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Abstract: Theoretical investigations for generation of rogue waves in plasma system have been done; We studied the behavior of the
nonlinear rogue waves in Jupiter as result of interaction ofstreaming relativistic electron beam with three components dusty plasma
composed of positive dust grains, as well as Maxwellian electrons and positive ions. The most typical nonlinear equation to describe
the propagation of rogue wave is the nonlinear Schrodenger equation so it has been calculated. The interaction of a relativistic electron
beam with the plasma system can introduce new modes and instability.
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1 Introduction

The number of theoretical publications devoted to various
collective processes in electron–dust plasma interaction
has increased enormously in recent years. This interest is
primarily due to the fact that such plasma is typical rather
than exceptional in astrophysical conditions. Recent
research has demonstrated that extreme waves, waves
with crest to trough heights of 20 to 30 meters [1]-[10].
the nature of the rogue wave problem from the general
viewpoint based on the wave process ideas, briefly
discuss the generality of the physical mechanisms
suggested for the rogue wave explanation; which are valid
for rogue wave phenomena in other media such as solid
matters, superconductors, plasmas and nonlinear optics
[11]. Interaction of electron beam with plasma may be
used for various purposes; it present a great interest for
development of new methods in amplification and
generation of electromagnetic waves, acceleration of
charged particles in plasma, confinement and heating
plasma so the electron beam being a source of free energy
that can excite oscillations, many studies aimed at the
employment of these beam to heat plasma up to
thermonuclear temperatures 104 ev, the instability
resulting from the interaction of charged particle beam
with plasma is one of the very common and at present
best known instabilities [12]-[15]. Lacina.J. et al. states

that the beam not only amplifies waves in the plasma but
also provides for effective absorption of these waves by
the plasma [16]. Results have demonstrated that random
localizations of energy, induced by the linear dispersive
mixing of different harmonics, can grow significantly due
to modulation instability [17]. they have numerically
calculated chaotic waves of the focusing nonlinear
Schrodinger equation (NLSE), starting with a plane wave
modulated by relatively weak random waves, they show
that the peaks with highest amplitude of the resulting
wave composition (rogue waves) can be described in
terms of exact solutions of the NLSE in the form of the
collision[18]. a method for finding the hierarchy of
rational solutions of the self-focusing nonlinear
Schrödinger equation and present explicit forms for these
solutions from first to fourth order are presented, they
explain their relation to the highest amplitude part of a
field that starts with a plane wave perturbed by random
small amplitude radiation waves, They conclude that the
appearance of rogue waves in the deep ocean can be
applied to the observation of rogue light pulse waves in
optical fibers[19]. They numerically investigate dispersive
perturbations of the nonlinear Schrödinger (NLS)
equation [20]. It is known that the astrophysical dusty
plasmas are presented in our solar system and in the
interstellar environments such as in cometary tails,
asteroid zones, planetary rings, interstellar medium, lower
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part of the earth’s ionosphere, and magnetosphere
[21]-[23]. Indeed, rogue waves have been studied in many
different systems including nonlinear fiber optics [24].
Parametrically driven capillary waves [25]. Bose-Einstein
condensates [27]. The effect of ion temperature and ion
streaming velocity on the modulation of ion –acoustic
waves studied at [30].
In this work, it is assumed that the streaming relativistic
electrons interact with the solar wind of the Jupiter
magnetosphere that contains unmagnetized collisionless
positive dust grains of, as well as Maxwellian distribution
electron and ion. Therefore, it would be interesting to
examine heating plasma and different plasma parameters;
such as dust-acoustic speed and streaming densities, to
test the existence region of the dust acoustic rogue waves
and the rogue waves profile. For this purpose, we focus
our attention on the specific balancing between the group
dispersion and the nonlinear effect to understand these
giant waves in more details and being able to predict their
occurrence. The basic equation and system of calculation
in [24]-[30] for helping in investigation of our system are
used.

2 Basic Equations

The normalized basic fluid equations of the dynamics dust
grains are given by,

∂nd

∂ t
+

∂ (ndud)

∂x
= 0, (1)

∂ud

∂ t
+ ud

∂ud

∂x
+

∂ϕ
∂ t

= 0, (2)

The relativistic electron beam fluid equations are

∂nb

∂ t
+

∂ (nbub)

∂x
= 0, (3)

(
∂
∂ t

+ ub
∂
∂x

)γub +3µbσb
∂ub

∂x
+ µb

∂ϕ
∂ t

= 0, (4)

The relativistic factorγ = (1− u2
b
C2 )−1/2

As in ref [30], the relativistic factor can be approximated
by its expansion up to the second term because of the

weakly relativistic effect, i.e.γ ≈ 1+
u2

b
2C2

The Maxwellian ions and electrons are expressed,
respectively, as

ni,e = δi,eexp(−si,eϕ), (5)

Equations (1)-(5) are closed by Poisson equation

∂ 2ϕ
∂x2 − nbδ b + nd + niδ i − neδ e = 0, (6)

Where; nb,ub,nd, , ud, ni, ui, neand ue are the number
densities and velocity of the electron beam, dust grains,

streaming electrons and ions respectively,ϕ is the
electrostatic potential. The densitiesnb,ni and neare
normalized bynd0zd0 andnd, is normalized bynd0 .
The space coordinatex and timet are normalized by the

Debye lengthγD = (
Te f f

4πnd0Zd0e2 )
1/2

and the dusty plasma

frequencyω = ( m d
4πnd0Zd0e2 )

−1/2, while the velocities and
the electrostatic potentialϕ are normalized by the

dust-acoustic speedCd = (
Zd0Te f f

md
)
1/2

, and
Te f f

e ,

respectively. Alsoµb= m d
mbZd0

, σb = Tb/Te f f , δb = n b0
nd0Zd0

,

δi =
n i0

nd0Zd0
, δe = n e0

nd0Zd0
, si,e =

Te f f
Ti,e

where Te,b is the
electron , electron beam temperature,Ti is the ion
temperature, andTe f f =nd0Zd0[

n i0
Ti

+ n e0
Te

] is effective
temperature,Zd0 is the dust grain charge number.

3 Derivative of the KDV Equation

We introduce the following stretched space-time variables
in order to investigate the propagation of the dust-acoustic
conidial waves (DACWs), and we employ the reductive
perturbation method. According to this method,

ζ = ε1/2(x−Vt) andτ = ε3/2t (7)

Whereε ≪ 1 andV is the dust acoustic phase speed. The
physical quantities appearing in equations (1)-(6) obey the
function;Ψ = [nd ,ud , nb, ub, ni, ne, ϕ ] and expanded as
a power series inε about their equilibrium values as;

Ψ =Ψ0+
∞

∑
j=1

ε jΨj, (8)

Where Ψj = [nd j,ud j, nb j, ub j, ni j, ne j, ϕ j]
M and

Ψ0 = [1,0, Sb, ub0 j, Si, Se, 0]M.
The lowest- order inε by substituting (7), (8) into
equations. (1)- (6) gives;

nd1=ϕ1/V 2,ud1=ϕ1/V,ub1=
−(V − ub0)µb

γ1(V − ub0)
2−3Sb

2µbσb

ϕ1,

nb1 =
−Sbµb

γ1(V−ub0)
2−3Sb

2µbσb
ϕ1 , ni =−δ isiϕ1 and

ne = δeseϕ1 (9)

While as in [30] ,γ1 = 1+
3u2

b0
2C2 , andγ2 =

3u2
b0

2C2

At our work we suppose weakly relativistic electron beam
and so neglectγ2, The Poisson equation gives the
compatibility condition;

∂ 2ϕ1

∂x2 +
S bµb

γ1(V − ub0)
2−3Sb

2µbσb
ϕ1δ

b

+ϕ1/V 2−siϕ1 δi
2 − seϕ1 δe

2 = 0, (10)

Solving (10) gives the values ofV , that will be used in our
numerical analysis. If we consider the next-order inε, we
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obtain a system of equation in the second-order perturbed
quantities. Solving the system, we finally obtain mKDV
equation;

∂ϕ1

∂τ
+Aϕ1

∂ϕ1

∂ζ
+B

∂ 3ϕ1

∂ζ 3 = 0, (11)

WhereA andB are given by;

A = B(
−3(γ1(V −ub0)

2µb
2δb

2 +δb
4 µb

3σb)

(
√γ1 (V −ub0)−3Sb

2µbσb)
3 +3/V 4+si

2δ i
2− 1

2
se

2δ e
2
),

B = 1/2(
−3(γ1(V − ub0)

2+ δb
2 µb)

(
√γ1 (V − ub0)−3δb

2 µbσb)
2 +1/V3),

The propagation of positive and negative pulse depends on
the sign of the coefficient of the nonlinear termA in KDV,
also the relativistic of electron beam more affect on the
propagation pulse, equation (11) i.e;







i f A > 0, the pulse are positive
i f A < 0 , the pulses are negative

i f A = 0 the KDV equation break down







And the KDV equation breakdown if the electron
concentration reaches to critical values, soA = 0 at
δe = δec
To investigate the rogue waves, transformation of the
KDV equation to the nonlinear Schrodinger equation
(NLSE) should be done. However, the NLSE that derived
from the KDV equation may not support the existence of
rogue wave. And then the general method of the reductive
perturbation theory introduce the modified stretched
variables defined by

ζ = ε(x−Vt)
τ = ε3t

(12)

using the stretching (12) along with the expansion (8) into
the basic equations. (1)- (6), after some algebraic
manipulations, we finally obtain the modified
Korteweg-de Vries (mKDV) equation as

∂ϕ1

∂τ
+C ϕ1

2 ∂ϕ1

∂ζ
+B

∂ 3ϕ1

∂ζ 3 = 0, (13)

Where

C = B(
15
(√γ1(V −ub0)

)4µb
3δb

2 +90γ1(V −ub0)
2
Sb

4µb
4σb +27δ b

6 µb
5σb

2)

2(γ1 (V −ub0)
2−3Sb

2µbσb)
5

+15/2V 6− 1
72

s
i

3

δ
i

2

− 1
72

se
3δ e

2
),

Now, it is interesting to transform the mKDV equation (13)
to NLSE to describe the behavior of the weakly nonlinear
wave packet that gives rise to rogue wave propagation.
So we expandϕ1 as in ref. [28]

ϕ1 (ζ , τ) =
∞

∑
n=1

εn
n

∑
l=−n

ϕ1l,n (X ,T ) exp il(kζ −ωτ),

(14)

The new spatial and temporal coordinates(X ,T ) are
stretched as

X = ε(ζ −Vgτ)and
X = ε3τ (15)

Where k is the carrier wavenumber andω is the
frequency for the given dust- acoustic waves andVg is the
group velocity of the envelope wavepaket. Assume that
all perturbed states depend on the fast scales via the phase
(ζ − Vgτ) only, wile the slow scales(X ,T )enter the
arguments of thelth harmonic amplitudeϕ1l,n. Since
ϕ1 (ζ , τ) must be real, the coefficient in equation (14)
have to satisfy the conditionϕ1l,n = ϕ1l,n

∗ , where the
asterisk stands for the complex conjugate.
The derivative operators appearing in equation (13)
become

∂
∂ζ

⇒ ∂
∂ζ

+ ε
∂

∂X
and

∂
∂τ

⇒ ∂
∂τ

− εVg
∂

∂X
+ ε2 ∂

∂T
(16)

From the first order approximation(n = 1) with (l = 1) by
using equations (14)-(16) into equation (13), we obtain the
linear dispersion relation

ω =−Ck3, (17)

For the first harmonic of the second- order approximation
(n = 2) and(l = 1), we calculate the group velocity as

Vg =−3Ck3, (18)

And then the third- order approximation(n = 3) and
solving for first harmonic equation(l = 1), and explicit
compatibility condition will be found , from which we
can easily obtain the nonlinear Schrodinger equation
NLSE as

i
∂ /0
∂T

+P
∂ 2 /0
∂X2 +Q /0 | /0|2 = 0, (19)

Where /0= ϕ1l,n , (l = 1) , (n = 3) . and the coefficientP
andQ are given by

P =−3Bk andQ =−Ck (20)

It is interesting to mention here that since the stretching
variables (7) cannot describe the wave propagation at
A = 0. we used instead of it the stretched variables (12)
So , we used equation (12) to obtain new evolution
equation (13) that is valid for describing the plasma
system atA = 0. Both equations (11), (13) have spatial
and temporal coordinatesζ and τ respectively. In this
frame of study, the wave can propagate with group
velocity V . On the other hand when we transform
equations (11) and (13) into equation (19) then the new
wave packet propagate with group velocityVg. In this
case, we have two different time scales; the first one is for
fast time scaleζ andτ with phase velocityV which is for
the carrier wave. The second time scale is for the slow
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time scaleX andT with group velocityVgwhich is for the
envelop wave packet. Therefore, each ofV and Vg has
different physical meaning and they describe two
different time scales. It is leads to point out that equation
(11) and (13) admit solution, which could be of interest if
we are interesting in the central region of the envelope. It
is straightforward to see that a negative sign forP/Q is
required for wave amplitude modulation stability. On the
other hand, a positive sign ofP/Q allows for the random
perturbations to grow and thus the rogue wave could be
created.
The character of the dynamic wave depends on the sign of
the ratio of P

Q = 3/C this sign refers to the stability so far
of the system i.e.














when P
Q > 0, The unstable envelope pulses propagate

when P
Q < 0, the stable envelope pulses exist.

if C < 0 the waves become stable
if C > 0 the waves become unstable















The NLSE equation (19) has a rational solution that
located on a nonzero background and localized both in
theX andT directions [27] as

/0=

√

P
Q

(

G0+ iωG1

G2
+1

)

exp(iω), (21)

Where

G0 =
3
8
−3X2−2X4−9ω2−10ω4−12X2ω2,

G1 =
15
4

+6X2−4X4−2ω2−4ω4−8X2ω2,

G2 =
1
8
+9X2+4X4+

16
3

X6+33ω2+36ω4

+
16
3

ω
6

−24X2ω2+16X4ω2+16X2ω4,

ω = QT, (22)

Equation (21) represents the rogue wave solution within
the unstable zone of the NLSE (19) for which the
coefficient of the nonlinear term is positive. Solution (21)
reveals that a significant amount of the wave energy is
concentrated in a relatively small area in space. The rogue
wave is usually an envelope of a carrier wave with a
wavelength smaller than the central region of the
envelope. On the other hand the positive sign of
P/Qallows for the random perturbation grow and thus the
rogue wave could be created while the negative sign of
P/Q is required for wave amplitude modulation stabile.
Also from equations (13), (19) by the values of,C,P,Q ,
it is appear that the relativistic of electron beam more
affect on the generation of waves. On the other hand
while the distribution of streaming electrons and ions
considered as Maxwellian distributions and the
generation waves affected by the relativistic effect then
the wave generation should be rogue waves.

4 Conclusion

We have investigated the behavior of the nonlinear rogue
waves as a result of interaction of relativistic streaming
electron beam with it, is assumed that the streaming
relativistic electrons interact with the solar wind of the
Jupiter magnetosphere that contains unmagnetized
collisionless positive dust grains, as well as Maxwellian
distribution electron and ions. It is found that at certain
parameters of dust- acoustic speed, streaming densities of
electron beam, and temperature ratio, the relativistic
effect of streaming electron beam, the perturbations could
lead to the occurrence of rogue waves. The dust-acoustic
phase speed, the temperature ratio, and the relativistic
streaming practices number densities of electron beam
play a significant role in deciding how much energy could
concentrate in the rogue waves.
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