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Abstract: In this study, a perturbation-iteration algorithm, nam@\A, is applied to solve some types of systems of fractional
differential equations (FDEs) and also the convergenclysisaf the method is presented for the first time. To illattrthe efficiency

of the method, numerical solutions are compared with thelteexisting in the literature by considering a systems DEE. The
results confirm that the PIA is robust, simple and reliabléhoeé for solving systems of nonlinear fractional diffeiehequations.
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1 Introduction

As an important mathematical branch investigating the @riigs of derivatives and integrals, the fractional calsudnd

its history is nearly as old as classical integer order aislyPractical applications of fractional calculus coutd he
found for many years from its genesis time. However in lastdes, it has found an important place in various areas such
as control theory]], viscoelasticity P], electrochemistry3] and electromagnetiel].

The evolution of the symbolic computation programs such afldid and Mathematica is one of the driving forces
behind this increased usage. The most important desarptibfundamentals of fractional calculus have been stualed
[5], [6] and [7]. Existence and uniqueness of the solutions has also bediedtby B] and the references therein.

Parallel to the studies in applied sciences, systems ofidread differential equations (FDEs) allowed scientisis t
describe and formulate various important and useful playgioblems.

The number of differential equations whose solution canbeofound analytically. Those situations appear in FDEs
more than the other types of differential equations. In taise, the study of algorithms in numerical analysis is used
for finding favorite approximate solutions of FDESs. In recgaars, a significant effort has been extended to propose
numerical methods for this purpose. These methods includetjonal variational iteration metho®,[L0], homotopy
perturbation methodlfl,12,13] and fractional differential transform methot4, 15,16).

In this study, we have applied the previously developed nteENA to obtain approximate solutions for some systems
of FDEs. Our method is suitable for a broad class of equatiadsdoes not require special assumptions and restrictions.

Our results show that only a few terms are required to obtaiapproximate solution, which is more accurate and
efficient than many other methods in the literature. In galh®& A method has been classified with respect to the number
of correction termsr() and with respect to the degrees of derivatives in the Tagtpansionsr(). Briefly, this process is
represented as PIA(n,m) that will be explained completeiyé introduction of the method.

In this paper, at first we present basic definitions of framlccalculus and investigation of its mathematical space,
then we express in details special case of Perturbatioatibe Algorithm PIA(1,1) to find its iteration formula. Iié
sequel, we prove convergence of PIA method for the first tintevehenm = 1 andn = 1 to find special conditions that
convergence of mentioned model holds. For the convergeéopesteria appointed for PIA(1,1) and same process holds
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for PIA(1,2), PIA(2,2) and so on. In order to show effectiess, efficiency and reliability of the method, we invesigat
an applied example. At last, we summarize obtained restiteeanethod in the section of conclusion.

2 Basic Definitions

In the literature, there exists a few fractional derivatilefinitions of an arbitrary order. Two mostly used of them are
the Riemann-Liouville and Caputo fractional derivativese two definitions are quite similar but have different aroe
evaluation of derivation, ?].

Definition 1.A real function {t), t > O is said to be in the space,C(u > 0) if there exists a real number(p ), such
that f(t) =tPfy(t) where { € C[0,), and it is said to be in the spacelGf f (™ € C,, [17].

Definition 2.The Riemann-Liouville fractional integral operat@i®) of ordera > 0, of a function fe C,, u > —1is
defined as$): t
1 ]
J"ft:—/ t— 1) f(r)dr, a,t>0 1
0= Fqy Jy €= D@ (1)
and Pf(t) = f(t), whererl is the well-known gamma function. ForsfC,, 4 > —1, a,f > 0andA > —1, the following
properties hold.

—JOJBf(t) =J9FB (1),
—J9JBf(t) = JRJ (1),
_J9th — r(A+1) tA+a

r(A+i+a) :

Definition 3.The Caputo fractional derivative of f of order, f € C™;is defined as]:

1

DY f(t) =™ M (t) = Fim—a)

t
/O(t—r)m*"’*lf(m)(r)dr, a,t >0, 2)

where m- 1 < a < m with the following properties:

-D% (af(t) +bg(t)) =aD f(t) + bDYg(t), a,b € O,
—DAJYf(t) = f(t), _
=9DYf(t) = (1) - ¥ T (0)§, t > 0.

3 Overview of the Perturbation-Iteration Algorithm PIA(1, 1)

As one of the most practical subjects of physics and mathegyalifferential equations create models for a number of
problems in science and engineering to give an explanatioa better understanding of the events. Perturbation rdstho
have been used for this purpose for over a centLi8y1[9, 20].

However, the main disadvantage of using the perturbatiahoads is the necessity of a small parameter or to install
a small auxiliary parameter in the equation. For this readm obtained solutions are restricted by a validity ranige o
physical parameters. Therefore, to overcome the disadgastcome with the perturbation techniques, some methods
have been suggested by several auth®t2P,23,24,25,11,26,27,289].

Parallel to these studies, a new approach, perturbagoativon algorithm, has been proposed by Aksoy, Pakdemirli
and their co-workers29,30,31]. In the new technique, an iterative algorithm is estalgisbn the perturbation expansion.
The method has been applied to first order equati®@lsjnd Bratu type second order equatio29] fo obtain approximate
solutions. Then the algorithms were tested on some nomlhresgt equations als@]]. The solutions of the Volterra and
Fredholm type integral equation37], ordinary differential equation and systen®3] and the solutions of ordinary
fractional differential equation8] have been given by the present method, finally.

In this study, the previously developed technique is apibesystems of nonlinear fractional differential equasifor
the first time. To obtain the approximate solutions of edquregj taking one correction term in the perturbation exmamsi
and Taylor series expansion up to the first derivativesnize1l,m= 1, generates PIA(1,1) iteration algorithm.

Consider the following initial value problem.

Fe (D%uy, uj, €,t) =0, 3)
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k=12,... K,
i=1.2,... K,
u®O)=c, m—l<a<m, 4)

wherek is the number of the equations in the system B¥dis the Caputo fractional derivative of order As more
clearly the system could be expressed by:

Fl = F]_ (uga)7ulau2?"'7uk7€at) = 0’

(a

FZZFZ(UZ )7u17u27"'7uk787t) :07

Fk = Fx (u,(f),ul,uz, . .,uk,s,t) =0. (5)

In this method,¢ is the auxiliary perturbation parameter afd) is the only correction term in the perturbation
expansion.

Uk,nt1 = Uin + £(Uc)kn,
Uins1 = Uicn + E(Ukn, (6)

where subscriph represents the — thiteration.

Replacing(6) into (3) and writing in the Taylor Series expansion far- th order derivatives in the neighborhood of
e =0gives

Mo /d\"_ 1"
Fq = —[(—> FK] €M k=12,... K, @)
nZOm! de £=0
for
d ol 4 . K (0Uj7n+1 0 )+i @
de oe 0“1&%1 &\ dg Oujna) O’

wherem represents then— th term in the power series expansion antepresents tha —th term in the Taylor series
expansion.This equation is defined for {imet 1) — thiteration equation as follows:

Fk (uf{;)_;'_l’ uj7n+1, g,t) = O (9)

Replacing(8) in (7) yields our iteration equation:

m m
M1 | ()™ o K P P
R=S = : +5 W) jn—g—+32 | Rl €m=0, (10)
ngo m! o¢ 0uf<%>+1 jZl dufn)Jrl o€ oo

wherek=1,2,....K.

All derivatives are calculated at= 0. Therefore in the procedure of computations, each teritaed wherg tends
to zero. The method converges in few iterations and in fadhawe a saturated solution after doing computations even in
the initial steps to find favorite approximate solution.

Beginning with an initial functionp, first (uc)x n 's has been determined by the help(®0). Then using6), (n+1).
iteration solution could be found. Iteration process isgpd using10) and(6) until achieving an acceptable result. The
ability of the method is so high that it can become convergejuist a few of computational iterations. The reliabilitych
effectiveness of the method is shown by an example afteeptieg) the convergence of PIA method.
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4 Convergence Analysis of the PIA

In this section we give a convergence analysis of the method.
Theorem 1PIA(1,1) converges for Eq3) when||ug,1 — U] < € ande’ — 0.

ProofSuppose that the functios, , Ry, , Fy andF; € CJ, u > —1. Meanwhile, suppose that the functibpis
k+1 k

m times continuous and differentiable ¢mb]. The general iteration formula &lA(m,n) is converted tdP1A(1,1) in
recursive relationX0) by substitutingn= 1 andn = 1 that can be stated as follows:

, F Fe+E
U (t) + —X U (t) = ———E£. (11)
F, F,
Uy U

By changingkto k+ 1 in Eq.(L1) to obtain a relation with respect u/gﬂ(t) andug(t) and imposing norm 2 on both sides
of equations, we have:

: Fe+E F
o] < | ===+ |2 el (12)
Uy Uy
: Fe+ & F
’Uk+1H§ ;/ &N+ —FUTH Uk all- (13)
k+1 ul<+1

Now, we need to obtaifiui 1 — Uy|| from Hu{<+1 — Uy
by using the magnitude rules in calculus, we get:

. By rewriting inequalities with respect thuy|| and||ux.1| and

U1 — Ukl = [Jucpal| = [[uid]

Rl (110 Fet £ Rl (o [FetE
= Ugr|| — =l | :
P Pl Fu i

(14)
So we need to obtain bound oo, 1 — uk||. As a result, we need to prove thiat,} is a Cauchy sequence that needs to
be convergent in the defined space. All elementBupf 1 — uk|| in right hand side of inequality are known exc#p{’(H

andHu[(HH. Therefore, we have :

F. F, F
> U1 / U1 Fe + B
||uk+1_uk|| - . uk+1 - F F/
Uk Uk+1 u
k+1
Ry I | |IFe+ £
— . Uk + .
Fuk Fuk FUL

(15)

The functionf, = F (u;(, Uy, e) is a chaotic functional with respect foand it can be written in general state as follows:

_ / _ 1 t u;(,n(s)
Fk_F(uk,uk,e) _I'(m—a)g/o i—s° (16)
+ nlu;(,n(t) + nZau;(,n(t) + n35ul(<ljr>1 (t). 17

in which nj,i = 1,2,3 are constants. Therefore, the functionst;l?fand Fu, can be written based df. We also suppose
. k
thatFuL+l » Fug1 » Fug andFuL #0. SlnceFuL+1 » Fug1 » Fug andFuL € C, 4 > —1, then they are bounded and we have:

F.

Uier1 FUL
—= || <Myg, ||=%| < M2 (18)

I:Uk+1 Uk
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EfgsML‘EfgsM; (19)
Ugra Ug
Therefore, we obtain:
U1 — Ul| > My Hu{(ﬂH ~ MM, — M,. HukH + Mo.Ms. (20)
Now we consider: ) )
U = LU Uy = L Uiy, (21)

whereL is a linear operator that is definedlas- dl() [ that is defined as an operator in infinite dimensional spaiceeS
any linear operator is bounded in infinite dimensional spden we can define

ui]| = L 10l = N i | = 1L Tl < N2 (22)
Then, we obtain:
uicer — Uil = Mp.Np — M1.M; — Ma.Ng + Ma. My = My (Nz— M’l) M (M'z— Nl) . (23)
If ||uk1 — ukl]| — O then, we have
lim (Mg (N2 —M;) +Ms (M;—Nyp) ) =0. (24)
Jim_ (M (N2~ M) + Me (M ~ Ny )

If My (NZ - M'l) = 0 thenM; = 0 or and ifM, (M'z - Nl) = 0 thenM = 0 or M, = N;. The proof is complete. The

proof can be done in similar manner f8tA(1,2), PIA(2,2) and so on. Therefore, we can find such these conditions for
PIA(L,2), PIA(2,2) states and so on. In fact, we have found the condition of stopgss for PIA method by all involved
expressions in the iteration algorithm. Therefore, all glowerning conditions need to be imposed on PIA method to
become convergentjust in a few of computational iterations

5 Application

It is noticed that all computations have been done by Packigkeematica 10.
For an example consider the following system of nonlineactfonal differential equation8§):

D"lul(t) = %Ul(t)
D%up(t) = Uz (t)+ ui(t), (25)

where
O<ag,a,<1

with the initial conditionsu; (0) = 1 anduy(0) = 0. The exact solutions, when = a, =1, are

uy(t) = e2 (26)
and
up(t) =té. (27)
In the system, if add and subtragt, (t) anduj (t) respectively, the system can be rewritten in the followioig:
1
gDalul(t) + u/l,n (t) - gu/l,n (t) - Eeul,n (t) =0, (28)
5D02u2(t) + u/2,n (t) - gu’Z,n (t) —€&U2n (t) - €Uin (t) =0, (29)
(@© 2017 NSP
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wheree is a small parameter. For

/ 1 t uin(s) / / 1
F(uue) = Fran e [ g O tha(®) 2o (0) - Seusa(t). (30)
, 1 t Upn(S)
F (uz,uz,e) = i 02)8/0 7 _'ns)a2d5+ u’zyn(t) — eu’zyn(t) — EUgn(t) — euin(t) (32)
and terms in equatiof5) become
F=upt), Ry=0 Fy=1
Ul,n(t) 1 t uéLn(t)
Fe = —Uj4(t) — = / 7 2
& ul,n( ) 2 + I—(l_ al) 0 (t _s)alds (3 )
and
F=unt), R,=0 Fy=1
1 t Upn(9)
2 2,n
Fe = ~Usn(t) ~Un(t) ~Enlt) + mr =g / g (33)

After writing these terms in the iteration formula, we obtthie following differential equations:

t t —Qay,/ d o /
2<j°( eI ) - ) “’) : Uia (t) (34
and
B ’ t, —ap ’
e (0)+ ) + L ) s e 9 (ol (35)

Beginning with the initial functions
U0 (t)=1 anduz‘o (t)y=0

and using the iteration formula, the following successppraximate solutions are obtained fo=0,1,2,. ..

t
upa(t) =1+ >

Uzvl(t)zt,
1 44201
t) == 8+8t+t?
bl =g (88O gy )
t3 t2—C{2

_ 2, -
U2 (V) =2+ 5 e (27 )

1 24{3-2&1 24‘:2—G1 (9—|—t — 301)
t) = —(48+ 72+ 182 +1t° -
ug 3(t) 48( T A+ 18T [ (4—20aq) r(4—o) )

5t3 t4 t5 t3720{2 t5720{1
Upa(t) =3t +3t°+ —+ S+ —+ — 5 :
’ F(4—2az) 4r(3—a1)?(—5+20y)

6 12 320
B £3-01 (4(40+ 3t (10+1))) o (=72—t(64+T7t)+ (8+t(8+1)) 1)

8 (6— ay) 8l (6— a1) ’
t2792(7241(24+1) + 602(—7 —t+ a2))
- 2r (5—ay) (36)

and so on. In the same manner, the fourth iteration solutipn@) andu, 4(t) are calculated. Again we compared our
results in Figures 1, 2, 3 and 4 as well as in Tables 1 and 2 hélexact solutions.

(@© 2017 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl3, No. 4, 271-279 (2017)www.naturalspublishing.com/Journals.asp NS = 277

Table 1: Numerical results for some valueswf(t).

a1 =05,0,=0.8 ap=ax=1
t uy 3(t) up4(t) ug 3(t) ui4(t) | Exact Solution| Absolute Error
0.0 | 1.00000| 1.00000| 1.00000| 1.00000 1.00000 0.0000000
0.1 | 1.12011| 1.14395| 1.05127| 1.05127 1.05127 2.6260E-9
0.2 | 1.22155| 1.25625| 1.10516| 1.10517 1.10517 8.4742E-8
0.3 | 1.31398| 1.35476| 1.16181| 1.16183 1.16183 6.4897E-7
0.4 | 1.40065| 1.44505| 1.22133| 1.22140 1.22140 2.7581E-6
0.5 | 1.48332| 1.52999| 1.28385| 1.28401 1.28402 8.4896E-6
0.6 | 1.56312| 1.61133| 1.34950| 1.34983 1.34985 0.0000213
0.7 | 1.64087| 1.69024 | 1.41839| 1.41990 1.41906 0.0000464
0.8 | 1.71714| 1.76755| 1.49066 | 1.49173 1.49182 0.0000913
0.9 | 1.79240| 1.84388| 1.56643| 1.56814 1.56831 0.0001166
1.0 | 1.86700| 1.91969| 1.64583| 1.64843 1.64872 0.0002837

Table 2: Numerical results for some valueswf(t).

a,=05,a,=0.8 ap=ax=1
t up3(t) Up 4(t) up3(t) U 4(t) Exact Solution| Absolute Error

0.0 | 0.00000| 0.00000| 0.00000 | 0.00000 0.00000 0.0000000
0.1 | 0.18222| 0.19983| 0.110505| 0.110516 0.110517 2.4666E-7
0.2 | 0.37432| 0.41674| 0.244084| 0.244272 0.244280 8.1286E-6
0.3 | 0.59361| 0.67238| 0.403929| 0.404894 0.404957 0.0000635
0.4 | 0.84506| 0.97264 | 0.593365| 0.596453 0.596729 0.0002760
0.5 | 1.13208| 1.32203| 0.815852| 0.823492 0.824360 0.0008683
0.6 | 1.45755| 1.72484 | 1.074993| 1.091043| 1.0932712 0.0022277
0.7 | 1.82421| 2.18551| 1.374530| 1.404661 1.409626 0.0049654
0.8 | 2.23477| 2.70869 | 1.718357| 1.770446 1.780432 0.0099863
0.9 | 2.69196| 3.29932| 2.110517| 2.195074 2.213642 0.0185684
1.0 | 3.19856 | 3.96263 | 2.555208 | 2.685825 2.718281 0.0324559

6L

50

4r — uq4(t) up 4(t)

L

0.2 0.4 0.6 0.8 1.0 1.2 14

Fig. 1: ug 4(t) andup4(t) for ay = ap = 1.

6 Conclusion

In this paper, we have applied a previously developed nwaleriethod so-called Perturbation-Iteration AlgorithrA(P

to find approximate solutions of systems of nonlinear Foaeti Differential Equations for the first time. We also gitie t
convergence analysis of the method which has not been ddasb&he numerical results obtained in this study show
that PIA method is a remarkably successful numerical teghnfor solving systems of FDEs. Only a few iterations are
required to reach to favorite solution. We expect that tesent method can be used to calculate the approximateswuti
of the other types of fractional differential equationsisas fractional integro-differential equations and frawcdil partial
differential equations. Our next study will be about thegeet of equations.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

278 NS M. Senol, H. D. Kasmaei: PIA for Systems of FDEs and ConuvecgeAnalysis

4 L
8r — ural) — uz4(t
2 L
1
0.2 0.4 0.6 0.8 10
Fig. 2: up4(t) andup 4(t) for a; = 0.5 anda, = 0.8.
45
4.0
35 — PIA solution uy 4(t)
3.0 ~— Exact solution

25

2.0

0.5 1.0 15 2.0 25 3.0

Fig. 3: The PIAuy 4(t) and the exact solutions far, = ap = 1.

7

6

5 — PIAsolution up 4(t)
4 ~— Exact solution

3

2

1

0.2 0.4 0.6 0.8 1.0 1.2 14
Fig. 4: The PIAu, 4(t) and the exact solutions far, = ap = 1.
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