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Abstract: In this paper point and interval estimations of the paramseté Weibull-Gamma populations based on Type-Il hybrid
censoring scheme are obtained. The maximum likelihood ayg8methods are used to obtain point estimations for thebditon
parameters. The Bayes estimators cannot be obtainedidyplience Lindley’s approximation is used to obtain the/8aestimators.
Furthermore, Markov Chain Monte Carlo technique is useddtain the Bayes estimators and their corresponding credilérvals.
The results of Bayes estimators are computed under theestjgamor loss function. An explanatory example is given tolieate the
precision of the estimators.

Keywords: Hybrid Type-ll censoring; Bayes estimation; Lindley appmnoation; maximum likelihood estimation; Markov Chain
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Acronym:

HCS hybrid censoring scheme MCMC Markov Chain Monte Carlo
T-IHCS  Type-l hybrid censoring scheme  SEL squared errar los
T-IlHCS  Type-Il hybrid censoring scheme MLE maximum likediod estimate

PDF probability density function AFIM asymptotic Fishefanmation matrix
CDF cumulative distribution function  ACI Approximate coaéince interval
WGD Weibull-Gamma distribution CRI Credible Interval

ML maximum likelihood

1 Introduction

The process of extrapolating conclusions about populdtimm data is called statistical inference. This extrapotat
can be implemented either testing certain hypotheses gloputlation parameters or estimating these parameters. For
instance, to make an inference about the life time populatf@ertain electronic units, life testing should be prepidior
some units belonging to the whole population. The aim ofifeedsting is obtaining information from the test units,evé
knowing these information or data help statisticians torveste population parameters. The available data in mostipaa
situations are not complete, so statisticians have utilezéot of censoring schemes to obtain good estimators, ssich a
Type-l and Type-llcensoring schemes. HCS is a combinatidiype-l and Type-ll schemes and it can be elucidated as
follows. Suppose identical units are put to test. The test is terminated whpreaspecified numbeR out of units are
failed, or when a pre-determined tinfeon the test has been reached. Henc¥;,ifrepresents theth ordered failure
time, then the test may be terminated either at time- min{Ygrn, T} or at timeT, = max{Ygrn, T }. The timeT; is the
termaination time of an experiment for testing units undéHICS. While, T is the termaination time of an experiment
for testing units under T-1l HCS. Epsteifl][introduced the T- HCS, and considered lifetime experim@ssuming that
the lifetime of each unit follows an exponential distrilmuti Several authors have published on T-1 HCS; see for exampl
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Ebrahimi ], Gupta and Kundud], Childs et al. #] and Singh et al.1g]. It is noted that under this T-I HCS, little numbers
of failures can be occurred up to the pre-fixed timevhich is one of the disadvantages of this censoring sch€imils

et al. M] introduced the T-1l HCS, which guarantees at Id&ilures will be occurred. For more details about the merits
and the flexibility of T-Il HCS see Childs et alljand Banerjee and Kund@]. The WGD is appropriate for phenomenon
of loss of signals in telecommunications which is calledrdgdvhen multipath is superimposed on shadowing, see Bithas
[3]. A random variableX is said to have WGD, with scale parameteand two shape parameteé#sand g3, if its PDF
given by:

- ~(B+1)
f(x;a,&ﬁ):%—ﬁ(g)g1(1+(§)9> i ,x>0;a,6,5>0, 1)
and the CDF is
xy 6\ P
F(t):1—<1+(a)) x> 00,0, >0. )

For more detials about WGD and its properties see, Molefiiseagd Verbekells] and Mahmoud et al.12]. The
theme of this paper is to propose the classical and Bayestanation procedures for the unknown parameters of WGD
under Type-Il hybrid censoring scheme. The rest of this p&perganized as follows: in Section 2 the MLEs of the
parameters under consideration are obtained in addititimetaorresponding ACls. Section 3 is devoted to the Bayesian
approach that uses Lindley approximation and the MCMC tiegle An illustrative example is presented to explain the
theoretical results in Section 4. Eventually conclusioingerted in Section 5.

2 Maximum Likelihood Estimation

The log-likelihood functions are the basis for derivingiresitors of parameters, given data. ML estimators enjoy with
different advantages such as asymptotically normallyritisted, asymptotically minimum variance, asymptotigall
unbiased and satisfy the invariant property, see Azzalinahd Royall [L7] for more information on likelihood theory.
Under T-1l HCS, one of the following two types of censoredededin be observed:

Case {Yin < ... <Yrn} if T < Yrn.
Case l1{Y1n < ... <Yrn < Yri1n < .. < Ymn < T} if T > Yrpy and them-th failure took place befor&, R< m< n. The

likelihood function for the Case | is

Li(a,0,B|datg =c; RBR <1+ (%)6) o ﬁ(%)e_l <1+ (%)6) R Af T < Y,

wherec; = TR while the likelihood function for the Case Il is

n— R|7

La(a.6.Bldata = c, 2P <1+ G)é))mnm) ﬁ(%)“ (1+ (%) ) P T Ve

wherec, = (n_L'm), The two likelihood functions can be combined, and can beevrias

(. 6,Bldatd = ¢ HBH <1+ (a)e) B(nH)Iﬂ! (%)9_1 (1—|— (M) > (B+1>7 @)

wherec = = H), andH stands for the number of failures;= yrn if H =Randu =T if H > R. The log-likelihood
function may then be written as

¢]
logL(a, 8, B|datd = logc+Hlogh + HlogB — Hloga — B (n— H)log (1+ (g) )

H ] H .\ 0
Yi Yi
+(6 1)i;Iog(a) (B+1)izilog(1+(a) >,
and thus we have the likelihood equationsdg® andf respectively, as

6B (n—H) 6H+6(B+1)H 1

() T A

=0, (4)
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o gy A% zm : (5)

and

u\ @ H Vi 0
—(h—H)log (”(E) )—iZIog (1+(5) >_o. (6)
The Equations4), (5) and @) are nonlinear simultaneous equations in three unknowablesa, 6 and 3. It is
obvious that an exact solution is not easy to get. Therefoneymerical method such as Newton Raphson can be used to

find approximate solution. The steps of Newton Raphson algnns described in details in EL-Saghe®}.[The final
estimates ofr, 6 andf3 are the MLEs of the parameters, denotedia8 andB

2.1 Approximate confidence intervals

The(1—39)100% ACIs for the parameters 8 andf can be written as

(au,au) =a £z ¢+/var(a)
(6,80)=6+2 . var(9) 4
(Bi.fo) = B£7,_¢\/var(p)

wherezligis the percentile of the standard normal distribution wifi-tail probability 1— % andvar(d),var(6) and

var(B) represent the asymptotic variances of MLEs which can beulzikd using the inverse of the AFIM. Let
1(Q1,Q5,Q3) denote the AFIM of the paramete®s = a, Q, = 6 andQ3 = f3,

where ,
dclogL \ . .
|(Qla92793)——<m>,l,j—1,2,3.

The asymptotic variance—covariance matrix for the maxintiiketihood estimates can be put as follows:

2logL \]
L [_ (a g )} , 7
0Qi0Qj 1(01,02.05) i

for more details see Cohef|[

3 Bayesian Estimation

Let the prior knowledge of parametersf andf be described by the following prior distributions :

m(a)= )aﬁ’l leho g >0,
7-[2(6) —_ ( )6[12 1 e—)\zg 0 > O’ u17“27)\17)\27)\3 > Oa (8)
B(B) = )\3€_A3E B >0,

wherea, 6 and are independent random variables.
Hence, the joint prior of the parametersd and can be written as follows:

Mapkp,

m(0,6.B) = o )

t—1 ghz—1g—(Ma+A20+A3p) 9)
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The joint posterior density function of, 8 and, denoted byt*(a, 6, 3|datg can be written as:

L(a,6,B|data) x i(a,6,B)
I Jo Jo L(a,0,B|data) x r(a,6,B)dad6dB’

m(a,8,B|datg = (10)

The joint posterior distribution combines the informationboth prior distributions and the likelihood function. i$h
makes the joint posterior distribution contains more aatainformation, and getting a narrower range of possibligega
for the parameters. The Bayes estimate of any function gbéhameters, say(a, 6, 3) using SEL function is

Gss(a,0,B) = Eq 0 ,p/daa [9(, 6, B)]
fO fO fO (a 0 B) X L(G,Q,B) X n(a,G,B)dadeB.

11
Io Jo o L(a,8,B) x m(a,6,B)dad6dp (11)
While the Bayes estimate gf(a,b, 8, 3) using LINEX loss function is
. ~1 _
6oL (a,6.B) = —100 [Eq 0 pigera | €9 OP)] | £ 20, (12)
where 05
£9(0,0.8) I3 s Jo e €9@0B) x L(a,0,B) x n(a,8,B)dad8dp
Ea.0.p/deta {e } e L(a,0,B) x n(a, 6, 8)dadBdp ' (13)

It is noticed that the ratio of two integrals given bylf and (L3) cannot be obtained in a explicit form. In this case
Lindley’s approximation and MCMC technique can be used tmiolthe Bayes estimators for, 6 andf3.

3.1 Lindley Approximation

Lindley approximation, which introduced by Lindle¥1] can approximate the Bayes estimators into a form contgin
integrals. This approximation has been used by a lot ofssigitins for obtaining the Bayes estimators for some fifeti
distributions; see among others, Sultan etH] pnd Preda et all[g].

Consider the ratio of integra(Y), where

S8 W w(a,8,B)e @8R r@8b)d(a,6,B)

1Y) = ,
) o) SO TR PO 0FId(a,0.5)

(14)

wherew(a, 6, 3) is a function ofa or 8 or 3, I (a, 6, ) is the log-likelihood and
p(a,0,B)=logm(a,B,B).If nis sufficiently large, according to Lindleyt 1], the ratio of the integral of the fori(Y)
can be calculated as
1.~ . A oA
E[A(W1011+W2012+W3013)
+B (W1821 + W2 + W3823) + C (W1 831 + Wp 032+ Wabss)] (15)

1(Y) = W(&, 0, B) + (W1y + Wohp + Wads + &4+ 85) +

whered, 6 andB are the MLE ofa, 6 andB respectlvelya. p10.1+p20|2+p30.3,| =123,
&4 = W12012 + W13013+ Was023, 85 = 5 (W11011 + Woo020 -+ Wa3033) ,

A= 611111+ 2610121+ 26130131+ 26290231 + G22l201 + B33l331,

B = G1al110+ 26120100+ 26130132+ 28231232+ G20l 220+ F3alas2,
C = Bual113+ 260120123+ 26190133+ 26231233+ G22l203 + B33l333,

, subscripts 1,2,3 on the rigth-hand sides standrf@ and3, respectively,

=123 Q1=a, Q,=0andQ3; =,

- N L(QLQz,Qs))
1,j=1,2,3 i ( I00Q ) (6,.0,05)

A~ ()
1 — 0.

90i (&, 92793)
Wi = (52W(91792,93)

o =123,
00100, )¢(91792793) .
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f— (M)
] 0Qi0Qj0Q ¢(-él-,-(}23-(23)

From @), p(a, 6, 3) can be written as:

p(a,0,B) = paInAr+ Az +INAz—InT (pg) —InT () + (U1 — 1) Ina +
(o —1)In6 — (Ara + A28 + A3B).

J,,k=1,2,3 andGij = —#,i,j =1,2,3
ij

and then we obtain

) —) 1 .
pr= (ula ) hpe= (Hzé )~ haandps— s

If w(a, é,ﬁ) = & then the Bayes estimate of the parametemder SEL function fromi(5) is

R . o A A R R 1 R o A
OBLind—SeEL = O + (W1d1 + W02 + Wad3 + 84+ 8s) + > [A(W1 011+ Wo G124 W3013)
+B (W1 81+ Wob2p + W3 b23) + C (Wy 831 + Wo b3 + W3 bs3)],

while, if w(a, é,ﬁ) = 0 then the Bayes estimate of the paramétender SEL function is

. R B L
BsLind—seL = 0 + (W11 +Wo8p + Wadz + 84+ 8s) + > [A(W1 011+ Wo 012+ W3013)
+B (W1 81+ Wo B2 + W3 b23) + C (Wq 831 -+ Wo B3 + W3 b33)],

and ifw(é, é,ﬁ) = ﬁ then the Bayes estimate of the param@teinder SEL function is

Botind—seL = B+ (W1ay + W + Wl + 4 + 85) + % [A(Wy G11 + Wo B2 + W3 bi3)
+B (W1 821 + Wa 822+ Wa G23) + C (W1 031 + Wo b2 + W333) -
If w(a, é,ﬁ) = e €@ then the Bayes estimate of the parametemder LINEX loss function from5) is
ApLind-LINEX = € 0 + (Wdy1 + Wolp +Wallg + 84 + 85) + % [A(Wy G11 + Wo B2 + W3B13)
+B (W1 821 + W2 B2 4 W3 023) + C (W1 G31 + W2 032 + Wab33)],

while, if w(é, 6, ﬁ) — &0 then the Bayes estimate of the paramétender LINEX loss functionis

~ P R R A R R 1 aAL A A R
BeLind_LINEX = € 0 + (W18y + Wolp + Wadz + 84+ &5) + E[A(W1011+W2012+W3013)

+B (W1821 + W22 4 W3 b23) + C (W1 G31 + Wa 032 + Wabiz3)],

and ifw(é, é,ﬁ) — e %P then the Bayes estimate of the param@emnder LINEX loss function is

~ A A . A R R 1 ~ A o o
BaLind_LINEX = € P+ (W1d1 + Wolp -+ Wada + 84 + &s5) + E[A(W1011+W2012+W3013)

+B (W1821 + W2822 4 Wab23) + C (W1 G31 + Wa O30 + Wabz3)].

3.2 MCMC Technique

The main goal of the MCMC technique is to compute an approtémalue of integrals in1(1). A lot of papers dealt with

MCMC technique such as, EL-Saghe@}, Mahmoud et al. 13] and among others. An important sup-class of MCMC
methods are Gibbs sampling and more general Metropolisnwiiibbs samplers. The Metropolis algorithm is a random
walk that uses an acceptance/rejection rule to convergeetdatrget distribution. The Metropolis algorithm was first
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proposed in Metropolis et allfl] and it was then generalized by Hastings in Hastirig$.[From (3), (9) and (0), the
joint posterior density function af, 8 and3 can be written as:

us 8\ “An-H)
n*(a,@,mdata) 0 gt—H-1 6H+u2—1BH (1+ (E) > w @~ (A10+A26+A3B)

Al (@) ") a

The conditional posterior densities @f 8 and can also be written as:

1% (a]6, B, datg O atr—H-le 10

exp[—{ .i loga] + B+1)§i[log<1+(y') )]+B(n—H)|og(1+(§)9>H, (17)

15 (6)a, B,datg 0 61 +He1e 420 <1+ (§)9>—B(n—H)
Al ) ), .
510 et =gl 1 -8 (1+(3)') + S o1+ ()

Now, the following steps illustrate the method of the Mettip-Hastings algorithm within Gibbs sampling to
generate the posterior samples as suggested by Tie26g\ahd so the Bayes estimates and the corresponding credible
intervals can be obtained:

and
(19)

(1)Start with an(a((’) =&,00 =06andp® = ﬁ) .
(@Putj=1
(3)Generatg8(l) from

yo\ ey H yi ou-1
|
9amma[H+1,)\3+(n—H)|°g <1+ (m) )*;'og <1+<a(jl)> )]

(4)Using the following Metropolis-Hastings method, geaten(i-Y and 8- from (17) and (18) with the suggested
normal distributions

N(a=Y var(a)) andN(8U~Y var(6)), respectively,
wherevar(a) andvar(8) can be obtained from the main diagonal in asymptotic invEisker information matrix

(7). _ _
i-Generate a proposat* fromN(ai=Y var(a)) and6* fromN(8'i-1 var(6)).
ii-Evaluate the acceptance probabilities

Body Math

rr‘l“(a*w(j*l)ﬁ(j),data) :|

Pa = Min [17 72 (a0 D60 U 50 datg | °

. % (6%all) ,datg
Pg = MIN |:17 ITZ*(29< \C{ ’ 1),data):|

ii-Generateu; andu, from a Uniform(0, 1) distribution.

iv-If uy < pg , then accept the proposal and gét) = a*, else setr(}) = ali-1,
v-If Uy < pg | then accept the proposal and 8t = 6*, else seB(l) = g(i-1),
(5)Computea 1) and6 ()
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(6)Putj =j+1.

(7)Repeat Steps-36 Q times.

(8)In order to guarantee the convergence and to remove fheice of the selection of initial values, the fifdt
simulated varieties are ignored. The selected samples@and8), j = M +1,...,Q, for sufficiently largeQ .
The approximate Bayes estimates o6 and3 based on SEL are

OBMC-SEL= ﬁ Z?=M+1 al),
OsMC-SEL= ﬁ 2?=M+1 6, 5,

Bemc-seL= ﬁ Z?=M+1B(j)-

and the estimates for the aforementioned parameters utld&loss function are:
_ )
OBMC-LINEX = Tl [ﬁ 2?:M+1e eat } )

BBMC-LINEX = & [ﬁ Z?:MHG*S 9“)} ;P (20)

_ _c ()
Bemc-LINEX = ?1 [ﬁ 2?:M+1e epy }

(9)To calculate the CRIs d2j whereQ; = a, Q, = 6 andQz = 3, we let the quantiles of the sample be the endpoints
of the intervals. Sort{Q}"'“,Q}“*z,...,Q?} as {Qj(l),sz),...,Qj(Q_M)},j = 1,2,3. Hence the 10q1—3)%
symmetric credible interval a@; is given by

Qi ($(Q-M)), 2 ((1-%) (Q—M))].

4 Application

In this section, a simulation example is presented to agkessstimation procedures. In this example, hybrid Type-II
censored sample is generated from WGD as the following:

(1)Specify the values af.

(2)Specify the values of the parameter® andp to generate a sample from WGD.

(3)For given values dR andT, calculate the number of failurés.

(4)Compute the MLEs of the model parameters. The Newtonh&apmethod is applied for solving the nonlinear system
to obtain the MLEs of the parameters.

(5)Compute the Bayes estimates of the parameters baseddleyiapproximation and MCMC algorithm described in
Section 3.

A simulation data for hybrid Type-Il censored sample from W/@ generated with true values= 2, 6 = 3 and
B = 1.5 atn=40. The pre-specified numb&is planned to equal 15 afid= 2.5. According to the previous assumptions,
it was found thaH = 32. The hybrid Type-Il censored data has been presented in Tadddollows:

Table 1. Hybrid Type-Il censored data
0.3603 09036 11096 12783 14564 16773 19478 23577
05337 09929 11327 12962 14783 17015 20944 23798
0.6889 10149 12733 13409 15735 17475 21017 24101
0.7872 10434 12763 14106 15855 18687 21339 24545

The different point estimates far, 8 andf3 in case of non-Bayesian and Bayesian estimation, are gezbenTable
2, whereQ = 22000 andM = 2000 in the MCMC technique and the prior knowledge parameteiz, A1,A, andAgz are
the same and chosen to equdl@L .
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Table 2. Different point estimates for, 6 andp.

(M (')BLind—SEL (')BLind—LINEX (-JemcsEL (-)BMC-LINEX
£=00001 e=-2 ¢e=2 £=00001 e=-2 ¢=2
a 19284 19369 19369 19625 19105 1953 1953 19531 1953
6 29533 29001 29001 30681 27604 29539 29539 2954 29539
B 13769 13917 13917 1446 13343 14549 14549 15242 13936
Table 3. 95% confidence intervals far 6 andf.
Method o Length 0 Length B Length
ACI [-0.6024.459 5.06019 [1.13664.77(0 3.63347 [-2.31685.07] 7.38732

CRI [1.9331.9700 0.03698 [2.94242.965 0.02216 [1.00001.9925 0.99249

5 Conclusion

In this paper, the estimation of WGD parameters has beerestudder hybrid Type-Il censored data. The MLEs of the

parameters are calculated. The importance of Lindley aqmiation and MCMC technique were noticeable in Bayesian

estimation. A comparison between the ACls and the CRIs igigeal for the estimated parameters through a simulated
example. It was found that the width of MCMC credible intdsvia narrower than ACls. We may judge that the Bayes
estimators obtained under Lindley or MCMC method can begpred.
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