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Abstract: This paper is concerned with the oscillatory behavior oballtions of the second-order mixed nonlinear neutral dyoa
equation with damping

(rHe(Z (1)) + PO (1)) + f (t,x(1a(t))) + 9t X(T2(t))) = O,
where @(s) = [s]Y~1 and z(t) = x(t) + pr(t)x(n1(t)) + p2(t)x(n2(t)). Our results complement and improve the results reported in
[[1],[2], [6]-[9], [12], [13], [15]-[20]] because our results can applied to the case wie(® # 0, p(t) # 0,9(t,x(12(t))) # 0 and
o # B #y, specially the results obtained ihd] and [9] are considered as special cases of our results when takiagy = y, p(t) =
p2(t) = 0 andg(t,x(12(t))) = O or eitherg(t,x(12(t))) = 0 or f(t,x(11(t))) respectively. An example is given to illustrate our main
result.

Keywords: Oscillation, neutral dynamic equations, time scales, gdized Riccati technique.

1 Introduction equations, see Bohner and Peterson bo8}4.[In recent
years, there has been much activities concerning the

The theory of time scales was introduced by Hilgét][  oscillation and nonoscillation of solution of various

in order to unify, extend and generalize ideas fromequations on time scales. We refer the reader to the papers

discrete calculus, quantum calculus, and continuoug[1],[2], [5]-[9], [12], [13], [15]-[20]] and references cited

calculus to arbitrary time scale calculus. A time scBlis therein.

a nonempty closed subset of the real numltier&Vhen

the time scale equals to the real numbers, the obtained

results represent the classical theories of differential In this paper, we deal with oscillation of the second order

equations while when time scale equals to the integeimixed nonlinear neutral dynamic equation with damping

numbers, our results represent the theories of differenc@n time scales

O s ay sptatars o e oy o P DURE(D) 10600 050 -0

- called " dynamic equation” not only unify the theories (1

of differential equations and difference equations, bsib al

extends these classical cases to the so - called —|gv-1 -

difference equations (whe’lﬂ — qNo — {qt ‘te NO for (D(S) ‘S‘ S, Z(t) X(t)+ pl(t)x(rll(t))+ pZ(t)X(rIZ((t%))

q> 1} or T = g = g* U {0}) which have important subject to the following hypotheses:

applications in quantum theory (seB4]). Also, it can be  (H1) T is an unbounded above time scale &nd T with

applied on different types of time scales like top > 0. We define the time scale intervib,o)r by

T = hZ,T = N3, and the space of the harmonic numbers [t, )7 = [tg, %) T.

T="Th. (H2) n1,n2, 11 andtz : T — T are rd-continuous such that

For an introduction to time scale calculus and dynamicn(t) <t, nz(t) >t, Ta(t) <t, 12(t) >t ;limi_e T1(t) =

where
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and lim_e N1 (t) = co. Zhang [19] studied the oscillatory behavior of the equation
(Hs) p1,p2,q1, pandge are non-negative rd-continuous
functions on an arbitrary time scédle (@) (< (1)) + p(t)@(x* (1)) + a(t) f (p(x(1(1)))) =0,

(Ha) r is a positive rd-continuous function such that which is considered as a speci ;
“p - . . pecial case Hf lfy taking
£ ¢ R*, whereR = R(T,R) is defined as the set of all pi(t) = pa(t) = 0, gt x(T2(t)) = 0 anda = B = y.

regressive  and rd-continuous functions  while Recentl ; ;
] y Zhang and Lio2[0] and Yang and Li 1§
R"=RY(T,R) ={l e R: 14+ p(T)I(t) > 0forallt e T} ogpaplished oscillation results of philos type to the

and either following second-order half-linear neutral delay dynamic

/[%ep (sto)]As= oo, (3  equation with damping

r(s) «

0 (at)e(Z* ()" + pt)e(* (1) +a(t) f (@(x(3(t)))) =0,

or
T L wherez(t) = x(t) + r(t)x(t(t) and assuming that

/[—e;p (s,t)]¥As < oo, (4) )

; r(s) = dt)y=1(t), 0<rt)<1, @) =5 2sy>1
(Hs) f,g € C(R x T,R) such thauf(t,u) > 0, ug(t,u) > Recently Yang and Li 18| also studied the previous
0, f(t,u) > ga(t)u andg(t, u) > go(t)uf for u#0. equation considering

(He) v, a andp are quotients of odd positive integers. 3(t) > T(t),0 < r(t) < By < +,9(s) = |sV 150 < y< 1

71 1
By a solution of (), we mean a nontrivial real valued /[@e;} (sto)]YAs= . (5)
function x satisfies (1) fort € T. A solutionx of (1) is i
called oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is called nonoscilgto o ) )
Eq. (1) is said to be oscillatory if all of its solutions are Our principle goal is to establish new results for
oscillatory. We concentrate our study to those solutions ofoscillation of (1) assuming that conditionsi;-Hs are

Eq. (1) which are not identically vanishing eventually. satisfied. It should be noted that the topic of this paper is
new for dynamic equations on time scales due to the fact

that the results reported in1j[2], [6]-[9], [12], [13],
Now, we give some related background details which[19-[20]] can't be applied to equationlf in case
are strongly motivate our research. Assuming thatP(t) # 0, p(t) # 0,9(t,X(2(t))) # 0 anda # B # .
p2(t) =0, p(t) =0, g(t,x(12(t))) =0 anda = B =y,
Jing et al.L2], Li and Saker 13], Saker and O’'Regarif| o . )
and Hong-Wu et all7] established several oscillation 2 Some Preliminarieson Time Scales

results for (). Erbe et al.§] obtained oscillation results . , .
for (1) when p(t) = po(t) = 0, a = B = y and either A time scaleT is an arbitrary nonempty closed subset of

f(t,x(12(t))) = 0 or g(t,x(12(t))) = 0. As a special case the real number®. On any time scalT, we define the
where p(t) = 0, H. A. Agwa et al P] investigated forward and backward jump operators as:
oscillation theorems for1). Chen et al. studied the ¢g(t)=inf{se T,s>t}andp(t)=sup{sc T,s<t}.
following second-order dynamic equation with damping Apointt € T, inf T < t < supT is said to be left-dense if
A B p(t) =t, right-dense ifo(t) =t, left-scattered ip(t) <t,
()2 + PO (1) +a() f (7 (1) =0, and right-scattered ifr(t) > t. The graininess functiopt
for a time scal€l is defined byu(t) = o(t) —t.
Afunctionf : T — R is called rd-continuous provided that
it is continuous at right-dense points®fand its left-sided
limits exist (finite) at left-dense points @f. The set of rd-
A
(rO (1)) + pt) 6 (1) + f(t,x(g(1)) = 0, continuous functions is denoted I8 (T,R). The delta
derivative of a functioffi is defined by

Senel L6 studied the second order non linear dynamic
equation

wherer and p are nonnegative rd-continuous functions
andg(t) > t. Agarwal et al L] concerned with oscillatory £(t) = f(a(t))—f(t)
properties of a second-order half-linear dynamic equation T oot)-t 7

yAA y v _ providedf is continuous at t and t is a right-scattered. If t
(a(xA) O+ p(t)(xA) (H)+a(t)x'(6(t)) =0, is not a right-scattered, the delta derivative is defined by
wherey > 1 andd(t) <t. Bohner and Li ] and Erbe et

al. [8] obtained oscillation results for the equation

(r®) ()% + pt) ()Y (1) +ab) f(x(x (1)) =O. st t=s st t=s
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provided that this limit exists. A functiori : [a,b] — R

is said to be differentiable if itdl- derivative exists. By
CL (T,R), we mean the set of all functions whose delta
derivative belong taC,y(T,R). Note that the seR of f
may be actually replaced by any Banach space. The shift
operator of a functiorf : T — R is denoted byf¢ and

defined as

fo(t) = f(a(t))

The A— derivative {2 and the shift operatof? of a

function f are related as follows

Ho(t) = (1) + RO A ().

€o (a7 b)eg (b7 C) =€ (a7 C)

Lemma 2.[3] If x is a delta differentiable function, then

1
Ay /[hx"+ (1—hx’dh ()
0

Lemma 3.[10] If X and Y are non negative real numbers,

then
AXYATL XA < (A —1)Y2 forall A > 1,

where the equality holds if and only if XY

The derivative rules of the product and the quotient of twoL emma 4. Let (3) holds. Assume thatj-Hg hold and xt)

differentiable functiond andg are given by

(f.92(t) = f2(g(t) + F(t)g* (t) =
F(Og* (1) + 2 (1)g° (t)

or,

;f fo(t)g? (1At = [f(t)g(t)] — f f4(t)g(t)At

and the infinite integral is defined by
) t
[ f(s)As=limi_ [ f(5)AsS
b b

Note that in cas& = R, we have
o(t) =p(l)=t, H()=0, (1) =F(),
J ()AL = [f(t)dt

a

and in casdl = Z , we have

o), ~t+1 pU ~t-1, )

=t =
2 ()—f(t+1)—f()

If a<b,

f(hat = 5221 (1),

[

3 Basic lemmas

be an eventually positive solution df)( Then there exists
ty € [to, o)1 such that
z(t) > 0,2 (t) > Oandr (t)| 2 )Y 12 M)* <0 (7)

Proof. Assume thai(t) is a positive solution ofX) on

[to, @) andty € [to, )7 so thatx(t) > 0, x(ti(t)) > 0 and

x(ni(t)) > 0,i =1,2 onJty, o). (whenx(t) is negative the

proof is similar, because the transformatidh) = —y(t)

transforms (1) into the same form). From the definition of

Z(t), we getz(t) > O fort € [t,o)r and from () we have

rOZ2OF 2 1)% +p)|2 1)) 2 () <0 (8)
Hence, from lemma we obtain
r2 -2, efTP(wto)(r\ZA\V*lZA)A+pefp( )21
ep(sto) © 2 (-,t0)e% (., to)

_ 2 Ay 0
; %o (%) 7

9)

A1
e-p (.to)
eventually positive or eventually negative. We claim that

21t)>0 (10)

otherwise, we assume thdt(Qj is not satisfied, then there

existst, € [t1, )7 such that? (t) < 0 for allt € [ty, ).

Using ©) and lemmal, we obtain

o2V 20 _rt)| ()2 (@)
Tp (t to) - e%p (tz,to)

then

is decreasing far e [ty, o) andZ® is either

fort € [tp, o),

then

2(t) < —M[m en(t, to)]¥

fort € [to, )7

1
In this section, we give some lemmas that play importantwhereM = (r(t2))7 |2 (t2)| > 0.

roles in the proof of our results.

Now, by integrating both sides of the above inequality
fromt, — t, we have

Lemmal[3] If 68 € R™, then the initial value problem
Y2 = O(t)y, Yto) = Yo € R has the unique positive
solution g(.,tp) on [tp,)r. This solution satisfies the

t) < 2(ty) M/ o(st)]iAs (1)
semi group property
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Taking the limit of both sides ofl(l) whent — « and
using @), we get lim_»2z(t) = —o, thereforez(t) is
eventually negative which is a contradiction wiif) > O,
so inequality 10) holds.

Now, usingZ® (t) > 0 in (8), we get

rOE 1)1 <0

4 Main Results
Theorem 1. Assume that ItHg, (3) hold and there exists

a positive real-valued -differentiable functiod(t) such
that for all sufficiently larget wheret;(Tp) > t;, we have

t

msup/ [5(91Qa(s) + Quls) (S “A()
y__ G,
e CT-C I

(12

and R is a positive real-valued-differentiable function
such that

. R1) ~RA1) <0 (13)
rV(t)jfl—l1—>As
ry(s
Where
Lot - pa) g 20 (14)
5=0% pT‘S . 3, (t):=max{0,5(t)},
bl P a>p
At) = 15
Y {[bzmal)w“ a<p e
vl B
Ct) := {bo Lo ;Z ! (16)
el 7y <L
Qu(t) = (1 pa(ra) ~ pafra(1) NEEA gy ),
and
Qalt) = (1~ pa(rat) ~ pa(ra(t) NEA 2 by )

Then, every solution ofl is oscillatory on|tg, o).

Proof. Assume thak(t) is a positive solution ofX) on
[to, o). Pickt; € [to, )T so thatx(t) > 0, x(7i(t)) > 0and

x(ni(t)) > 0,i=1,2 on[ty,o).(whenx(t) is negative, the

proof is similar). Using Lemm4, we see that

<l=

(92 (9))
b

> [ £

Lrv(s)

Z(t)=zt1) + As

17)

then z/R is a non-increasing function. Now from the
definition ofz(t), we see that

(t) =z(t) — pr(t)x(Na(t)) — (t
Z(t) = pa(H)z(m(t)) —
)

>(1- pl(t)z(z(lt)t)

p2(t) R(g(zt()t)) )z(t) for all

P
AVANT!

> (1-pa(t)— (18)

Choosingt, sufficiently large such thag > tg, 11(t) > t1
forallt € [tg, )T, then

(T (0) > (1 Pa(r(0) — pa(r(0) ey (1)
(19)
Now from lemmad, we have
t
2(0) < 2(t) + V()2 1) [ £
7 (s

Thus there exidt € T and suitable constanivg andb, > 0
such that
t
bo < z(t) < by - = bom(t), for allt > ts.
t1 rv (S)

(20)

From lemma4, we obtain that

1 1 y y
5> e O D) > (00)@ (00),
(21)
hence .
A1) > N0 4 6q)) 22)
rv(t)

(@© 2017 NSP
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Also, from lemma2, we have

pAMZ ), B=1
Z@0)* = (23)
B (Do),  B<1
Define the functiomw(t) by
_ s [OE D)
w(t) (t)T(t)' (24)

Thenw(t) > 0,0n [Ty, )r, whereTop = max{ts,ts} and

W) = (5

141

Substituting from the above inequality, usirig’ and 0)
in (25), we obtain

R(T1(t))
RYAD-

P(t)S()

wA(t) < ~8(t)Qu(t)] 3(1)Q2(t)

+(5A(t)— (G(t))

\/

Q)+ f;g;)ww(t))

3(t)r(a(t)(Z (o))" 1)°
A1) (o(1) ’
using @3), (22 and @1) in the last term of the previous

SO +r(0(0)( (o) (G)?.  INeaually, we obtain
- (%)(r(t)(zﬂamﬂ Fr(o) (A (o). W (1) < B0 [ 17AD - 5000
855 (1) - 50)( (1)) LB ) BE ) (001
BO)A(0)) 3(a(t)) rY () (2o (t)))B+1
RT1(1)) 54 ()
From (1) andH, we have — = 3(0QuI g 1AW ~ 5)Q2(t) + 57 wat)
1+
(rt)(Z (1)) + p(t) (2 (1))Y + qu(t) (X(12(1)))* + da(t) (X(T2(1)))P < 0. - ﬁé(t)(r(la(t))) (zA(ch(t)))VH (Z(G(t)))%fl
0 () (o)t
Consequently, from1(©) and (25) we get <—5(t)Q1(t)[R(Tl(t))]aA(t)—5(t)Q2(t)+ 34 (1) (o ()
. R 5(0()
BS(C() )
— o o -1 , (26
w() < BR800y - 2o amn)” oyt 9
o(t) g, 04t where
SO (a() (a1 A TAPEE A
()P (o(t)) b (f) y
_ V+l
—-s@u B - sQun (U yp A Ty andusig lemmawih
p(t) 54 (1) x = [POCM) i 60y
I RATCI MR (B(a(U)r (1)
SO E @) O e ang
AOF(0(t))
B BSBCH)
using @1) and @4), we get A3(0®) " (5(at)) V(1) ’
W) AN o) @ew)  wo) ~— wehave
o(t) — B B ) ’ -
0~ A #(o(t)) (o(t)) .0 oy PG o
hence 8(a(t)) (8o V(L)
5 VAL )(6 (H)r+
0> G e) “pyror amon - 27

(@© 2017 NSP
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Substituting from 27) into (26), we obtain
W (1) < ~BOQU [ 17D - 512l
Yoo @ m)rt
TRy P SYOIoN)
Integrating the above inequality frofig tot, we get

[ [8(9102(9)+ Qa9 (A -

To

Vo (9@ (s)
<
B+ 7 sveore A=)
which is a contradiction with12). Then every solution of
(2) is oscillatory.

Theorem 2. Assume that HHg,(14), (3) hold and there
exist functions kh such that for each fixed t, (ts) and
h(t,s) are rd-continuous functions with respect to slbra:

{(t,s):t>s>1o},

Hit,t) =

and H has a non-positive continuodspartial derivative
H%s(t,s) satisfying

0,t>to,H(t,s) >0,t>s>to, (28)

“HA(t,8) = h(t,s)(H(t,s)) 71

If there exists a positive and differentiable funct®dnT —
R such that for all sufficiently large twherets(To) > t1,
i=1,2 forallt € [Tp, ), we have

(29)

R(ta(t))

R A

limsup———

1
SR T A ()]

o\ﬁ

where

G(t,s) = S(S)Hlﬂl (t,s) — o(a(9)h(t,s), Gi(t,s)

Then every solution ofl] is oscillatory.

=max0,G(t,s)}.

Proof. Letx be an eventually positive solution df)( Then
proceeding as in the proof of first part of Theor&mntil
we get @6), it follows that

wA(t) < —3(t)Qu(t)[

34 ()
5o

R(T(1) q
“RY AL - 8(Q()
B3(LC()

—
(6(a()) rv(t)
Multiplying both sides of the previous inequality by
H(t,s), we get

A

w(a(t)))

HL93(0) [ Q) Ry AW +Qalt)] < ~H(E.SWA(D)
BOHLY o BOUCIH(LS
S W (0 (t).

S ot)r (1)

—w(t) <w(To),

Integrating both sides of the above inequality frogn— t
and using integration by parts, we get

t

JHE98SE)

To

Rni(t)
R(t)

191A(S) + Qo(5)]As <

t

H (t, To)w(To) — / [—HA5(t,9)\W(0(5))AS+

To
t
+

S(9)H(t,s)

o(a(s))

B /‘56<s>c<s>H<t,s>M(
1 & (a(9)rv(9)
t
< H(LTO)W(To)ﬂL/

To

) jww\(a@ms 1)

% 9Ma(e)rv(s)

o(s))As

G+(t,5)

30( ))HX(t,s)w(a(s))As

where
G(t,s) = S(S)Hl‘Al (t,s) — d(a(s))h(t,s) andG.(t,s)
=max0,G(t,s)}.

Using lemma3 with

BOSCOH(LS) 3

X = T w(
A (a(9)rv(s)
and G (t,8) ,BO(S)C(S), =1, 1
Y= (2 ERE IR,
ry
we get
Gi(t,9), 1 ~ B3(s)C(sH (,S)WA
5(0(5))H (t,sw(a(s —6A( TR (o(s))
yY ()(G+(t s)rHt
Sy ooy P
Substituting from 82) into (31), we get
t
1 R(11(t))a
M T/ [ H.95(9[Q2(s) + Qul [~ s I7A(S)
yY r(s)(G(t,9)"**
TP egony JAs= M)
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which is a contradiction with30). Then every solution of
(2) is oscillatory.

Theorem 3. let (4) and all assumptions of Theoreinor
Theoren® except ) hold. If

00 t
[ 51/ ert. o)+ qujadiat ==, (33)
To rv(t) To

for all sufficiently large §, then every solution x of
equation () is oscillatory orlim;_,. X(t) = 0.

Proof. Assume thatX) has a non-oscillatory solution on
. Then, without loss of generality, we assume that

[to, ®)T
X(t) >0, x(7i(t)) > 0 andx(ni(t)) > 0,i=1,2forallt €
[t1, )T, t1 € [to, ). In View of (2), we havez(t) > x(t) >
0 fort € [ty,o0)r. From Lemmad, we find thatZ?(t) is

either eventually positive or eventually negative. Thus we

consider the following two cases:

Casel.Z2(t) >0 for t € [tp,0)r.

As in the proof of Theorent, we obtain a contradiction to
12.

Case2.Z2(t) <0 for t € [tp,0)r.

In this case, we have

limie2z(t) =1, | >0.
Now, letl = 0. If this is not true, then for ang > 0, we
havel < z(t) < |+ &, eventually.
If pi(t) +p2(t) <p<landO<e<I(1—p)/p,then
X(t) = 2(t) — pa(t)X(M1(t)) — P2(t)X(n2(t)
> z(t) — pa(t)z(na(t)) — p2(t)z(n2(t))
> 1= py(t)(1+€) — pa(t) (1 +£)
>1—p(l+¢),
hence
X(t) > m(l +¢&) > mzt), (34)
where
_ | _11-p)—ep
Tl+e T l+e
TakeTy € [t, ) such that

211 (1)) > 2(t) > Z(1a(1)) > 1.
Consequently, from34) we have

> 0.

(35)

X(t) > mlforall t € [Tp, ). (36)

Defining

u(t) =r(t)[2* (1)) 12 (1) =
then @), (36) and @5) yield to

—rOIZ2OF =) 1),

(1) = )~ Hx(m(D) - ol X))
< R0 - @O (1) - @l (200
< R0 - (a0 - (m)Paett)
< SR ut) ~ Niau(t) + 0] 37

whereN = min{(ml)?, (ml)?}. The inequality 87) is the
assumed inequality of Theorem 6.1 Bj,[see also Lemma
1in [5]. Hence

t

() < UTo)e 5 (1,To) N [ e5(t,0(9))[a(s) + ()]s

To
<- N/

for all t € [Tp, o)

1(S) + G2(s)]As

(38)

then

<=

At)< NV | 1(9) + 0a(9)] A8

t
[t

T

Integrating fromTp tot, we get

z(t) < z(To) — %j[%j es(t,o (s))[ql(s)+q2(s)}AsﬁAu’

(39)
from which we getlimi_»z(t) = —co. This is a
contradiction.  Hence, limi,.z(t) = 0. Since
0 < x(t) < z(t), thenlimi_.X(t) = 0. This completes the
proof.

5 Examples

In this section, we give an example to illustrate our main
result.

Example 1Consider the equation

[P OP O] + A OF 20+ 1x0)+

gt xt+1)=0, te2Z t>ty:=2 (40)
where
1
Z(t) = x(t) + ZX(m(t)H t+—2X(t)’
ftu) = (352)" v angy(t,u) = (552) 3P
0
Here
2420 1 _ ,2(t+3),p1
1 1
r(t) = 53, P = ZM2(t) =t=Ta(t), T2(1) =t + 1,
1 1
<
ni(t) <t pa(t) = > p2(t) = t12
TakingR(t) = J¢ —fi, hence {3) holds. Takinga > 8 >
Y(s)
y, we obtain
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-1

O<=

At)=bI P cit)=b
SinceT = 2%, g(t) = 2t andu(t) = t,then
Py 1ot
1—u(t) =1 ttz_ n

Using Lemma 2 inj], we obtain

t
ep(t,2)>1— ff’(—As= 1-f348s=2
r 2

SO
t t

r(s)
HenceH;-Hs and @) are satisfied. Moreover,
Rina(t) _, 1 1

RY) =~ 2 t+2
t

T 2t+2)

2

1—pa(t) — p2(t)

so, condition 14) is also satisfied. Now assume that
L Since,

3(t) =t. Henced(t) = 1 L > 0,5, (t) = F¢
B R(n2(11(1))) \a
Qu(t) = (1— pa(1a(t)) — Dz(H(U)ﬁ
=[1- % - Hiz]a(h(t)
= [z @
B 1
2pd P
and
Qz(t) = (1 — pa(12(t)) — pz(TZ(t))%
=[1- % - Hia]ﬁch(t)
- [2;;13)]3 2(t)
B 1
=5
then
t
insw 3(9)102(5)+ Qu(9)~ Al
v ()(3 ()™
TR D eons AT
t oyl
T —

s B_
o BYby "y + 1yt

Hence by Theorer, equation 40) is oscillatory.

>0  forallt e [2,00)r.

forallt € [2,00),

t
/[i e (s 2)]% >/[szé]hs:z%/shs—woast%oo.
2

)¥au(t)

|As= .

6 Conclusion

In this paper, we use Riccati transformation technique and
the generalized exponential function to establish some
new oscillation results of second-order mixed nonlinear
neutral dynamic equations with damping on time scales.
Our results not only unify the oscillation of differential
equations and difference equations but also improve the
results established in 1I[,[2], [6]-[9], [12, [13],
[15-[20]] that can not be applied tatQ), but according to
Theorem 1 we obtain that every solution of4Q) is
oscillatory. Also, we found that Yang and L] and
Zhang and Liu 20] imposed many conditions on the
function 1, like T([to,+%)r = [T(to),+)r,
T2(t) > 19 > 0 andto d = S o T, and they wished to get
other methods in studying their equations without
requiring these restrictive assumptions (see[Remark 3.1,
[18]]). Our results achieve this goal. beside that the
results in Theorem 2.1 and Theorem 2.3 of Jing and Li
[12] can be achieved whep(t) = p2(t) =0,a=8=y
and g(t,12(t)) = 0. Also when p(t) = p(t) = O,
a = B =y, choosing R(t) = fttl fs> and either
ry(s
g(t,12(t)) = 0 or f(t,ry(t)) = 0, we obtain the same
results of theorem 2.1 and Theorem 2.2 of Erbe et@l. [
So the results of]2] and [9] can be considered as special
cases of our results. So that by using the results in section
4, we can obtain some suffcient conditions for oscillation
of all solutions of Eq. ) which are essentially new.
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