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Abstract: In this article we study a new family of distributions in theat line. The proposed model can be seen as a suitable model
for fitting symmetric and kurtotic datasets. It arises as @tumé of the Laplace and bilateral gamma densities. We ssodye of its
analytical properties and estimate the unknown paramatsirsy maximum likelihood method. Algorithm of simulatiomda
applications to the real dataset of monthly interest rata dse presented. An asymmetric generalization of the neweimis
discussed.
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1 Introduction

The success and accuracy of the statistical data analysénde mainly on the assumption of the underlying probabilit
distribution. In recent years there has been a growingestein studying different symmetric and their asymmetric
parametric families of distribution. One reason for thishiat many of the existing symmetric families of distribun$o
are not able to model the kurtotic, skewed and heavy tail¢al skets arising in various real life situations. Also, we can
see that many of the symmetric family of distributions aramodal so that it is unable to model the bimodality inherent
in the dataset. So there came the importance in the searalnofamily of symmetric distributions. One easy way to
tackle this problem is by the symmetrization of distribusavith positive support. In this paper, our aim is to invgete
a probability distribution that can be derived from the Uadprobability distribution and is to be found a suitabledab
to fit many data sets.

Lindley(1958,1965) introduced a new family of continuoistibutions to a random variab¥ with positive real line
as support. A random variabkis said to follow Lindley distribution with parametérif its p.d.f is given by

92
(6+1)

Ghitany et.al (2008) studied about this distribution inadleind discussed its reliability properties. Frobnl] it is clear
that Lindley distribution is a mixture distribution of expential(6) and gamma distribution with paramet&: 9). Also
the distribution is unimodal and positively skewed. Theyehahown that even though the Lindley distribution is simila
to the exponential distribution it can be used as a betterafrtbdn the exponential distribution in many situation.
Different extensions of Lindley distribution can be seestmtistical literature. Nadarajah et.al (2011) introdlice

a generalized form of Lindley distribution and shown thas ttistribution is better alternative to Gamma,Lognormal
and exponetiated form of different distributions. Zakelea and Dolati (2009) studied a more flexible form of Lindley
distribution. Some other extensions are Power Lindleyribistion of Ghitany et.al (2013), generalized Poison-Léyd
distribution of Mahmoudi and Zakerzadeh (2010).

Since, Lindley distribution shares many advantages in iifiadets extension into the real line as support produces a
competitive model for many different class of symmetridrilisitions with support ofi—oo, ). In this work, we propose
the symmetric extended Lindley distribution and study theartant properties. Estimation of the unknown parameters

f(x) = (1+xe x>06>0 (1.1)
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of the distribution are done using the method of maximumiilikedd. As an application, we successfully fitted the model
to the monthly interest data set which has been considerathbiny authors see Vandorp and Kotz(2002).

The paper is organized as follows. Section 2 is devoted tm¢dy introduced Double Lindley distribution and its
properties like moments, skewness, kurtosis and the gningasures. In Section 3, we obtained the Maximum likelihood
estimator of the unknown parameter. Simulation procedudésicussed in Section 4. The new model is fitted to a real data
set in Section 5. An asymmetric generalization of the nemiyoiduced distribution is considered in Section 6.

2 Double Lindley Distribution

If f(x) is a probability density function corresponding to a r.v Xing support on(0,) then it can be converted into
symmetric about zero by defining
9(x) = Kf([x]), —eo<x< +oo (2.1)

wherek is the normalizing constant. Now we extend the Lindley distiion into the complete real line as support, by
taking f(x) as the p.d.f of Lindley distribution given {i1.1). We obtain a new family of distributions which we termed
it as double Lindley distribution and denote correspondengdom variable aX — DLD(8). The probability density
function (pdf) of a DLD random variabl€ with a scale parametéris given by

92
Ty

(1+[x)e ™ —<x<0,6>0 (2.2)

Note that the probability density function @fLD(0) random variable can be viewed as mixture of two probability

densities with representation
fo(x) = Bf1(x) + (1 —B)f2(x), (2.3)
whereB = 125, f1(x) = §e%X, the probability density function of a Laplace random vakéawith mean zero and

variance B2 and fo(x) = %2 Ix|e~®X, the probability density function of a two sided gamma randemable with shape
parameter 2 and scale parameder

The probability density function is unimodal for the valw#® > 1 with mode located at the point zero and it is bimodal
for the values 0B < 1 with modes concentrated at the poiit$l — 3).

The distribution function is

S (1+0(1-x)e™  ifx<0;
_ 2(e+1)( ) <0;
0= { 1= 2—<el+1> (1+6(1+x))e if x> 0. (2.4)

Figure 1 shows the shape of the pdf &iLD(0) for different values off. From the figure it is clear thddLD(60)
distribution is symmetric and becomes more peaked for fargkies of6. Next we study the analytical properties of
DLD(6).

2.1 Moments and Related Measures

Ther™" moment about origin of ®LD(8) random variable X is given by

o F(r+1) r+1
EXD = 2@+ne—t (” 0

Since it is a symmetric distribution, note that all the oddesrmoments are zero f@LD(0) distribution.

)(1+(—1)’),r =1,2,3... (2.5)

Also, in particular, we obtai (X) = 0 andV (X) = Qzéflf’e)).
The kurtosis coefficient is given by,
_ 6(6+5)(6+1)
Be=="5 gy (2.6)

Cumulants

The characteristic functiop(t) = E ((—:J‘X) of DLD(8) distribution can be easily derived using the mixture repnéstion
of the density function.

Using 2.3, we can write¢(t) = Boa(t) + (1 — B)¢2(t), where ¢1(t) and ¢,(t) are the characteristic functions
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Fig. 1: Shape of the density function for different valuesfof
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Fig. 2: Peakedness of the DLBJ distribution for the different values &

corresponding tds (x) and f2(Xx) respectively.

But we havep,(t) = 929—;2 andg,(t) = %, then the characteristic function od.D(6) random variable as
92 92 —t2
*O=TreEe e <9+ 62+t2> @)

2.2 Entropy Measures

Renyi Entropy
An entropy of a random variable X is a measure of variatiothefincertainity. Jaynes (1951) introduced one of the most
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powerful techniques employed in the field of probability astdtistics called the "maximum entropy method”. Renyi
entropy is defined by

1(y) :—Iog</fV dx) y>0,y+#1
62 4 —+o00
Y( - Ye—YoIX
/f X)dx = ( (e+1)> /_w (14 [x])"e "0 dx
0 e
= / (1—x)Ye"dx 4 ¢ / (1+x)e™"%dx,  wherec=
00 0

62 14 g’
“2(5053) o V)

92
2(6+1)

RN PO S S S
1
= —log6 + 1—_y[6y+logl'(y+ 1,y0) —ylog2(6+ 1) — (y+ 1)logy+ 1092

Shannon’s Entropy

Shannon(1948) introduced the probabilistic definitionrdfepy which is closely connected with the definition of ety

in statistical mechanics. Then the Shannon’s entropy ineéfoyE (—logf(x)),it is the particular case of Renyi entropy
for yincreases to 1. Limiting increases to 1 im(y) and using L'hospital’s rule, we obtain

ef

E(—logf(x)) = —log8 —6+2— oriar r(y+1,y6) (2.8)
whererl (.,.) is the incomplete gamma function defined by
I'(a,x):/ t9 e tdt (2.9)
X

Next we compare the DLD with Laplace distribution with redjgo the tail behaviour

Tail comparison

Here we compare the tail behaviourBED(6) with Standard Laplace distributidn(8). For this purpose we use the
concept of limiting ratio (LR) of two probability distribigns, The same idea is used by many authors see Sastry and
Deepesh (2016). Consider the random varialfles DLD(6) andX; ~ L(8), then the limit ratio(LR) of their density is
given by

fxl(x)
LR= lim_ fe® (2.10)
1+ |x|)e-O
— lim g (1 M) (2.11)
X—>00 §e—9\x\

Here,LR — 0 asx — o which means thafy, (x) has thicker tail tharfx, (x). That is tails of theDLD(8) probability
density function is more thicker than that of the Standandlaee probability density function. See Figug.(

3 Estimation of the parameter

Maximum Likelihood Estimation
Letxy, Xo, ..Xn be a random sample from the DILB®) distribution. Then the Likelihood function is given by

n 2
)= [z (L e ™ @1

Taking logarithm on both sides we obtain the log likelihoaddtion in the form

logL(8) = 2nlog(6) — nlog2 — nlog(1+ 0) — 6_i|xi| + _ilog(lJr [xi]) (3.2)
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Fig. 3: Tail comparison of DLD@) with Standard Laplace Distribution.

On differentiation and equating the log likelihood functiwe get the score function as

dlogL(8) 2n n n
T():Tm‘ii"*':o (3
=

which gives a quadratic equation thas
— — — 1 n
X|62% + (|x| —1)0 — 2= 0,where|x| = - 21|x;| (3.4)
i=

with roots

(x| — x| —1)2+8|X|
oo (X =1) £ /(X =) +8|x] (3.5)
2|x|

Sincef > 0, only positive value 08 need to be taken.

4 Simulation

Making use of the mixture representatiéhd), random observation§ can be generated using following algorithm.
step 1: Generatg; — U (0,1).

step 2: Generate; — Exp(0), i=1,2,...,n; k=1,2.

step 3: Sef; = B3 — Ey

step 4: Generatg,; — Gamma(2,0), i=1,2,...,n; k=1,2.

step 5: seY; = Gy — Gy, i=1,2,...,n; k=1,2.

step 6: IfU; < B = 1%9' then seiX; = Z;, otherwise seX; = VY.

Next we estimate the unknown parameter of the proposedigtm.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

582

Nitha K U, Krishnarani S D: A new family of heavy tailed symmiet..

Table 4.1: Parameter Estimates.

n

— 8=01
§ Bias MSE

— 6=05
§ Bias MSE

— 6=15
6 Bias MSE

— 0=2
6  Bias MSE |

50

0.1317—-.0317 03045

0.6211-.1211 3104

1.7391—-.2391 110673

2.2699-0.2699 15195

100

0.1309—-.0309 12574

0.6133-.1133 22919

1.7232—-.2232 95899

2.2602—-0.2600 14700

500

0.1298 —-.0298 02510

0.6091—-.1091 21234

1.7159—-.2159 79003

2.2433 —.2433 10559

100Q9

0.1297 —.0297 02467

0.6084 —.1084 21164

1.7120—-.2120 77104

2.2431-0.2431 1037

5 Application

As an application we have used on monthly interest rates Goyear treasury maturity rates over the period from
1977-2001. The same data set is used by many authors see Yam@bKotz (2002). Table 4.1 displays the maximum
likelihood estimates and the corresponding value of Kolatog- Smirnov statistic for the fitted model. Figude
provides the histogram and curve of the probability derfsitiction to the monthly interest data ( American. can, Marti
Marieta and Value. Weighted CRSP. Index)

Table 5.1: Estimated parameter values and goodness of fit to the data.

Data m.l.e K — Sstatigtic P — value
American.can 18.93276 01373 01896
Martin.Marieta 13.66158 011052 04255
ValueWeighted.CRSP.Index 30.75854 012213 03324

An asymmetric generalized form of the proposed distrimiiconsidered in the next section.

6 Asymmetric DLD Distribution

Since the DLD distribution is a symmetric family of distriian, it limits the applicability to real data sets which da@
skewed. There are different methods of introducing skewiteso a symmetric family of distribution see for example
Kozubowski and Ayebo (2003), Kotz et. al (2001) and Azzalirf185). For an application to so formed distributions see
Julia and Vives Rego (2005) and Kozubowski and PodgorskKiIP(Here we introduce an asymmetric form of DLD
distribution using the idea of inverse scale factors of Badez and Steel (1998). In this method a new parameter is
added which acts as a skewing parameter in the symmetri¢yfafdistribution. The probability density function of an
asymmetric Double Lindley Distribution( ADLD) distribatin with parameter8 > 0 andk > 0 is given by

{

We denote the random variable having the above probabiéitysitly function asx ~ ADLD(6, k). Note that for all

values ofk other thark = 1 the above distribution is asymmetric and whes: 1 gives symmetri©LD(60) distribution.

The Figure5 shows the shape 06(1) for different values o8 andk. The raw moments cADLD(6, k) can be derived
as

2 K
(6+1) (1+kK2)

(1—2%)ek if
(1+ kx)e % if

x<0
x>0

f(x0,Kk) = (6.1)

E(XT) = 6° (/O X (1_5)e"%dx+/°°xf(1+ kx)eGKde) (6.2)
(0+1) \J o K 0
e (1 (52)) e ]
In particular, wherr = 1, we obtain ,
E(X) = 6%2 (1_KK ) (6.3)
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Fig. 4: Fitted model to the monthly interest data
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r=2,
2 (0+3)2 K 3, 1
B = @erniie Kt ie (6.4)
r=3,
0°> K 45 1 4
3 __ Y 4 = - ™+
E(x)_9+11—|—K2<K+ 6 K 9K5) (6:5)
r=4 ) 5
02 56 1 5
4y S5, - -
EXD = o115 (K T TS 9K6) (6:6)

Since the central moments are in lengthy form, their exprassare omitted here. We numerically calculate the values
of the first four central moments, moment measures of skesvaied kurtosis for different values éfandk using R
programming and they are given in Table 6.1. Apparently #tmesinference about the skewness and kurtosis can be
drawn from the form of the pdf given in Figure 5.
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Table 6.1: Moment measures of skewness and kurtosis for differenegabfie andk.

Parametersd,k) | central moments Skewness Kurtosis Inference
o = 1.4692
3,3 Us=-3.1796 | -1.7856 | 7.7198 | Negatively skewed and lepto kurtic
s = 16.6625
U2 = 0.6826
3,05 Uz =0.9363 1.6242 | 7.2443 | positively skewed and leptokurtig
g = 3.4758
M2 = 0.333
3,1 Us =0 0 5.3345 Symmetric and leptokurtic
g = 0.5926
o =27.26
0.5,0.6 Us = 146.2038 1.0270 | 5.0177 | positively skewed and leptokurtig
Mg = 3729493

The distribution function and characteristic functionof+ ADLD(8, k) is given by

6x
k2e'k ) _
F(x) = W&H@( —0L ifx<o;
(1+6(1+kx)), if x> 0.

(0+1)(1+k2

6%k 1 1 1 K
U= Trnase i+ <1+ k(it+g)> ek (”it—@k)]
B 6%k 0+ 1-+kit it—k(@—1)
O+ +K) | k(it+8)2  (it—6k)?

The Suvival and hazard functions are

Ox
k2ek

s = | 1~ wrnang 1T OA-R))L fx<0;
Okx ]
T (L+0(1+k9), if x>0.

and
Ox
QPerlkn___ifx<0;
H(X) = { (6:)(@)(1-ek)+6(1tke k) +1
62k(1+kx) .
T70(1rk0) if x> 0.

The Renyi entropy takes the form

/f ( eejrl))y(yee)y<9v+1>’_(y+1’ye) [“H

1
7(y) = —logl + ry[@er logl (y+1,y8) —ylog2(6+1) — (y+ 1)logy+log(k + E)]

7 Conclusion

We have introduced a new family of symmetric distributioms real line, which is a generalization of the Lindley
distribution. Properties of the newly introduced Doubladley Distribution are studied and estimation of the partanse
is done. Comparison with Laplace distribution is done rdupay the behaviour of tail probability. Application of the
distribution is illustrated with the help of a real data $&mh. asymmetric generalization is also provided for modellin
skewed data sets.
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