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Abstract: A mathematical expression for two-beam interference fringes crossing graded-index (GRIN) optical fiber is 

derived. The derived model determines the integrated optical path crossing the core of the GRIN optical fiber. The 

numerical evolution of the model at different values of the fiber exponent optical parameter α is discussed.   The theoretical 

calculations are verified experimentally using high precision phase-shifting interferometry (PSI). The main advantage of the 

derived model leads to accurate determination of the propagation optical parameters of GRIN optical fibers.  
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1 Introduction 

With the pride advancement of optical fiber 

communications, a variety of fiber designs have been 

proposed and employed in various applications due to their 

specific advantages even active fibers with core doped 

rare-earth ions [1-6]. These include step-index and graded-

index (GRIN) optical fibers. The development of GRIN 

optical fibers is of great  interest since it solved the 

limitation of transmission data rate in step-index optical 

fibers [7-9].  

In GRIN optical fibers, the core refractive index 

continually decreases (as a gradient), starting from the fiber 

core center towards the fiber cladding. A versatile core 

refractive-index profile nc(r) is a function of radial position 

(r) measured from the fiber centre and is described as the 

power-law function [9]:  
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where (ncl) is the cladding refractive index, (n0) is the core 

refractive index at the centre and (rc) is the core radius. The 

parameter α - is the profile exponent or the steepness of the 

profile. The refractive index nc
2(r) is a linear function of (r) 

at α = 1 and a quadratic function for α =2. The quantity 

nc
2(r) becomes increasingly steep as α becomes larger, and 

ultimately approaches a step function for α → ∞ (step-

index fiber).  However, various index profile defects of 

fiber preform (centre defects as tips and dips, deviation of 

power-law parameter α from optimum value of 2 [10], can 

significantly reduce the bandwidth and, hence, degrade the 

desired function of GRIN optical fibers [10].  Therefore, 

adjustments of the refractive index profiles, core diameter 

are major of interest during and after manufacturing 

processes. Common non-destructive traditional 

interferometric techniques like two-beam as well as 

multiple-beam methods were used intensively to determine 

the optical properties of fibrous material [11-14].  

Recently, phase shifting interferometry (PSI) [15, 16] and 

phase shifting digital holographic microscopic 

interferometry [17-20], in combination with the multilayer 

theoretical model [21], was employed to characterize the 

optical properties of GRIN optical fibers. The model [21] 

has considered and approximated the core of the GRIN 

optical fiber to circular step-index multilayers optical fiber. 

Accordingly, inhomogeneity in each layer is added to each 

other and resulting in discontinuity in the refractive index 

profile. The integration of the optical path across the fiber 

core of varying refractive index is the exact solution to 

avoid the discontinuity in the refractive index profile. 

In this work, is derived a new mathematical expression for 

two-beam interference fringes crossing graded-index GRIN 

optical fibers. The derived model determines the integrated 

optical path crossing the core of the GRIN optical fiber. 

The presented mathematical calculations allow an accurate 

determination of the optical parameters of GRIN optical 

fiber. The theoretical calculations were validated 

experimentally using high precision phase-shifting 

interferometry.   
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2 Theoretical analysis of GRIN optical fibers 

Consider a GRIN optical fiber of radius rf and core radius 

rc. The fiber is immersed in a liquid cell of thickness t and 

filled with a liquid of refractive index nL. The cell is 

introduced in one arm of Mach-Zehnder interferometer and 

illuminated with monochromatic light of wavelength  as 

shown in (Fig. 1-a). 

 

(a) 

 

(b) 

Fig. 1.  (a) Schematic diagram of Mach-Zehnder 

interferometer with a liquid cell containing    GRIN optical 

fiber in one of its arms. (b) Cross section of the liquid cell 

and GRIN optical fiber, where the light beam crosses the 

fiber   along the Y-axis.  

Taking into consideration the same concept of the wedge 

interferometer to obtain straight lines interference pattern, 

one of the Mach-Zehander mirrors should be tilted with 

respect to the others. The light beam traverses the fiber 

parallel to the Y-axis of X-Y plane representing the fiber 

cross section. The Z-axis is along the fiber length, as 

shown in (Fig. 1-b).The change in the optical path length 

(OPL) of a beam crossing the fiber with respect to the 

reference one is given by: 

δOPL = 2𝑦2(𝑛𝑐𝑙 − 𝑛𝐿) + 2𝑦1(𝑛𝑐(𝑟) − 𝑛𝑐𝑙)    (2) 

Where    𝑦1 = √𝑟𝑐
2 − 𝑥2      ,   𝑦2 = √𝑟𝑓

2 − 𝑥2 and the 

radial distribution of the core refractive index nc(r) is given 

by: 

𝑛𝑐(𝑟) = 𝑛0 [1 − ∆(
𝑟

𝑟𝑐
)𝛼]       for  r<rc           (3)

        

and   ∆=
𝑛𝑜−𝑛𝑐𝑙

𝑛0
 

where no is the refractive index at the fiber center, and  is 

the exponentianl order of the refractive index profile and 

acts as profile shape parameter. 

 The δOPL coresponds to phase change (
2𝜋


𝑂𝑃𝐿) and 

inturn fringe shift dZ along the Z-axis.The fringe spacing 

(Δ𝑍), not crossing the fiber, corresponds to phase change 

2.Thus the ratio between the fringe shift (dZ) to the fringe 

spacing (Z) is given by: 

𝜆

2

𝑑𝑍

Δ𝑍
= 𝑦2(𝑛𝑐𝑙 − 𝑛𝐿) − 𝑦1𝑛𝑐𝑙 + ∫ 𝑛𝑐(𝑟)𝑑𝑦

√𝑟𝑐−
2 𝑥2

0
 (4)

     

Substituting for the values of y1 and y2 into eq. (4), one 

gets: 

𝜆

2

𝑑𝑍

Δ𝑍
= (𝑛𝑐𝑙 − 𝑛𝐿)√𝑟𝑓

2−𝑥2 − 𝑛𝑐𝑙√𝑟𝑐−
2 𝑥2 +

∫ 𝑛𝑐(𝑟)𝑑𝑦
√𝑟𝑐−

2 𝑥2

0
          (5) 

The last term in eq. (5) can be calculated as follows: 

∫ 𝑛𝑐(𝑟)𝑑𝑦
√𝑟𝑐−

2 𝑥2

0

= ∫ 𝑛𝑜 [1 − Δ (
𝑟

𝑟𝑐

)
𝛼

] 𝑑𝑦
√𝑟𝑐−

2 𝑥2

0

 

Where 𝑟 = √𝑥2 + 𝑦2, then integrate with respect to y, we 

obtain: 

∫ 𝑛0 [1 − Δ (
𝑟

𝑟𝑐
)

𝛼

] 𝑑𝑦
√𝑟𝑐−

2 𝑥2

0
= 𝑛𝑜√𝑟𝑐

2 − 𝑥2 −

noΔ

rc
α ∫ (𝑥2 + 𝑦2)

𝛼

2  𝑑𝑦
√𝑟𝑐

2−𝑥2

0
   (6) 

The integration of the last term in eq. (6) which is given 

by: 
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𝐼 =
noΔ

rc
α ∫ (𝑥2 + 𝑦2)

𝛼

2  𝑑𝑦
√𝑟𝑐

2−𝑥2

0
                         (7) 

Eq. (7) can be integrated by substituting 𝑦 = 𝑥 tan 𝜃, then 

𝑑𝑦 = 𝑥 𝑠𝑒𝑐2 𝜃 𝑑𝜃 and 

𝜃 = 𝑡𝑎𝑛−1 𝑦

𝑥
 , therefore, one gets: 

I=
noΔ

rc
α ∫ (𝑥2 + 𝑦2)

𝛼

2  𝑑𝑦 =
√𝑟𝑐

2−𝑥2

0

noΔ

rc
α ∫ (𝑥2 +



0

𝑥2𝑡𝑎𝑛2𝜃)
𝛼

2  𝑥  𝑠𝑒𝑐2𝜃 𝑑𝜃 

=
noΔ

rc
α ∫ 𝑥𝛼+1(1 + 𝑡𝑎𝑛2𝜃)

𝛼

2𝑠𝑒𝑐2𝜃 𝑑𝜃
𝑡𝑎𝑛−1

√𝑟𝑐
2−𝑥2

𝑥
0

 (8) 

By using the trigonometric identity, (1 + 𝑡𝑎𝑛2𝜃) =
(𝑠𝑒𝑐2𝜃), Eq. (8) can be written as: 

I=
noΔ

rc
α ∫ 𝑥𝛼+1(𝑠𝑒𝑐𝜃)𝛼+2 𝑑𝜃

𝑡𝑎𝑛−1
√𝑟𝑐

2−𝑥2

𝑥
0

 

The value of I can be obtained by using integration by parts 

and after some manipulations its value is given by: 

𝐼 = 𝑛0∆
√𝑟𝑐

2−𝑥2

(𝛼+1)
{1 + 

𝛼

(𝛼−1)

𝑥2

𝑟𝑐
2 +

𝛼(𝛼−2)

(𝛼−1)(𝛼−3)

𝑥4

𝑟𝑐
4 +

𝛼(𝛼−2)(𝛼−4)

(𝛼−1)(𝛼−3)(𝛼−5)

𝑥6

𝑟𝑐
6 + ⋯ +

(−2)(−4)…(−(𝑛−2))

(−1)(−3)(−5)…(−(𝑛−1))

𝑥𝑛

𝑟𝑐
𝑛}    (9) 

When even values of  are considered in eq. (9), then 

terms taken into consideration are those which are not 

vanishing for the given value of . In case of odd -values, 

terms which give infinity for a given value of  are omitted 

and the value  𝑛0∆ (
𝑥𝛼+1

𝑟𝑐
𝛼 )

(+1)!

2𝛼+1(
𝛼+1

2
!)

2 log (
𝑟𝑐+√𝑦2−𝑥2

𝑥
) is 

added outside the bracket. 

Substituting from (6) and (9) into (5), one gets: 

𝜆

2

𝑑𝑍

Δ𝑍
= (𝑛𝑐𝑙 − 𝑛𝐿)√𝑟𝑓−

2 𝑥2 − 𝑛𝑐𝑙√𝑟𝑐−
2 𝑥2 + 𝑛𝑜√𝑟𝑐

2 − 𝑥2 −

noΔ
√𝑟𝑐

2−𝑥2

(𝛼+1)
{1 + 

𝛼

(𝛼−1)

𝑥2

𝑟𝑐
2 +  

𝛼(𝛼−2)

(𝛼−1)(𝛼−3)

𝑥4

𝑟𝑐
4 +

 
𝛼(𝛼−2)(𝛼−4)

(𝛼−1)(𝛼−3)(𝛼−5)

𝑥6

𝑟𝑐
6 +

⋯
(−2)(−4)…(−(𝑛−2))

(−1)(−3)(−5)…(−(𝑛−1))

𝑥𝑛

𝑟𝑐
𝑛}                                         (10) 

Eq. (11) can be rewritten in the form: 

𝜆

2

𝑑𝑍

Δ𝑍
= (𝑛𝑐𝑙 − 𝑛𝐿)√𝑟𝑓−

2 𝑥2 + (𝑛0 − 𝑛𝑐𝑙)√𝑟𝑐−
2 𝑥2 𝛼

𝛼+1
[1 −

{
1

𝛼−1

𝑥2

𝑟𝑐
2 +

𝛼−2

(𝛼−1)(𝛼−3)

𝑥4

𝑟𝑐
4 +

(−2)(−4)

(−1)(−3)(−5)

𝑥6

𝑟𝑐
6 +

⋯
(−2)(−4)…(−(𝑛−2))

(−1)(−3)(−5)…(−(𝑛−1))

𝑥𝑛

𝑟𝑐
𝑛}]                 (11)                     

3 Experimental Technique 

3.1 Phase–shifting interferometry 

Phase-shifting interferometry has been shown to be a 

powerful method for measuring the refractive index 

profiles of optical and synthetic fibers [15-16]. Well known 

advantages of phase shifting interferometry over 

conventional interferometers include: (1) high 

measurement accuracy, (2) rapid measurements, (3) good 

results even with low contrast fringes and (4) phase 

obtained at a grid of data points [22]. When two beams that 

originate from a common light source are recombined after 

they have travelled optical paths that differ by no more 

than the coherence length of the source, they interfere and 

form a fringe pattern. This is usually recorded with a 2D 

detector array and can be described by the following 

intensity distribution, 

 0( , ) ( , ) ( , )cos ( , )i M iI x y I x y I x y x y     (12) 

where 0I ( , )x y , ( , )MI x y , ( , )x y  are three unknown 

distributions referred to as the background intensity, the 

modulation intensity and the phase difference between the 

interfering beams, respectively, and x and y are spatial 

coordinates. ∆𝜙𝑖 is a known phase shift introduced 

between the interfering beams.  

In order to evaluate the phase, ( , )x y , at least three 

independent measurements of the intensity iI (x,y) are 

required. Four-frame algorithm, a simple and widely used 

phase evaluation algorithm [23-24], is used to evaluate the 

phase distribution. It is based on recording four intensity 

measurements I1, I2, I3 and I4 at ∆𝜙𝑖 =  0, 𝜋/2, 𝜋, 3𝜋/2 

radians phase shifts, respectively. 

Under the assumption that ( , )x y does not change during 

the acquisition of 1I
to 4I

, it can be shown that [25] 

1 4 2

1 3

( , ) ( , )
( , ) tan

( , ) ( , )
w

I x y I x y
x y

I x y I x y
   

  
 

    (13) 

The arctangent function, ( , )w x y  is wrapped between + 

and - is referred to as the wrapped phase. The process of 

recovering the continuous phase distribution ( , )x y  that 

extends between - radians and + radians is known as 

phase unwrapping, and consists of adding an appropriate 

integer multiple of 2  at each point in the wrapped phase 

distribution [23, 26-30]. The relation between the measured 

unwrapped phase distribution (x, y) and the spatial 

varying optical path length difference, OPL (x, y), is 

given by the relation [17] 

 ( , ) ,
2

OPL x y x y


 


           (14)                                 

3.2 Experimental set-up 
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Fig. 2 shows a schematic of phase-shifting Mach-Zehnder 

interferometer.  A He-Ne laser is used as the coherent light 

source, providing a beam with wavelength  =632.8 nm. 

The beam was spatially filtered by spatial filter (SF) and 

then collimated by lens (L1). A non-polarizing beam 

splitter (NPBS1) divides the incoming collimated beam 

into a collimated reference beam (RB) and a collimated 

object beam (OB).  The collimated reference beam (RB) is 

reflected by the mirror M1, which is mounted on an open 

loop piezoelectric lead zirconatetitanate (PZT) transducer. 

The PZT actuator is a Physik Instrument type PL055.30 

PZT which is a low voltage device with a maximum 

displacement of 2.2 m for 100 V of applied voltage. The 

PZT is used to controllably shift the phase of the reference 

beam by introducing controlled /2 phase difference 

between two successive interferograms. The collimated 

object beam (OB) is reflected from mirror M2 and 

illuminates the fiber, which magnified by a microscope 

objective lens (MO2)with magnification 10× and N.A. 

0.25. In order to compensate the wavefront of the object 

beam, a typical microscope objective lens (MO1) is placed 

in the reference arm.  

The fiber is held vertically, to the observation direction, in 

a liquid cell (LC) containing a liquid of refractive index nL 

quite close to the cladding refractive index. The collimated 

object beam is recombined with the reference beam at the 

second non-polarizing beam splitter (NPBS2). A CMOS 

camera (C) records four phase shifted interferograms 

formed by the interference between the reference and 

object beams. These interferograms are stored on the 

computer storage media and automatically processed to 

generate the wrapped phase map of the fringe pattern using 

eq. (13). The camera is a 1280 x 1024 pixels, 8 bits, black 

and white, with square pixels of 5.2 µm, and a maximal 

frame rate up to 25Hz.  

 

Fig. 2. Schematic of phase-shifting Mach-Zehnder 

interferometer: SP, Spatial filter; NPBS1 and NPBS2, non-

polarizing beam splitters; M1 and M2, mirrors;  PZT, open 

loop piezoelectric transducer; RB, reference beam; OB, 

object beam; MO1 and MO2, microscopic objective lenses; 

LC, liquid cell; L2,  imaging lens; DAQ, digital to analogue 

converter; C, camera. 

4 Experimental Measurements and 

Theoretical Calculations 

4.1 OPL measurements using phase shifting 

interferometry  

The aim of using phase shifting Mach-Zehnder 

interferometry is to provide the proposed model with the 

OPL profile across the GRIN optical fiber sample. To 

achieve this, four-frame algorithm was employed to obtain 

the phase distribution across the sample and then convert 

the phase distribution into OPL using Eq. (14). As 

mentioned in Section 3.1, the four-frame algorithm 

requires the acquisition of four interferograms with /2 

phase shifts between successive ones. The 

displacement/voltage response of the PZT actuator, used to 

shift the phase of the RB, is sensitive to environmental 

vibrations and changes in humidity and temperature. For 

this reason, they need to be calibrated before each 

measurement and to determine the voltage values that are 

required to introduce /2 phase steps. The procedure 

described by Ochoa et al [30] was followed to calibrate the 

PZT phase shifting actuator. The procedure is only suitable 

for calibrating phase modulators that can produce a full 2 

phase shift and for which the phase changes monotonically 

with applied voltage, but is relatively simple to implement 

and can be performed in situ. Four interferograms obtained 

with 0, /2, , 3/2 phase shifts are shown in Fig. 3. The 

fiber sample was a multimode GRIN optical fiber 

(GIF625-Thorlabs). According to the supplier, the core 

diameter is 62.5  2.5 μm and the cladding diameter is 125 

 1μm.  

 

Fig.  3.  Phase shifted interferograms of GRIN optical fiber 

immersed in liquid of refractive index nL = 1.4575 with 

additional phase (a) 0 , (b) 
2


, (c)   and (d) 

3

2


 phase 

difference. 
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Fig. 4. Wrapped phase distribution, ( , )w x y , for GRIN 

optical fiber (color bar in radians). 

The sample was immersed in a suitable liquid, mixture of 

butyl stearate and paraffin oil, with a refractive index quite 

close to the cladding refractive index,  nL = 1.4575 at 21 

◦C. An Abbe refractometer, with an accuracy of  0.0001, 

was used to measure the refractive index of the immersion 

liquid. These interferograms were combined, using Eq. 13, 

to extract the wrapped phase distribution, w (x, y), across 

the sample relative to the surrounding medium. Fig. 4 

shows typical results of w (x, y) for GRIN optical fiber. As 

can be seen in Fig. 4, the wrapped phase distribution lie in 

the range (-,). The changing in color discontinuously 

from white to black means there is a phase jump of 2. In 

this work, the unwrapped phase distribution, 𝜙(𝑥, 𝑦), were 

obtained, as shown in Fig. 5, with the use of Goldstein 

branch cut phase unwrapping algorithm [31]. It can be seen 

that the 2 discontinuities have been removed by adding an 

appropriate integer multiple of 2 at each point in the 

wrapped phase distribution. Having obtained the 

unwrapped phase distribution, the OPL and hence the 

mean fringe shift across sample can be evaluated, shown in 

Fig. 6, using the relation [17] 

𝛿𝑂𝑃𝐿 =
𝜆𝑑𝑍

Δ𝑍
=

𝜆

2𝜋
𝜙(𝑥, 𝑦) 

 

Fig. 5. Unwrapped phase distribution, ( , )x y  for GRIN 

optical fiber (color bar in radians). 

 

Fig. 6. Mean fringe shift across the GRIN optical fiber. 

4.2 Numerical evaluation of the core/cladding 

refractive indices of GRIN optical fiber   

The cladding refractive index of GRIN optical fiber was 

measured with the aid of the two beam interferograms. The 

interferograms and measurement is shown in Fig. 6. The 

measurements were achieved from the following equation 

which determines the ratio between the fringe shift dZ to 

the fringe spacing Z within the cladding layer:  

𝜆

2

𝑑𝑍

Δ𝑍
= (𝑛𝑐𝑙 − 𝑛𝐿)√𝑟𝑓−

2 𝑥2 , 𝑟𝑐 ≤ 𝑥 ≤ 𝑟𝑓  (15) 

Substituting for the values of nL and  
𝜆

2

𝑑𝑍

Δ𝑍
 at arbitrary 

chosen x-value from the experimental results as shown in 

(Fig. 6) and eq. (15), the measured results rc,, rf  and ncl of 

the GRIN optical fiber are in table 1.  

Table 1: Measured GRIN optical fiber parameters 

nL  (nm) rc(µm) rf(µm) ncl(µm) 

1.4575 633  31 62.5 1.4597 

In the following section we show the measurements of the 

peak value of the fiber core n0 and extraction of the profile 

shape parameter α. Equation (11) was solved for the two 

unknowns (n0& ) by putting (𝑥 = 0 and 𝑥 =
1

2
𝑟𝑐  and/or  

𝑥 =
1

4
𝑟𝑐), see (Fig. 6). At (x=0) equation (11) becomes: 

(𝑛0 − 𝑛𝑐𝑙) = [
𝜆

2

𝑑𝑍

Δ𝑍
− (𝑛𝑐𝑙 − 𝑛𝐿)𝑟𝑓] (

(𝛼+1)

𝛼
)

1 

𝑟𝑐
                 (16)             

Substituting in eq. (11) with the values in table 1 and the 

measured (
𝑑𝑍

Δ𝑍
) at (x=0) one gets: 

(𝑛0 − 𝑛𝑐𝑙) = 0.01937(
𝛼+1

𝛼
)         (18)                                                        

Also putting (𝑥 =
1

4
𝑟𝑐) one gets using  eq. (11)  

𝛼4(0.0511) − 𝛼3(0.21313) − 𝛼2(0.06549) +
𝛼(0.3297) = 0                 (18)           

This gives a fourth order equation of one variable α.The 

solution of eq.(18) gives four α roots;  = 0, -1, 2.1035 and 

3.0763. The root α=0 means no core refractive index 

distribution, α=-1 and α=3.0763 give odd symmetric 
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profile, then α=2.1035 is the solution which gives an even 

symmetric profile with respect to the center point of the 

fiber. By substituting for α=2.1035 in eq. (16) one gets 

no=1.4885. The obtained value of n0 is exactly agreed with 

the published values for the same GRIN optical fiber [18] 

despite different manufacturer.   

4.3 Model validation 

Equation (10) can be written in the form of two equal parts 

F(x) as follows: 

𝜆

2

𝑑𝑍

Δ𝑍
− (𝑛𝑐𝑙 − 𝑛𝐿)√𝑟𝑓

2 − 𝑥2 + 𝑛𝑐𝑙√𝑟𝑐
2−𝑥2 = 𝑛0√𝑟𝑐

2 − 𝑥2 −

(𝑛0 − 𝑛𝑐𝑙)
√𝑟𝑐

2−𝑥2

𝛼+1
{1 + 

𝛼

(𝛼−1)

𝑥2

𝑟𝑐
2 + 

𝛼(𝛼−2)

(𝛼−1)(𝛼−3)

𝑥4

𝑟𝑐
4} = 𝐹(𝑥) 

   (19) 

The left hand side part gives F(x) using the experimental 

measurements of (
𝑑𝑍

∆𝑍
) while the right hand side represents 

F(x) through the theoretical integration of the optical path 

length crossing the GRIN fiber core. It represents the 

integrated optical path length crossing the fiber parallel to 

the Y-axis as a function of x- in the range of the fiber core 

thickness.  

 

(a) 

 

(b) 

 

(c) 

Fig. 7. (a) The experimental measurements of OPL inside 

the fiber core by using eq. (19) (b) theoretical calculattions 

and (c) comparison between theoretical calculations and 

experimental results. 

Using the experimental measurements of (
𝑑𝑍

∆𝑍
) as a function 

of x and the measured valued of ncl=1.4597, nL=1.4575, 

rf=62.5 µm and rc=31 µm, best fitting between the left hand 

side part experimentally measured and the right hand side 

theoretically derived for =2.1035 and n0=1.885 as shown 

in Fig. 7(c) is obtained. The fitting is represented in the 

range −𝑟𝑐 ≤ 𝑥 ≤ 𝑟𝑐  of the GRIN optical fiber core 

thickness where the theoretical derivation is carried out. 

5 Conclusion 

A new mathematical model for GRIN optical fibers was 

developed. The mathematics treated the fiber core as a 

single layer and can be used directly to measure and 

configure the refractive index profile of GRIN optical 

fibers. With this model one can obtain exact and accurate 

propagation parameters of the used GRIN optical fibers. 

The model is applicable for any -shape parameter. The 

theoretical calculations were validated experimentally 

using high precision phase-shifting interferometry.  The 

experimental results were coinciding with theoretical 

calculations.  
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