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Abstract: In this study, a perturbation-iteration algorithm, namelyPIA, is applied to solve some types of systems of fractional
differential equations (FDEs) and also the convergence analysis of the method is presented for the first time. To illustrate the efficiency
of the method, numerical solutions are compared with the results existing in the literature by considering a systems of FDEs. The
results confirm that the PIA is robust, simple and reliable method for solving systems of nonlinear fractional differential equations.
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1 Introduction

As an important mathematical branch investigating the properties of derivatives and integrals, the fractional calculus and
its history is nearly as old as classical integer order analysis. Practical applications of fractional calculus could not be
found for many years from its genesis time. However in last decades, it has found an important place in various areas such
as control theory [1], viscoelasticity [2], electrochemistry [3] and electromagnetic [4].

The evolution of the symbolic computation programs such as Matlab and Mathematica is one of the driving forces
behind this increased usage. The most important descriptions of fundamentals of fractional calculus have been studiedby
[5], [6] and [7]. Existence and uniqueness of the solutions has also been studied by [8] and the references therein.

Parallel to the studies in applied sciences, systems of fractional differential equations (FDEs) allowed scientists to
describe and formulate various important and useful physical problems.

The number of differential equations whose solution can notbe found analytically. Those situations appear in FDEs
more than the other types of differential equations. In thiscase, the study of algorithms in numerical analysis is used
for finding favorite approximate solutions of FDEs. In recent years, a significant effort has been extended to propose
numerical methods for this purpose. These methods include,fractional variational iteration method [9,10], homotopy
perturbation method [11,12,13] and fractional differential transform method [14,15,16].

In this study, we have applied the previously developed method PIA to obtain approximate solutions for some systems
of FDEs. Our method is suitable for a broad class of equationsand does not require special assumptions and restrictions.

Our results show that only a few terms are required to obtain an approximate solution, which is more accurate and
efficient than many other methods in the literature. In general, PIA method has been classified with respect to the number
of correction terms (n) and with respect to the degrees of derivatives in the Taylorexpansions (m). Briefly, this process is
represented as PIA(n,m) that will be explained completely in the introduction of the method.

In this paper, at first we present basic definitions of fractional calculus and investigation of its mathematical space,
then we express in details special case of Perturbation-Iteration Algorithm PIA(1,1) to find its iteration formula. In the
sequel, we prove convergence of PIA method for the first time and whenm= 1 andn= 1 to find special conditions that
convergence of mentioned model holds. For the convergence stop criteria appointed for PIA(1,1) and same process holds
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for PIA(1,2), PIA(2,2) and so on. In order to show effectiveness, efficiency and reliability of the method, we investigate
an applied example. At last, we summarize obtained results of the method in the section of conclusion.

2 Basic Definitions

In the literature, there exists a few fractional derivativedefinitions of an arbitrary order. Two mostly used of them are
the Riemann-Liouville and Caputo fractional derivatives.The two definitions are quite similar but have different order of
evaluation of derivation[7,?].

Definition 1.A real function f(t), t > 0 is said to be in the space Cµ , (µ > 0) if there exists a real number p(> µ), such
that f(t) = t p f1(t) where f1 ∈C[0,∞), and it is said to be in the space Cm

µ if f (m) ∈Cµ [17].

Definition 2.The Riemann-Liouville fractional integral operator(Jα) of order α ≥ 0, of a function f∈ Cµ , µ ≥ −1 is
defined as [5]:

Jα f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ, α, t > 0 (1)

and J0 f (t) = f (t), whereΓ is the well-known gamma function. For f∈Cµ , µ ≥−1, α,β ≥ 0 andλ >−1, the following
properties hold.

–JαJβ f (t) = Jα+β f (t),
–JαJβ f (t) = Jβ Jα f (t),

–Jα tλ = Γ (λ+1)
Γ (λ+1+α)t

λ+α .

Definition 3.The Caputo fractional derivative of f of orderα, f ∈Cm
−1is defined as [6]:

Dα f (t) = Jm−α f (m)(t) =
1

Γ (m−α)

∫ t

0
(t − τ)m−α−1 f (m)(τ)dτ, α, t > 0, (2)

where m−1< α < m with the following properties:

–Dα (a f(t)+bg(t)) = aDα f (t)+bDαg(t), a,b∈ ℜ,
–DαJα f (t) = f (t),

–JαDα f (t) = f (t)−∑k−1
j=0 f ( j)(0) t j

j ! , t > 0.

3 Overview of the Perturbation-Iteration Algorithm PIA(1, 1)

As one of the most practical subjects of physics and mathematics, differential equations create models for a number of
problems in science and engineering to give an explanation for a better understanding of the events. Perturbation methods
have been used for this purpose for over a century [18,19,20].

However, the main disadvantage of using the perturbation methods is the necessity of a small parameter or to install
a small auxiliary parameter in the equation. For this reason, the obtained solutions are restricted by a validity range of
physical parameters. Therefore, to overcome the disadvantages come with the perturbation techniques, some methods
have been suggested by several authors [21,22,23,24,25,11,26,27,28].

Parallel to these studies, a new approach, perturbation-iteration algorithm, has been proposed by Aksoy, Pakdemirli
and their co-workers [29,30,31]. In the new technique, an iterative algorithm is established on the perturbation expansion.
The method has been applied to first order equations [30] and Bratu type second order equations [29] to obtain approximate
solutions. Then the algorithms were tested on some nonlinear heat equations also [31]. The solutions of the Volterra and
Fredholm type integral equations [32], ordinary differential equation and systems [33] and the solutions of ordinary
fractional differential equations [34] have been given by the present method, finally.

In this study, the previously developed technique is applied to systems of nonlinear fractional differential equations for
the first time. To obtain the approximate solutions of equations, taking one correction term in the perturbation expansion
and Taylor series expansion up to the first derivatives, i.e.n= 1,m= 1, generates PIA(1,1) iteration algorithm.

Consider the following initial value problem.

Fk (D
αkuk,u j ,ε, t) = 0, (3)
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k= 1,2, . . . ,K,

j = 1,2, . . . ,K,

u(k)(0) = ck, m−1< α ≤ m, (4)

wherek is the number of the equations in the system andDα is the Caputo fractional derivative of orderα. As more
clearly the system could be expressed by:

F1 = F1

(

u(α)
1 ,u1,u2, . . . ,uk,ε, t

)

= 0,

F2 = F2

(

u(α)
2 ,u1,u2, . . . ,uk,ε, t

)

= 0,

...

FK = FK

(

u(α)
K ,u1,u2, . . . ,uk,ε, t

)

= 0. (5)

In this method,ε is the auxiliary perturbation parameter and(uc) is the only correction term in the perturbation
expansion.

uk,n+1 = uk,n+ ε(uc)k,n,

u′k,n+1 = u′k,n+ ε(u′c)k,n, (6)

where subscriptn represents then− th iteration.
Replacing(6) into (3) and writing in the Taylor Series expansion form− th order derivatives in the neighborhood of

ε = 0 gives

FK =
M

∑
m=0

1
m!

[(

d
dε

)m

FK

]m

ε=0
εm, k= 1,2, . . . ,K, (7)

for

d
dε

=
∂u(α)

k,n+1

∂ε
∂

∂u(α)
k,n+1

+
K

∑
j=1

(

∂u j ,n+1

∂ε
∂

∂u j ,n+1

)

+
∂

∂ε
, (8)

wherem represents them− th term in the power series expansion andn represents then− th term in the Taylor series
expansion.This equation is defined for the(n+1)− th iteration equation as follows:

Fk

(

u(α)
k,n+1,u j ,n+1,ε, t

)

= 0. (9)

Replacing(8) in (7) yields our iteration equation:

Fk =
M

∑
m=0

1
m!









((uc)k,n)
(α)

∂ε
∂

∂u(α)
k,n+1

+
K

∑
j=1

(uc) j ,n
∂

∂u(α)
j ,n+1

+
∂

∂ε





m

Fk−1





m

ε=0

εm = 0, (10)

wherek= 1,2, ...,K.
All derivatives are calculated atε = 0. Therefore in the procedure of computations, each term is obtained whenε tends

to zero. The method converges in few iterations and in fact wehave a saturated solution after doing computations even in
the initial steps to find favorite approximate solution.

Beginning with an initial functionu0, first (uc)k,n ’s has been determined by the help of(10). Then using(6), (n+1).
iteration solution could be found. Iteration process is repeated using(10) and(6) until achieving an acceptable result. The
ability of the method is so high that it can become convergentin just a few of computational iterations. The reliability and
effectiveness of the method is shown by an example after presenting the convergence of PIA method.
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4 Convergence Analysis of the PIA

In this section we give a convergence analysis of the method.

Theorem 1.PIA(1,1) converges for Eq.(3) when‖uk+1−uk‖ ≤ ε ′
andε ′

→ 0.

Proof.Suppose that the functionsF
u
′
k+1

, Fuk+1 , Fuk andF
u
′
k
∈ Cm

µ , µ ≥ −1. Meanwhile, suppose that the functionFk is

m times continuous and differentiable on[a,b]. The general iteration formula ofPIA(m,n) is converted toPIA(1,1) in
recursive relation (10) by substitutingm= 1 andn= 1 that can be stated as follows:

u
′

k(t)+
Fuk

F
u
′
k

uk(t) =−
Fε +

F
ε

F
u
′
k

. (11)

By changingk to k+1 in Eq.(11) to obtain a relation with respect tou
′

k+1(t) anduk(t) and imposing norm 2 on both sides
of equations, we have:

∥

∥

∥u
′

k

∥

∥

∥≤

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

Fuk

F
u
′
k

∥

∥

∥

∥

∥

.‖uk‖ , (12)

∥

∥

∥u
′

k+1

∥

∥

∥≤

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

Fuk+1

F
u
′
k+1

∥

∥

∥

∥

∥

∥

.‖uk+1‖ . (13)

Now, we need to obtain‖uk+1−uk‖ from
∥

∥

∥u
′

k+1−u
′

k

∥

∥

∥. By rewriting inequalities with respect to‖uk‖ and‖uk+1‖ and

by using the magnitude rules in calculus, we get:

‖uk+1−uk‖ ≥ ‖uk+1‖−‖uk‖ ,

=

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

.





∥

∥

∥u
′

k+1

∥

∥

∥−

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥



−

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

.

(

∥

∥

∥u
′

k

∥

∥

∥−

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

)

.

(14)

So we need to obtain bound for‖uk+1−uk‖. As a result, we need to prove that{un} is a Cauchy sequence that needs to

be convergent in the defined space. All elements of‖uk+1−uk‖ in right hand side of inequality are known except
∥

∥

∥u
′

k

∥

∥

∥

and
∥

∥

∥u
′

k+1

∥

∥

∥. Therefore, we have :

‖uk+1−uk‖ ≥

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

.
∥

∥

∥
u
′

k+1

∥

∥

∥
−

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

.

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

.
∥

∥

∥u
′

k

∥

∥

∥+

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

.

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

.

(15)

The functionFk = F
(

u
′

k,uk,ε
)

is a chaotic functional with respect toε and it can be written in general state as follows:

Fk = F
(

u
′

k,uk,ε
)

=
1

Γ (m−α)
ε
∫ t

0

u
′

k,n(s)

(t − s)α (16)

±η1u
′

k,n(t)±η2εu
′

k,n(t)±η3εu(k)k,n(t). (17)

in which ηi , i = 1,2,3 are constants. Therefore, the functions ofF
u
′
k

andFuk can be written based onFk. We also suppose

thatF
u
′
k+1

, Fuk+1 , Fuk andF
u
′
k
6= 0. SinceF

u
′
k+1

, Fuk+1 , Fuk andF
u
′
k
∈Cm

µ , µ ≥−1, then they are bounded and we have:

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

≤ M1 ,

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

≤ M2. (18)
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∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥

≤ M
′

1 ,

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

≤ M
′

2. (19)

Therefore, we obtain:

‖uk+1−uk‖ ≥ M1

∥

∥

∥u
′

k+1

∥

∥

∥−M1.M
′

1−M2.
∥

∥

∥u
′

k

∥

∥

∥+M2.M
′

2. (20)

Now we consider:
u
′

k = L [uk]u
′

k+1 = L [uk+1] , (21)

whereL is a linear operator that is defined asL = d
d() [] that is defined as an operator in infinite dimensional space. Since

any linear operator is bounded in infinite dimensional space, then we can define
∥

∥

∥
u
′

k

∥

∥

∥
= ‖L [uk]‖ ≤ N1,

∥

∥

∥
u
′

k+1

∥

∥

∥
= ‖L [uk+1]‖ ≤ N2. (22)

Then, we obtain:

‖uk+1−uk‖ ≥ M1.N2−M1.M
′

1−M2.N1+M2.M
′

2 = M1

(

N2−M
′

1

)

+M2

(

M
′

2−N1

)

. (23)

If ‖uk+1−uk‖→ 0 then, we have

lim
ε ′→0

(

M1

(

N2−M
′

1

)

+M2

(

M
′

2−N1

))

= 0. (24)

If M1

(

N2−M
′

1

)

= 0 thenM1 = 0 or and ifM2

(

M
′

2−N1

)

= 0 thenM2 = 0 or M
′

2 = N1. The proof is complete. The

proof can be done in similar manner forPIA(1,2), PIA(2,2) and so on. Therefore, we can find such these conditions for
PIA(1,2), PIA(2,2) states and so on. In fact, we have found the condition of stop process for PIA method by all involved
expressions in the iteration algorithm. Therefore, all thegoverning conditions need to be imposed on PIA method to
become convergent just in a few of computational iterations.

5 Application

It is noticed that all computations have been done by PackageMathematica 10.
For an example consider the following system of nonlinear fractional differential equations [35]:

Dα1u1(t) =
1
2

u1(t)

Dα2u2(t) = u2 (t)+u2
1(t), (25)

where
0< α1,α2 ≤ 1

with the initial conditionsu1(0) = 1 andu2(0) = 0. The exact solutions, whenα1 = α2 = 1, are

u1(t) = e
t
2 (26)

and

u2(t) = tet . (27)

In the system, if add and subtractu′1,n(t) andu′2,n(t) respectively, the system can be rewritten in the following form:

εDα1u1(t) +u′1,n(t)− εu′1,n(t)−
1
2

εu1,n (t) = 0, (28)

εDα2u2(t) +u′2,n(t)− εu′2,n(t)− εu2,n(t)− εu2
1,n(t) = 0, (29)
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whereε is a small parameter. For

F
(

u
′

1,u1,ε
)

=
1

Γ (1−α1)
ε
∫ t

0

u′1,n(s)

(t − s)α1
ds+u′1,n(t)− εu′1,n(t)−

1
2

εu1,n(t), (30)

F
(

u
′

2,u2,ε
)

=
1

Γ (1−α2)
ε
∫ t

0

u′2,n(s)

(t − s)α2
ds+u′2,n(t)− εu′2,n(t)− εu2,n(t)− εu2

1,n(t) (31)

and terms in equation(25) become

F = u′1,n(t), Fu1 = 0, Fu′1
= 1,

Fε =−u′1,n(t)−
u1,n(t)

2
+

1
Γ (1−α1)

∫ t

0

u′1,n(t)

(t − s)α1
ds (32)

and

F = u′2,n(t), Fu2 = 0, Fu′2
= 1,

Fε =−u′2,n(t)−u2,n(t)−u2
1,n(t)+

1
Γ (1−α2)

∫ t

0

u′2,n(s)

(t − s)α2
ds. (33)

After writing these terms in the iteration formula, we obtain the following differential equations:

2

(

∫ t
0 (−s+ t)−α1u′1,n(s)ds

Γ (1−α1)
+ (uc)

′
1,n(t) −

(−1+ ε)(u1,n)
′
(t)

ε

)

= u1,n(t) (34)

and

u2,n(t)+u2
1,n(t)+

(−1+ ε)(u2,n)
′
(t)

ε
=

∫ t
0 (−s+ t)−α2(u2,n)

′
s)ds

Γ (1−α2)
+ (uc)

′
2,n(t). (35)

Beginning with the initial functions
u1,0(t) = 1 andu2,0 (t) = 0

and using the iteration formula, the following successive approximate solutions are obtained forn= 0,1,2, . . .

u1,1(t) = 1+
t
2
,

u2,1(t) = t,

u1,2(t) =
1
8

(

8+8t+ t2+
4t2−α1

Γ (2−α1)(−2+α1)

)

,

u2,2(t) = 2t + t2+
t3

12
+

t2−α2

Γ (2−α2)(−2+α2)
,

u1,3(t) =
1
48

(48+72t+18t2+ t3+
24t3−2α1

Γ (4−2α1)
−

24t2−α1 (9+ t−3α1)

Γ (4−α1)
),

u2,3(t) = 3t +3t2+
5t3

6
+

t4

12
+

t5

320
+

t3−2α2

Γ (4−2α2)
−

t5−2α1

4Γ (3−α1)
2 (−5+2α1)

,

−
t3−α1 (4(40+3t (10+ t)))

8Γ (6−α1)
−

α1 (−72− t (64+7t)+ (8+ t (8+ t))α1)

8Γ (6−α1)
,

−
t2−α2(72+ t(24+ t)+6α2(−7− t+α2))

2Γ (5−α2)
(36)

and so on. In the same manner, the fourth iteration solutionsu1,4(t) andu2,4(t) are calculated. Again we compared our
results in Figures 1, 2, 3 and 4 as well as in Tables 1 and 2 with the exact solutions.
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Table 1: Numerical results for some values ofu1(t).
α1 = 0.5, α2 = 0.8 α1 = α2 = 1

t u1,3(t) u1,4(t) u1,3(t) u1,4(t) Exact Solution Absolute Error
0.0 1.00000 1.00000 1.00000 1.00000 1.00000 0.0000000
0.1 1.12011 1.14395 1.05127 1.05127 1.05127 2.6260E-9
0.2 1.22155 1.25625 1.10516 1.10517 1.10517 8.4742E-8
0.3 1.31398 1.35476 1.16181 1.16183 1.16183 6.4897E-7
0.4 1.40065 1.44505 1.22133 1.22140 1.22140 2.7581E-6
0.5 1.48332 1.52999 1.28385 1.28401 1.28402 8.4896E-6
0.6 1.56312 1.61133 1.34950 1.34983 1.34985 0.0000213
0.7 1.64087 1.69024 1.41839 1.41990 1.41906 0.0000464
0.8 1.71714 1.76755 1.49066 1.49173 1.49182 0.0000913
0.9 1.79240 1.84388 1.56643 1.56814 1.56831 0.0001166
1.0 1.86700 1.91969 1.64583 1.64843 1.64872 0.0002837

Table 2: Numerical results for some values ofu2(t).
α1 = 0.5, α2 = 0.8 α1 = α2 = 1

t u2,3(t) u2,4(t) u2,3(t) u2,4(t) Exact Solution Absolute Error
0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000
0.1 0.18222 0.19983 0.110505 0.110516 0.110517 2.4666E-7
0.2 0.37432 0.41674 0.244084 0.244272 0.244280 8.1286E-6
0.3 0.59361 0.67238 0.403929 0.404894 0.404957 0.0000635
0.4 0.84506 0.97264 0.593365 0.596453 0.596729 0.0002760
0.5 1.13208 1.32203 0.815852 0.823492 0.824360 0.0008683
0.6 1.45755 1.72484 1.074993 1.091043 1.0932712 0.0022277
0.7 1.82421 2.18551 1.374530 1.404661 1.409626 0.0049654
0.8 2.23477 2.70869 1.718357 1.770446 1.780432 0.0099863
0.9 2.69196 3.29932 2.110517 2.195074 2.213642 0.0185684
1.0 3.19856 3.96263 2.555208 2.685825 2.718281 0.0324559

u1,4(t) u2,4(t)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

1
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3

4
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6

Fig. 1: u1,4(t) andu2,4(t) for α1 = α2 = 1.

6 Conclusion

In this paper, we have applied a previously developed numerical method so-called Perturbation-Iteration Algorithm (PIA)
to find approximate solutions of systems of nonlinear Fractional Differential Equations for the first time. We also give the
convergence analysis of the method which has not been done before. The numerical results obtained in this study show
that PIA method is a remarkably successful numerical technique for solving systems of FDEs. Only a few iterations are
required to reach to favorite solution. We expect that the present method can be used to calculate the approximate solutions
of the other types of fractional differential equations such as fractional integro-differential equations and fractional partial
differential equations. Our next study will be about these types of equations.
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Fig. 2: u1,4(t) andu2,4(t) for α1 = 0.5 andα2 = 0.8.

PIA solution u1,4(t)

Exact solution
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Fig. 3: The PIAu1,4(t) and the exact solutions forα1 = α2 = 1.

PIA solution u2,4(t)
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Fig. 4: The PIAu2,4(t) and the exact solutions forα1 = α2 = 1.
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