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Abstract: In this article, we propose a new family of distributionsledlodd Burr-111 family of distributions generated from the logit

of Burr-1ll random variable. We display density and hazattplots of four special distributions of this new familyddiound it very
flexible with respect to density and hazard rate shapes. @helyf density can also be expressed as a linear combinafion o
exponentiated-G densities of the baseline distributioa.dtain some mathematical properties of this new famijhsag quantile
function, moments and incomplete moments, moment gengrdtinction, mean deviations, Shannon entropy, stressin
reliability and the density of order statistics. The modatgmeters are obtained by employing the method of maximkefiibod.
The mathematical properties of a special model of this fantlile odd Burr-I11-Lomax (OBIIILX) distribution are obtained and its
usefulness is illustrated for uncensored and censoredsdtta

Keywords: Burr-lll distribution, generalized family, Lomax disttiion, moments, Shannon entropy.

1 Introduction

Statistical distributions are very useful in describinglreorld phenomenons. Although many distributions havenbe
developed but there is always a room for new distribution&kviare either more flexible in term of fitting a specific
real-world scenario. This attempt has motivated reseasdioeseek and develop new flexible distributions. As a result
many new distributions have been developed and studiegtmature. From the past several years, there is a growind tre
of generating new families of distributions from existingtdbution by adding one or more additional paramete($hé
baseline distribution to study the behavior of the shapateabity and hazard rate, and for checking the goodness-of-fi
of proposed distributions.

If g(x), G(x) and 1— G(x) are the probability density function, cumulative disttibn function and reliability
function of the baseline distribution. Then, Eugene et200Q) first introducedeta-G family from the the logit of beta
distribution, and studied beta-normal distribution. Gard and de-Catro (2011) proposed a very flexible genexhlize
family by adding two-additional parameters from the logit Kumaraswamy distribution. Alexander et al. (2012)
extended beta-G family and introducédcDonald-G family of distributions. Torabi and Montazeri (2012) used
generatorG(x)/[1 — G(x)] and proposed odd gamma generalized family from the logit ahma distribution.
Bourguignon et al. (2014) also used generd®x)/[1 — G(x)] and introducedAkibull-G family of distribution from
Weibull distribution logit. Zografos and Balakrishnan (&) proposedamma-G family using generator- log[1 — G(X)].
Ristic and Balakrishnan (2012) introduced anotgamma-G family from generator—log[G(x)]. Amini et al. (2012)
introduced twolog-gamma-G families from generators-log[1 — G(x)] and —log[G(x)] with motivation to upper and
lower records. Cordeiro et al. (2013) proposxgonentiated-generalized-G family of distributions. Alzaatreh et al.
(2013) pioneered a very general approach, tfaesformed-transformer (T-X) family. Alzaghal et al. (2013) further
extended T-X family and proposeskponentiated T-X family of distributions. Aljarrah et al. (2014) introduc&dX
family based on quantile function approach.
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Very recently, some new families of distributions have bpmposed in literature. The peculiar ones are: odd Burr-G
family (Alizadeh et al., 2017), generalized odd log-logisamily (Cordeiro et al., 2017), new generalized odd logiétic
family (Haghbin et al., 2016), and odd log-logistic LindIBgisson family Qzel et al., 2016).

Burr (1942) gave a system of twelve cumulative distribufiomctions for the purpose of fitting data. From which Burr
Xll and Burr X models have received considerable attentiahdifferent extended Burr XIl and Burr X models have been
proposed in literature. The Burr Il model has received camapively less attention in statistical literature. THere, in
this paper we propose and study a new generalized family Bomlll logit.

The cumulative distribution function (cdf) and probalyililensity function (pdf) of Burr Il distribution are,
respectively, given by

mxck) = (1+x7°) (1)

and
m(x;c, k) = ckx ¢t (1+x*°)_k_1, x>0, ck>0, 2)

wherec andk are both shape parameters.
Now, we introduce a new family of distributions from Buri-dlensity @) by replacing«with the odds5(x) /[1— G(X)].
The cdf of odd Burr Il generalized (OBIII-G) family of dishutions is defined by

G(x

G cy —k
F(x;c,k,f):/ol*e‘*) okt (1417 * Lot = {1+ (%(g)) } . 3)

The pdf corresponding to EqB)is

f(xc.k &) =ckg(x,¢) (4)

e (e

whereG(x; £) andg(x; &) is the cdf and pdf of any baseline distribution, anés the vector of parameters in a baseline
distribution. Henceforth, a random variabk having density 4) with parametersc, k and ¢ is denoted by
X ~ OBIlG(c,k,&).

The hazard rate function (hrf) of OBIII-G family is given by
[1-G(x)°* 16(x)\° * !
Ckg(X) G(X)Hl |:1+( (X) ) :|
B 1-6(x\ ] K '
-+ (550) |
The main motivation of this study are: (i) to obtain more flé&i model with less number of parameters and to
get goodness-of-fit on the real life survival data, (ii) tokmadhe kurtosis more flexible, (iii) to generate distribugo
with symmetric, left-skewed, right-skewed, J, reversestidped and bimodal, (iv) to make a skewness for symmetrical
distributions, (v) to build heavy-tailed distributionsathare not longer-tailed for modeling real data, (vi) to digsc
special models with all types of the hrf, and (vii) to provictnsistently better fits than other generated models uhder t
same baseline distribution.

This paper is organized as follows. In Section 2, four speniadels of OBIII-G family are described, and the plots
of their densities and hazard rate functions are displaye8ection 3, some important mathematical properties of the
new family such as the quantile function, asymptotics, skapf the density and hazard rate functions, a useful
expansion of OBIII-G family, ordinary and incomplete morteenmean deviations, generating function, Rényi and
Shannon entropies, stress-strength reliability paramate order statistics are obtained. In Section 4, the family
parameters are estimated by the method of maximum likedih®be properties of a special model, that is @dsl Burr
[l Lomax (OBIIILx) distribution are given in Section 5. In Section @, simulation is conducted to assess the
performance of maximum likelihood estimators. Three tdaldata are analyzed to illustrate the performance of the
OBIlILx model in Section 7. Section 8 offers some concludiamarks.

h(x;c,k, &) = (5)

2 Special models of OBII1-G family

In this section, we discuss four special models of OBIII-@Gilst and display their plots of density and hazard rate
functions.
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2.1 Odd Burr I11-uniform distribution

Let uniform is the baseline distribution with parameér- 0 having cdf and pdf5(x,0) = x/6 andg(x,8) = 1/6,
respectively. Then the cdf and pdf of odd Burr-11I-unifor@gl11U) distribution are, respectively, given by

F(x,c,k, 0) = {1+ [9—;’(} }_k (6)

and
c+1

oSO o)
0

A random variable having density)(is denoted byX ~ OBIIIU (c,k, 8). In Figure 1, the plots of density and hazard rate
of OBIIIU distribution are displayed. The density can prodshapes such as left-skewed, symmetrical, J, reversadi-J a
U, and the hazard rate exhibits increasing and bathtub shape

@ (b)

Fig. 1: Plots of (a) densities and (b) hazard rates of OBIIIU disttiin.

2.2 Odd Burr I11-exponential distribution

Let exponential is the baseline distribution with paramete- 0 having cdf and pd&(x) = 1— e~ ?* andg(x) = ae™ 9,
respectively. Then the cdf and pdf of odd Burr IlI-exponah©OBIIIE) distribution are, respectively, given by

F(x) = [1+{1f_—zxax} ]k (8)
and
F(x) = ckae“x% [1+ { 1?:_Xax}c] - 9)

A random variable having density)(is denoted byX ~ OBIIIE(c,k, a). In Figure 2, the plots of density and hazard
rate of OBIIIE distribution are given. The density can proed shapes such as right-skewed, symmetrical and reverse- J
and the shapes of the hazard rate are increasing, decreesirsgant and bathtub.
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Fig. 2: Plots of (a) densities and (b) hazard rates of OBIIIE distitn.

2.3 Odd Burr I11-Lomax distribution

Let Lomax is the baseline distribution with parameters- 0 andf > 0 having cdf and pdG(x) = [1+ (x/B)]"% and
a(x) = (a/B) [1+ (x/B)] "%, respectively. Then the cdf and pdf of odd Burr Ill-Lomax (Bx) distribution are,

respectively, given by
cq —k

Fx)= |1+ &)_a (10)
1—(1+§)
and
<\ 7 c-1 O\ cq —k-1
f(X)zck% <1+%>_a_1 {(HE) ] 1+ @ : (11)

o) T L )

A random variable having densityt1) is denoted byX ~ OBIIILx (c,k, a, ). In Figure 3, the plots of density and
hazard rate of OBIIILx distribution are presented. The dgresin produce right-skewed and reverse-J shapes, andthaza
rate exhibits decreasing and upside-down bathtub shapes.
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Fig. 3: Plots of (a) densities and (b) hazard rates of OBIIILx dimttion.
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2.4 Odd Burr I11-logistic distribution

Let logistic is the baseline distribution with parameteér> 0 having cdf and pdfG(x) = (1+ e“”x)_1 and

g(x) = ae*‘”‘(1+e*"x)_2, respectively. Then the cdf and pdf of odd Burr-lll-logisfOBIIIL) distribution are,
respectively, given by

—axy-1)¢17K
F(x) = l1+ {—1&(1:_;))1 } ] (12)
and
1-(1+e o)t et —axy-1) %1 7K
f(x):ckae“’x(1+e“’x)2{ e ™ }_1 1+ M : (13)
(@rem ) arem

A random variable having densit§3) is denoted byX ~ OBIIIL(c,k, o). In Figure 4, the plots of density and hazard
rate functions of OBIIIL distribution are given. The degsitan be of symmetrical and right-skewed shape while hazard
rate can exhibit only increasing and constant shapes .
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Fig. 4: Plots of (a) densities and (b) hazard rates of OBIIIL disttiitn.

3 Mathematical properties of OBIII-G family

In this section, we provide some mathematical propertieke©OBIII-G family of distributions.

3.1 Quantile function and simulation

The OBIII-G family can easily be simulated by inverting E8) &s follows: ifu has a uniform distributiobJ (0, 1), then
171
_1 c
Qx(u) = Qg [1+ (vt -1) ] : (14)

whereQg(.) = G~1(.) is the baseline quantile function (qf).
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3.2 Asymptotic and shapes

Let X takes non-negative value. Then, the asymptotics of B)s(4) and 6) asx — 0 are given by
F(X) ~ G
f(x) ~ ckg(x)G(x)% 1,
h(x) ~ ckg(x)G(x)kL.
The asymptotics of Eqs3), (4) and 6) asx — o« are given by
1—F(x) ~ kG(x)°,
f(x) ~ ckg(x)G(x)° L,

h(x) ~ C(i(x);)

The shapes of the density and hazard rate functions can balokbanalytically. The critical points of the OBIII-G
family density function are the roots of the equation:

G(X)° 1~ Gx)° !
G(x)¢+ G(x)¢

I 13 49X
g(X)Jr(ck 1)G(x)+(1 C)G(x) c(k+1)g(x)

The critical point of OBIII-G family hazard rate are the reatf the equation:

g(x) 9(x) 9(x) G(°~t — [G(x))*
+ (ck— 1)@ +(1-0 1-G(x) cg(¥) G(x)°+G(x)

{{609°+ G M [BH° L - G - Gr* 1}
{G(x)° + G(x)°} — G(x)

=0.

3.3 Linear representation of the density

In this section, a linear representation of the OBIII-G dignis obtained, which is helpful in obtaining useful propes
of the OBIII distributions.

Consider generalized binomial expansion
(1_2)—n:zo<”+1!‘1)zi, (15)
J:
where,|n| > 0 is a real number.

Now from Eg. (L5) and Eq. 8), the cdf of OBIII-G can be represented as

F(X) :'io aj_ci Hj—ci(X), (16)
i,J=

aj_ci = (k+:_1> (C;) (1) (17)

The density of the family can be expressed as

where

f) =3 ajahj-c-1(x. (18)
i,]=0
Eq. (18) is obtained through simple differentiation of the Ebg), whereH;_i(x) = GI~%(x) and
hj_a—1(X) = (j — ci) g(x) G ~@~1(x) follows the exponentiated-G distribution wifh- ci as the power parameter.
Egs. (L6) and (L8) are the main results of this section.
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3.4 Moments, incomplete moments and generating function

In this section, we give mathematical expressions for theerds and incomplete moments, moment generating function
and mean deviations.

Therth moment expression for the OBIII-G family of distribut®nan be obtained as
-3 ae / X hj_g_1(x) dx (19)
i,]=0

wherea;j_g is defined in Eq.17) andj — ci — 1 is the power parameter.
Thesth incomplete moment for the OBIII-G family of distributieiis given by

= % aj—ci/)éhj—cifl(x)dx- (20)
0

i,]=0

The expression for the moment generating function of thellBBIfamily of distributions is given by

i,]=0 0
The mean deviations of the OBIII-G family of distributionsaut the mean and median can be obtained as

Dy =2uF(u)—2u*(u) and Dm = p—2u'(M)

whereu = E(X) comes from the Eq10), M = MedianX) is the median can be obtained from Etg) F (i) can easily
be obtained from Eq3) andu?(.) can be obtained from EqRQ) with s= 1

3.5 Entropies

The entropy of a random variable (¥ is a measure of variation of the uncertainty. A large valughef entropy
specifies the greater uncertainty in the data. Entropy hasraleapplications in physics, chemistry, engineering and
economics, among others. The Shannon entropy of a conmydaving baseline pdf(x) is defined byE[—log g(X)]

(Shannon, 1948). The relationship between the Shannoopsnfior a rvX with pdf g(x) and the Shannon entropy of a
random variabl§ with pdfr(t) is given in the following theorem.

Theorem 1. If T has a pdf(t) andX follows the OBIII-G family @), then the Shannon entropy Xf nx is given by

nx = —E{Iog g (Gl [J—TD}—ZE{log (1+T)} +nr,

wherenr is the Shannon entropy of the Burr Il distribution.

Proof. The Shannon entropy is defined by

nx = —E[log f(x)]. (21)
The cdf in Eq. 8) can be written as
1?(<3X()x)
F(x) = / F(t)dt = R(lfgzx)) . (22)
0
The pdf corresponding to ER?) is given by
_ 9 ( G(x) )
f(x) = [1—G(x)]2r 1-6(9 ) (23)
(@© 2017 NSP
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Now, Eq. 1) becomes
nx = —Eflog g(x)] - 2E{log [1 - G(x)]} —E[r(t)]. (24)

The relationship between rvgéandTis T = ((>> thenX = G~ (LT)

Finally, Eq. 4) becomes

nx = —IE{Iogg[G‘1 (11—1_) } } — 2E[log(1+T)] +nr.

U
Theorem 2. If T has a pdfr(t) and X follows the OBIII-G family @), then the Rényi entropy oX, that isls(x) =
1/[1-d]log [ f9(x)dxis given by
:_ j—c(i+0)—9
15(%) 6|og[ck IJzovl,cw/ P°(X)G ()dx].
Proof. First we use binomial expansion used in Etp)(to the quantityf % (x)
000 = (eio? 3 (O (AFD 70 (yprigige e oy,
i,]=0
Now, we have
1500 = g log | (ek? 5 (PHTHTITE) (SFDTO) Capigfpg ooy
1-9 i <o I J
Rewriting the above equation
|5(x):i| og | (ck)® z vi,,-(a,k)/ gé(x)Gj‘C“M)‘é(x)] dx,
o i <o 0
whereVi ;(8,K) — (6(k+1 +i— ) ( 6)—6) (1)1,
U

3.6 Stress-strength reliability

In the context of reliability, the stress-strength modédirts the life of a element which has a random strepgtthat is
subjected to an accidental strégs The component fails at the instant that the stress appig@xceeds the strength, and
the component will function suitably whenevér > X,. Hence R = P(X; < X;) is @ measure of components reliability
(Kotz et al., 2003). It has many applications especiallyhimarea of reliability and engineering. We derive the rdliigb

R whenX; and X, have independent OBIi¢1, ki, &) and OBIlI(cy, ko, &) distributions with common shape and scale
parameters. From Eqs3)(and @), the parameter reliability reduces to

00

R=P(X, < Xo) = / f1(%) Fa(X) dx. (25)
0

From Egs. 8) and Q), the Eq. £5) becomes

R=P(X1 < X2) = Z Z aj— abi— cm/ hj —ci—1(X) Hi—em(X) dX, (26)

i,]=01,m=0

wherehj_¢_1(xX) = (j — ¢i) g(x) GI~9~1(x) andH,_¢m(X) = G'~°™(x).
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3.7 Order statistics

SupposeXy, X, ..., X, be a random sample from OBIII-G distributions axg denotesth order statistics. The pdf o,
is given by

n! o (n-i | i1
fi:n(x) = mjzo( j )(—1) f () [F (x)] : (27)
From Egs. 8) and @), the Eq. 27) becomes
n! i in- j—ci— 1 I—cm -1
fin() = m&( ) [Ijzoaj i —ci)a G Hmzbob”e 0} @8
Using power series raised to power for positive intagér 1) (see Gradshteyn and Ryzhik, 2000)
( zoakx ) ;cn kXS
wherecy = aj andcy = ﬁ E (kn —m+K) ak C.m—k for m> 1 and n is a natural number.
k=1
The above density can be expressed as
n—i o oo
fin(x) = Zo > > Vili—cil—cmhiy_giam(X), (29)
j=0i,]=01,m=0

where j i —Ci
n' (1)) ajci€i-19-cm(j—Ci)

(i—DUj[j+1—c(i+m)+1]
whereh; | _¢iim)(X) = (j+1—c(i+m) +1)g(x) GIHmeltm(x).

Vi(j—ci,l —cm) =

)

The Eq. @9 reveals that the density of OBIII-G order statistic can Rpressed as linear combination of baseline
densities.

4 Estimation

Letxy, Xg, ..., Xn be a random sample of sirom the OBIII-G distributiongc,k, ). The log-likelihood function for the
vector of parameter@ =(c,ké&)Tis given by

(e )_nlogck+%loggx.5 (c— 1%Iog{1 G(xi;€)}

— (c+1) i;)IogG(Xa;f) —(k+1) iZ)"’g{” (#)C} '

The Components of the score vector are given by
1-G(x;; E)) }
=——9Ylog<1l+ ,
Za g{ ( Xi€)
- (%
Uc(O) =—+ log[1— G(x; &)] l0gG(x;; &) — (k+1)
C 5 - 3 oact 2

- _':E)

G (x;;€)
1-G(x;€)

. n . n j'_—G(X) _11 1-G(K)
9 (x; &) G(;(E:;,EE))] (kﬂ)i; C( e<x1>+)( Gd(s)g G(x) ) 7

Ug (©) =ii[g(xi;'5) 1 _(C_l).i _(CH); GX)

whereg? () means the derivative of the functigt) with respect t€ andG¢ () means the derivative of the functi@-)
with respect tof. SettingUy, Uc andU; equal to zero and solving these equations simultaneouslgis/the maximum
likelihood estimates.
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5 Mathematical properties of OBIIILx distribution

In this section, we obtain some mathematical properties®BIIILx distribution.

The cdf and density of OBIIILx model can be expressed as

F(x;c,k,a,ﬁ) :-ioaj_ic [1— (1+%>_a‘|
1=
j—ic—1

f(x.c ka,p) Ijzoaj g ( %)all1—<1+%>a] |

where the coefficierd;_c; is defined is Eq.17).
The gf of OBIIILx distribution is given by

Qu(u) =P { ll_ {1+ (1—u%)%}_1] E - 1}.

Therth moments expression for OBIIILx is given by

z aj-ic ; (j_ﬁi_1> (-1 (j—ic)aB'B(r+L,a(l+1)~r),

i,]=0

j—ic

and

(I+m
r{Hrm
Thesth incomplete moment expression for OBIIILx is given by

whereB(l,m) = = [ X1 (1—x)™1dxis complete beta function.

z aj—ci ; (j _ﬁi_l) (1) (j—ic)a B°Biy/p) (s+La(l +1) —s)

i,]=0

whereB; (I,m) = [§ ¥~1(1—x)™ Ldx s lower incomplete beta function.
The expression for moment generating function of OBIlILgigen by

Y F _1\+2m+1
Z aiic z <J c|| 1) (a(l+ni)+m>( 1)Bm (j_ic)r(tmjll)-

i,]=0 I,m=0
The Shannon entropy of OBIIILx distribution will be

_ (141 ) - Lo (atky e DT o
nx_(1+c) [W(k)—r'(1)] —log(ck) —2 <ak) 21; j kB( 1 C,k+C .
The Rényi entropy is

d o . . Y
ls = 1= 5Iog{KIJZOV|15k)<g) n;(I_C(Iﬁé)_é)Wlﬁa_l}'

The stress-strength reliability parameter for OBIIILxtdisution (with 3 as common parameter) is given by
© 2 N F j—ci—l) <I—cm> " B
R=P(X1 < Xp) = aj_ich_ —ic)—= —pa— &2
(X1 < X2) LJZ:OLHZ:O j—icbi—cm(] ) B p7qz=0< q P (-1) a1 D)+ azp

The likelihood function of OBIIILx distribution is given by
cka n Xi n xi\ ¢
[(©) =nlog (T) —(ac+1) iZilog <1+ E) —(c+1) I;Iog [1— <1+ E) 1
_ (k+1)ilog{1+ [(1+%>a— } }
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The components of score vector for OBIIILx distribution green by

Uk = E_iimg{u [(1+%>a—1]_c},
U = '—;—a iilog (1+%> —iilog ll— (1+% a]
e [0 s[5
( )'Zl 1+ [(1+%)a—1}_c
(1+%)_a logl— (1+%)

n n i n
Uo,:E—c%log(lJr%)—(chl)iZ1 1_(1+%)7O,

o [ [(14%)" 1] o (1+%) 10g(1+%)

_C(k+1)i; 1+K1+%)a—1}7c

Xi

X

+

—a-1
_ X
n actll a(c+1) L |% (1+3)
X
B

Uor:_ﬁ—" BZ i; BZ i; 1_(1+ .)—a
e 2 [x008) 7 003)"
B2 i; 1+{(1+%)0_1}7c

SettingU, Uc, Ug andUg equal to zero and solving these equations simultaneouslys/ihe the maximum likelihood
estimates of OBIIILx distribution.

6 Simulation study of the OBIIILx distribution

Torabi (2008) introduced a general method for estimatingmpeters through spacing called maximum spacing distance
estimator (MSDE). Torabi and Bagheri (2010) and Torabi armhtdzeri (2014) used different MSDESs to compare with
the MLEs. Here, we compare MLEs to MSDESs “minimum spacingélie distance estimator” (MSADE) and “minimum
spacing absolute-log distance estimator” (MSALDE) of tH&llQ.x distribution. For mathematical details, the readéer
referred to Torabi and Bagheri (2010) and Torabi and Momt§2614). We simulate the OBIIILx distribution far= 50,

100, 200, 300 and 500 with= 1.5, k= 0.5, a= 2 andf3 = 0.5. For each sample size, we compute the MLEs, MSADEs
and MSALDEs of the parameters. We repeat this process 1iid@8 aind obtain the average estimates (AEs), biases and
mean square error (MSEs). The results are reported in Tablé hote that the MSEs of MSADEs and MSALDES are
less than the MSEs of MLEs.
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Table 1: Estimated AE and MSE of MLE, MSADE and MSALDE of the paramstbased on 1000 simulations of the OBIIILx
distribution for c= 1.5, k= 0.5¢= 2 andf3 = 0.5 with n= 50, 100, 200, 300 and 500.

Different method MLE MSADE MSALDE
n parameters A.E MSE A.E MSE A.E MSE
50 c 1.9976 4.0704{ 1.4813 0.1809] 1.6359 0.6470
k 1.1527 1.8914| 0.6583 0.2708| 0.5891 0.1822
B 0.8612 0.5207| 0.5914  0.1445 0.5391 0.1816
a 2.0143 5.0078] 2.0455  1.1291] 2.1013 2.4512
100 [ 1.6952 1.2807| 1.4818  0.1846| 1.4997 0.1674
k 0.9614 1.1606| 0.6748 0.4104) 0.6749 0.4888
B 0.7346 0.3239| 0.5674 0.0962] 0.5630 0.1053
a 1.7531 2.5155| 1.9628 1.7235 2.0012 1.2236
200 c 15694 0.8126| 1.5517 0.1001] 1.6501 0.3759
k 0.7189 0.3342| 0.5320 0.0487, 0.5058 0.0367
B 0.6887 0.2014| 0.5004 0.0208] 0.4935 0.0392
a 2.0247 1.3326| 1.9197 0.1849] 1.9864 1.1315
300 c 15348 0.5734| 1.5537 0.1737] 1.5592 0.2271
k 0.7095 0.3284| 0.5594 0.0709] 0.5658 0.0867
B 0.6940 0.1998| 0.5205 0.0434| 0.5421 0.0558
a 2.0458 1.2662| 1.8392 0.2514| 1.9710 0.9619
500 [ 14622 0.2888 1.4742 0.0728/ 1.5846 0.2591
k 0.6302 0.1354| 0.5573 0.0519 0.5331 0.0352
B 0.6481 0.1367| 0.5338 0.0327| 0.5324 0.0570
a 2.1569 0.9035 1.9522  0.1721] 1.9447 0.6547

7 Applications of OBII1Lx model

In this section three real-life data sets are analyzed asmuairieal illustration of the newly proposed family. The firs
two data sets are based on complete observations (uncdhsdiée the third one is censored. We tried to show the
usefulness of the OBIIILx model in different lifetime phanenons. In these three applications, the model parameters
are estimated by the method of maximum likelihood. The gesdrof-fit criterion: Akaike information criterion (AIC),
Anderson-DarlingA*)and Cramer-von Mise®\(*) are used to compare the proposed and competitive modejsnkral,

the smaller the values of these statistics, the better the fite data. The plots of the fitted pdfs and cdfs of the models
are displayed for visual comparison. The required comjmrtaare carried out in the-packages.

7.1 Uncensored (complete) data sets

Data 1: Acute Myelogenous data. The data set was first analyzed by Feigl and Zelen (1965). &kee répresent the
survival times, in weeks, of 33 patients suffering from Aciyelogenous Leukaemia. The data are: 65, 156, 100, 134,
16,108, 121, 4, 39, 143, 56, 26, 22,1, 1, 5, 65, 56, 65, 17,,2463, 4, 2, 8, 4, 3, 30, 4, 43.

We compare the values of goodness-of-fit statistics of QRIinodel with beta-Burr 11l (BBIIl) (Gomes et al.,
2013), exponentiated-Burr Il (EBIII), Lehmann type Il Buil (LeBIIl) and Burr Il (BIIl) models obtained from data
set 1. The MLE estimates of the models’ parameters alongthitin associated standard errors (in parenthesis) ara give
in Table 2 and the values of statistics A&, andW* are given in Table 3.

The cdf of BBIIl is given by
F(x) = l14 (x/0)-a]-8 (c,k)

(i) Whenc = 1, BBIll reduces to LeBIll, (i) wherk = 1 BBIIl reduces to EBIII, and (iii) whew =k =6 = 1, BBIII it
reduces to Blll distribution.

Data 2: Actual Taxesdata. The second data set consist of the monthly actual taxesuevarEgypt from January 2006
to November 2010. The distribution is highly skewed to tightiMead (2014) used this data set. The actual taxes revenue
data (in 1000 million Egyptian pounds) are: 5.9, 20.4, 1482, 17.2,7.8, 6.1, 9.2,10.2, 9.6, 13.3, 8.5, 21.6, 1815, 5
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6.7,17.0, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10.0, 4.1, 369,80, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 1(®4,1
20.5,7.1,7.7,18.1,16.5,11.9, 7.0, 8.6,12.5, 10.3, K1128.4, 11.0, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

We compare values of goodness-of-fit statistics of OBIIILKhwWMeibull Lomax (WLx) (Tahir et al., 2015),
exponentiated-Lomax (ELx) (Abdul-Moniem and Abdel-Hame2012) and Lomax distribution for data set 2. The
MLE estimates of models’ parameters are given in Table 4.vEihges of goodness-of-fit statistics AI8} andW* are

given in Table 5.
The cdf for WLX and ELx are given by:

o Kk —a
FwL(X) =1—exp [—{(14— %) - 1} } andFgL(X) = [1— (1+ %) ] .
Whenk = 1, ELx reduces to Lomax distribution.
Remark 1. Mead (2014) compared beta exponentiated-Burr XlI distidvuand their sub-models beta log-logistic, beta
exponentiated-log-logistic and beta Burr XII with seveotther three, four, and five-parameter lifetime distribogp
namely the generalized gamma (GGa), gamma exponentiagdolslV(GaEW) and beta generalized-Pareto (BGP)

models for data 2 given in Table 2. We also analyzed the satasadd compare our propose model OBIlILx to all above
models, and observe that our model shows better fit as coohfmed above models if we considAr andwW* statistics.

Table 2: MLEs and their standard errors (in parentheses) for dath set

Distribution C k a B 6
OBIIILx 0.1516 1.6485 36.3600 0.0295 -
(0.0651) (3.2770) (31.0820) (0.0240) -
BBIII 0.0671 68.8649 0.7687 15.6785  40.5867
(0.0080) (20.6863) (0.0615) (2.2911) (11.5609)
LeBIll - 4.6233 0.5024 2.8857 17.2698
- (1.0142) (1.1221) (0.0816) (16.9161)
EBIII 9.3906 - 0.8303 0.3084 3.0707
(8.9829) (0.0404) (0.2951) (1.4018)

- 0.7646  5.5929 -
- - (0.0931)  (1.1831) -

Bl

Table 3: The AIC, A* andW* values for data set 1.

Distribution AlIC A* W+

OBIIILx 309.63 0.4633 0.0666
BBIII 317.12 0.5657 0.0832
LeBIll 319.70 0.7125 0.1128
EBIII 316.37 0.8984 0.1512
Blll 315.02 0.8922 0.1498

Remarks 2. From Tables 3 and 5, we observed that OBIIILx gives minimutnes of the statistics AICA* andW* as
compared to other competitive model. Therefore, the preposodel OBIIILX is better in performance for these two data

sets.

7.2 Data set 3: Censored data set

In this section, we provide an application of the OBIIILx nebdo censored data set. The statistics AIC and BIC are
computed and compared the proposed and competitive mddetzaraswamy-Lomax (KwLx) (Lemonte and Cordeiro,
2013), beta-Lomax (BLx) (Lemonte and Cordeiro, 2013) andIBBodels. The data consist of death times (in weeks)
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Table 4: MLEs and their standard errors (in parentheses) for data set

Distribution c k a B
OBIlILx 10.3121  3.2282 0.1386 0.0440
(3.3349) (3.3381) (0.0414) (0.0655)
WLx - 3.9133 0.2549 1.0561
- (1.6969)  (0.1342) (1.6171)
ELx - 5.8382 70.9535 380.2369
- (4.4034)  (1.3966) (6.4230)
Lomax - - 29.1644 384.3509

- - (25.3175) (337.3768)

Table5: The AIC, A* andW* values for data set 3.

Distribution AlIC A* W*
OBIIILx 385.5424 0.0400 0.2540
WLx 395.0823 0.2259 1.4234
ELx 387.9290 0.1370 0.8217
Lomax 430.3430 0.1866 1.1544

of patients with cancer of tongue with aneuploid DNA profged¢ Lee and Wang, 2003). The data are: 1, 3, 3, 4, 10, 13,
13, 16, 16, 24, 26, 27, 28, 30, 30, 32, 41, 51, 61*, 65, 67, 7073274*, 77, 79*, 80*, 81*, 87*, 87*, 88*, 89*, 91, 93,
93*, 96, 97, 100, 101*, 104, 104*, 108*, 109*, 120*, 131*, ¥5A57, 167, 231*, 240*, 400*. Here asterisks denote
censoring times.

Consider a data s€t= (x,r), wherex= (X, Xy, . . . ,xn)T are the observed failure times ane-= (rq,ro,. .., rn)T are the
censored failure times. Theis equal to 1 if a failure is observed and O otherwise. Suppiedehe data are independently
and identically distributed and come from a distributiothyidf given in Eq. {1). Let® = (a, 3,c,k)" denote the vector
of parameters. Then the likelihood &fcan be expressed as

=}

((D;@) = [ [f(x:0))" [1 - F(x; @)

The log-likelihood reduces to
L(O) =r; ilog[f(xi;@)] +(1-r1p) ilog [1-F(x;0). (30)

Now from Egs. 10), (11) and @0), we have
L= i:i [Iog <O%k> +(a—1)log (1+%> —(c+1)log [(1+%>a - }
1+{<1+%)a—1}_c ]—(1—ri)ii{klog 1+{(1+%)a—1}_CH.

The log likelihood function can be maximized numericallyotatained the MLEs. There are varioRspackages that
provide numerical maximization &f We use th@ptimum R-package.
Remark 3. Oguntunde and Adejume (2015) fitted data set 3 and compamthgss-of-fit values of AIC of generalized
inverted generalized exponential (GIGE) model with othmnpetitive models and reported AIC=607.712 by claiming
that the GIGE distribution is good model as compared to otbemnpetitive models. We noted that our proposed model
OBIllILx shows very minimum value of AIC =318.5868 in compsoi to GIGEI and others competitive models: KwLx,
Blll and BLx. Thus, we can say that OBIIILx model is better nebds compared to other models for data set 3.

— (k+1)log
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(a) Estimated pdfs for data set 1.
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Fig. 5: Estimated pdfs and cdfs for data set 1 and 2.

40

Table 6: MLEs and their standard errors (in parentheses) and gos4id# statistics for data set 3.

Model Parameters MLE Standard error  Log-Likelihood AlC BIC
OBIIILx B 12.5693 5.6258 -155.2934 318.5868 326.3918
a 0.1001 0.0427
c 0.2225 0.0745
k 5.0071 5.3171
KwLx a 0.2968 0.2820 -156.2961 320.5922 328.3971
b 5.4307 5.1608
c 1.7368 0.6452
d 36.5721 22.4754
BBIII a 0.9409 0.7980 -159.0904 326.1808 333.9858
b 11.2295 36.5423
c 0.4002 0.2871
k 12.0018 9.2801
BLx a 1.7577 0.5587 -159.2478 326.4957 334.3006
b 5.3584 3.2653
c 31.8981 22.7116
k 0.4085 0.2375
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Empirical and theoretical CDFs
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Fig. 6: Plots of estimated cdfs of the models compared in data set 3.

8 Concluding remarks

We proposed a new family of distributions calle@l|1-G family of distributions. This family can have applications in
the fields of reliability, economics, actuaries and suvaraalysis. Properties of this new family are obtained ideig
quantile function, linear expansion of the density, moraearid incomplete moments, moment generating function,
entropy, stress-strength reliability parameter and ostatistics. Parameter estimation is discussed and a gionla
study is performed to investigate the performance of marirtikelihood estimators with other methods. Three rea-lif
data sets were analyzed to assess the performance of al spedil odd Burr Il Lomax for censored and uncensored
data.
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