories

on Λ are unstable, but the setΛ are stable generally. It
means thatΛ attracts almost all trajectories from its
neighbourhoods. Forλ = −2 the setΛ is the interval
I−2 = [−2,2]. It means that any solution tends ast → ∞ to
a function p1(ζ , p1η), where ζ = t − x/V and
η = t + x/V . This function is equal[−2,2] on the interval
(ζ + d,η + d) for each givend > 0. The number of
oscillations increase infinitely ast → ∞. Such behaviour
of trajectories exists not only forλ = −2, but for
continuum values ofλ .

If −3/4< λ < 1/4, thenϕ̄(Iλ ) ⊂ Iλ and there is the
fixed attractive pointβ1 on this interval. It means that
(u(t),w(t) → ∞) ast → ∞. If −5/4< λ < 3/4, then the
fixed pointβ1 become repelling, but instead onΛ appears
an attractive circle of the period 2 which consists from the
two points β2,3 = −1/2 ±

√

−3/4−λ . For the
two-dimensional mapΦλ ,b it means that the set of
attractive fixed points isP+ = {(2β2,0),(2β3,0)}. The
set of saddle fixed points consists from the unique point
P± = {(2β1,0)}. Then vectors, corresponding to these
eigenvalues, are (1,0) and (0,1) (Fig.1). If
−3/4< λ < 5/4, then forλn < λ < λn+1, n = 0,1,2, ...
the mapϕλ has an attractive circle of the period 2n, but all
another circles are repelling. For the system of difference
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Fig. 1: Typical distributions of trajectories for a hyperbolic map.

Fig. 2: Computer modelling of attractor of relaxation type in
x, p, t - space.

equations it means thatu(t) tends to a 22n∆ - periodic
piecewise constant function andw(x, t) tends to zero.

6 Physical interpretation of problem

The problem can be generalised on the case ofn -
quantum oscillators. Indeed, let us consider the system of
the Hamiltonian equations

q̇i =
∂H
∂ pi

, ṗi =−∂H
∂qi

, i = 1,2, ...,n. (59)

Now we consider a torusT n, so thatT n = S1× ...S1, and
let there is a mapπ : Rn → T n, π(ϕ) = ϕ mod 2ϖ , where

ϕ is an angular variable on thei - circle. Then the map
π is 2π - periodic. Thus, we can represent torus asn -
dimensional cube[0,2π ]n ⊂ Rn(ϕ1, ...,ϕn) with identified
opposite sites on the cube. Then a quasi-periodic motion
on T n is a projection of a line with the mapπ , so that

ϕi(t) = ϕi(t0)+ωit. (60)

Trajectories, which are produced by equalities (60), we
call by a winding of the torus. If the Hamiltonian is
H = 1

2m p2+ a
2q2, wherep,q ∈ R1, then along trajectories

of the Hamiltonian systemdH[q(t), p(t)]/dt = 0 or
H(q, p) = E, whereE is an energy of system. Thus, the
energy E is defined on ellipses M, so that
1

2m p2+ a
2q2 = E, whereE ∈ R+.

Let us consider a variableϕ , so that

q(t) =

√

2E
a

cosϕ(t), p(t) =
√

2Emsinϕ(t). (61)

Then from the Hamilton equations it follows that
ϕ(t) =

√ a
m t +ϕ(t0), whereϕ(t0) ∈ [0,2π) is determined

by initial conditions q(t0), p(t0). For simplicity, in the
above sections has been considered a case when
a = m = 1, ϕ(t0) = 0 andρ =

√
2E = 1. In this case, the

iso-energetic surface is a circle, and we get a first integral
f1 = q2 + p2 = 1. In general case, we obtain a sphere
S2n−1.

For oscillator withn - degree of freedom, we have
independent integrals

fi(q, p) =
a1

2
q2

i +
1

2mi
p2

i , (62)

where fi is an energy ofi - th oscillator. Then a phase
space of trajectories of the Hamilton system is a product
of ellipses or circles. If we consider a spaceq, p, q̇, ṗ, then
trajectories foliates the product of circlesS1 × S2, where
S1 = {q, p |q2 + p2 = 1} and S2 = {q̇, ṗ | q̇2 + ṗ2 = 1}.
Thus, we have 4 - dimensional(q, p, q̇, ṗ) - space. A
projection of this space on(q̇, ṗ) - space determines
characteristic of the hyperbolic transport equation. Thus,
the energy of the Hamilton system is conserved along the
characteristic. The energy changes only at the boundaries
or flat walls which confides particles of a physical system.
The law of changing between ’numbers’ of particles is
determined by functional two-points boundary conditions
asq is fixed at the walls, orp is fixed at the walls (see,
Sections 2,3). The dynamic boundary conditions
describes probabilities of ’particle production’ or ’particle
annihilation’ at the walls confined the physical systems.

Similar problems, in applications to the radio-physics,
has been studied in works of Kuznetsov et all. [17,18] by
method of reduction of the boundary problem to the
system of difference equations in real or complex spaces.
In applications to the polymer mixtures, the same
boundary condition are introduced by Binder et all. [19,
20]. For polymers and binary alloys method of reduction
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to the difference equations has been applied in papers [8,
9].

7 Conclusion

Thus, for the main equation of Hamiltonian mechanics
with dynamic boundary conditions and general class of
the initial conditions, the attractor of relaxation,
pre-turbulent and turbulent type has been constructed.
The attractor contains piecewise constant periodic spatial
temporal wave functions with finite, countable or
uncountable ’points’ of discontinuities on a period. The
problem has been reduced to the study of asymptotic
behavior of trajectories of 1D and 2D dynamic hyperbolic
structural stable systems. It is shown that in 1D - case the
solutions of the problem satisfies to the famous
Sharkovsky ordering. In 1D - case, period-doubling
bifurcations of solutions take place. In 2D - case situation
is more complex because there are not of the Sharkovsky
ordering, but there are distributions of relaxation type for
which a computer simulation (see, Fig.2) has been done.
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