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Abstract: In this paper, we present interval estimatorsPgiX; <X,), when bothX; and X, follow some distributions with general
exponential or general inverse exponential forms, witfed#nt unknown parameters. Different interval estimatwesderived. Since
many distributions in the literature belong to the genexplomential and the general inverse exponential forms digml the results
obtained may directly be applied to a numerous number ofilligions. To compare the different interval estimatorsaoied, a
simulation study is performed with applications on Weibalhd inverse Weibull distributions. The comparison is Hase length,
probability coverage, and tail errors.
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1 Introduction

The estimation oR= P (X;<Xz) has been widely used in the fields of aeronautical, civil, ma@ical and electronic
engineering. For exampl&; may be the voltage output of a transformer (power supply)len, may represent the
breakdown voltage of a capacitor, Hall][ Reiser and Guttmar?] presented a rocket motor experiment data where
X1 represents the operating pressure Xpdepresents the chamber burst strength. Due to the praotigairtance of
R = P(X1<X2) model, a numerous number of researches are presented iteth&ure concerning inferences on R. Kotz
et al. [3] compiled the work done on R until year 2003, after year 2G@@; for example, Rezaei et d],[Amiri et al. [5],
and Al-Mutairi et al. p].

Mokhils et al. [7] introduced point and interval estimation &= P (X;<X;) when X; and X, have a general
exponential form or a general inverse exponential form withsurvival functions given respectively by either

Fx (x.6) =exp[—6 g1 (x.C)] ,

or

Fx (xni) = 1-exp[—ni g2 (x0)];i = 1, 2,

where, the functiom; (x;c) is continuous, monotone increasing, differentiable fiomcsuch thatg; (x;,c) — 0 asx—0
andg; (x;c) — o« asx—oo, the functiong (x;c) is a continuous, monotone decreasing, differentiabletfancsuch that,
g2 (x;c) —o0 asx—0 andg; (x;c) — 0 asx— o, 6 andn; are unknown parameters, whités common known parameter.

In the present article, we obtain interval estimatorRef P (X;<X;), whereX; andX; are non-negative independent
and continuous random variables, having the same genarakfdiscussed by Mokhils et al7][ with the survival
functions given by either

Fx, (x;bi,c) =exp[—6i(bi,C) g1 (xC)] | (1)

or,

Fx (xbi,c)=1—exp[-ni(bi,c) g2(xc)]; i = 1,2, )
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where, 6 (bi,c) andni(b;,c) are differentiable functions in two unknown parametgrandc; i = 1,2. Of course, they
could be functions of jush;; i = 1, 2. Consequently, iK; andX; follow the forms in @) or (2), then R will take the
following forms

6 (by,C)
R=P(X<Xg)= 01(b1,c)+62(by,c)’ (3)
or,
R=P(X1<Xp) = (b2, © (4)

n1(b,c)+n2(bz,c)’

For simplicity, we shall refer t&; (b;,c) andn;(bi,c) by 6 andn;; i = 1, 2, respectively.
We construct approximate confidence intervals for R, usimg maximum likelihood estimator (MLE) of R.
Generalized confidence intervals are obtained, using thergkzed variable (GV) approach. Two bootstrap confidence
intervals (percentile and t) are also presented. Bayesatilde intervals of R are obtained, using Markov chain Mont

Carlo method (MCMC) in two cases. The different intervairaators are compared via a simulation study.

2 Confidence limits ofR= P(X1 < X)

In this section, we present different confidence intervR namely: the approximate, generalized, bootstrap (peiteent
andt) and Bayesian with different priors.

2.1 Approximate confidence interval of R (ACI)

Suppose thak;= (X1, Xi2,..., Xin;); i =1, 2, be two independent random samples from populations witkivgur
function given by {). The likelihood function is

2 n

2 nj
L1(Xg,Xo|b1,b2,€) = explzinl In6 + 21 > Ingy(xij;c Ziel > gl(Xij;C)] : (5)
i= =1

where, g'1 (xij;c) is the first derivative 0§ (xij;c) w.r.txj. The log-likelihood function is
2 N 2 N
l1(Xg, %o b1, b2,0) = 5 niln 6 + Ingy(xij;¢) = 6 Y gu(xj:c). (6)
1,%2 Z i ZZ (X i; I Zl i
Differentiatingl, with respect to the parameterdx, b, and equating with zero, we get

iy Znag 27

2 n; 0
dc 46 dc ZZ ac Ingl %ij: € Zi ac Z 91(xj: ¢ iziel JZlggll(xij,c) =0 @)

(9|1_ Nj ni [99|_ e
The MLE ¢ of ¢ can be obtained by solvin@)(numerically. Solving ), the MLEsG of 6;;i = 1,2, are given by
~ nl
b=—f— =102 9)
I ZJ 191()(41 )

see [7]. The corresponding MLR of Ris o
- ef(blv,\c) — (10)
61(b1,€) + 62(b2, €)
Itis known that, the MLER is asymptotically normal with meaRand variancceféthV*lN, where V! the inverse
of the Fisher information matrix V ofc,by,b,), Nt is the transpose of matriX, (see, Rao [8]), where,

Pl

2, 9%y 9%y

& dcab; dcab, R
2, 9%y 9% JR
V=-E| oo 02 obob; |- N=1|2p |-
2, 0% o IR
b,

gbydc bydb; b2
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2%, & no%e 2n.( ) 2 N

I X2 220”%“ Zezﬂﬂ”’

Z 9%6 & 2 06 &

_Zidcz,zglxu Zziﬁczﬁglxlj
02, 02, n %6 0606 (08 _ 926 \ I _
dcob,  dbdc 6 dcab, 62 ac dby <0_bi) JZla_cgl(x”’c) - <0cdbi) glgl(x” :©)

(92|1 Nj (929| Nj (99| (929 . (92|1 (92|1
a_b?_Ea—b?_e_F<a_u> (0b2) Zgl X ¢ =12 Gbb,  ababy

R B R 0% R 6% 6%

—=—15 —=——2-" an
db1  (61+6,)° b2 (61 6)° de <m+%
The approximaté1l—a)100% confidence interval faR is (Riz(l a/2)1/ G, ) where,z;_q/7) is the (1-a/2)th

quantile of the standard normal distribution améi is the estimator obé, and it is obtained by replacing 6 and R

with & 6 andR respectively. It is important to mention that, the expleipression obé depends or#}, g/1 (xij;c) and
gl(xij;c); J =1, e Ny i = 12

Similarly, if X;; i =1, 2, are two independent random samples from populations withv&r function given by ),
the MLE ¢ of ¢ can be obtained numerically by solving the following atijion

2 0’7| ni 2 n | 20 i o
Jc N zi = n —0o( Xij;C Zinl Z Jc 92 (Xij;c I;% glgz(xu,c) =
where, g’2 (Xij;c) is the first derivative ofj, (xij;c) w.r.txj. The MLEsA; of n; will be ) = W, =1 2 The
~ j=192\j»
corresponding MLER of Rwill be R= 28 and hence, the approximgte—a)100% confidence interval for

- . . . . M11(01,€)+12(02,€) :
Rwill be easily obtained in a similar manner as that of the adshe general exponential forn)(

2.2 Generalized confidence interval of R (GCI)

The generalized pivotal quantity (GPQ) is a function of olssd statistics and random variables whose distribution is
free of unknown parameters. The useful feature of the GV aguir is that the GPQ for a function of unknown
parameters can be obtained by simply plugging their GPQssiritinction. LetX;= (X1, Xi2, ..., Xin,); i =1, 2, be two
independent random samples from populations with survivaction () or (2) having unknown parametei& or

ni; i =1, 2, respectively, and a common unknown parameter c. The GPR) given respectively by
Go
Gr=R(Gy,, Gg,) ==—2— 11
r=R(Gg,, Gg,) Got Ga,’ (11)
or,
Gre R(Gy,, Gy,) =N (12)
e G’l1+ Gf)z

where,Gg =8 (Gp,, Gc) andGy=ni(Gy, Gc); Gg, Gp;, Gbi, andG. denote the GPQs fd%, nj, bj, andc; i =1, 2,
respectively. It is necessary to mention th@p and G, may be depend oy, only. The (1-a)100% generalized
confidence interval oR can be obtained a&R(G/a, GR(l_a/z))- where,Gr(q/2) and Gr(1_q/2) are the(a/2)th and
(1—a/2)th quantiles of R.

2.3 Bootstrap confidence interval of R (boot)
Suppose thaX;= (X1, Xi2, ... ,.Xin;); i = 1, 2 are two independent random samples from populatigthssurvivor function

(2) having unknown parametefs i = 1, 2, respectively, and a common unknown parameter c. For géngibootstrap
samples, we apply the following algorithm, (see, Efré}).[
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Algorithm 1.

1.From the original datX;; i = 1, 2, compute the MLES¢, 81, 8, R) of (c,81, 6,,R) using (), (9) and (L0).

2.Resample two independent random samplgsi = 1,2, with replacement from the original sampl¥s, i = 1,2,
respectively; compute the MLEE™, 8;*, 6;*,R*™) of (c,0,, 6, R) from (7), (9) and @0).

3.Repeat the step 2, N times to obtain a set of bootstrap sanyfl R, say{FA{’j**; j= 1,...,N}, and order
Ri*;j=1,..., N,ascending aB** < ... < ﬁz]f*<N>.

4.Construct two different bootstrap intervals of R.

a.TheEl—a)lOO% percentile bootstrap confidence interval of R (P-bgivgn by (RZF;/ZV Rﬁ;a/z)), where,RZ‘j;/z)
andRz‘i:a J2) &€ the(a /2)th and(1—a /2)th quantiles of R, respectiveIAy. A

b.The(1—a)100% t-bootstrap confidence interval of R (T-boot) giver(Rnya,a/z)S**, R—fm/z)S**), where,S™ is

the sample standard deviation{f?]f*;j =1..., N} andf 4 be the(a)th quantile of{m{;j =1,..., N}.

The two different bootstrap intervals of R for the for®) €an be obtained, using a similar algorithm as Algorithm 1,
if X;;1=1, 2 being two independent random samples from populatiath survivor function?).

2.4 Bayesian Credible Interval of R (BCI)

To explore the sensitivity of prior distributions of the utdwn parameters, we apply MCMC method for estimating the
Bayesian credible interval of R in two cases. In the first caseassume gamma priors f6f, 6,, and c, while in the
second case we consider independent gamma prioi f6s and uniform prior for ¢ as the available prior information
is weak for c. In Bayesian statistics, there are generalty MCMC algorithms that use the Gibbs sampling and the
Metropolis-Hastings algorithm. If the full conditionalstiibution for each parameter is known, the Gibbs samplarg c
be used. If the full conditional doesn't look like any knowistdbution, in this case the Metropolis-Hastings alduamit
can be useful.

2.4.1 Gamma priors (G-BCl)

Suppose thakX;; i =1, 2 are two independent random samples from populations withiv®r function (), and also
suppose that,6;i=1, 2 having independent gamma prior distributions with pralitsgb density function

dj '
f(8) = ,r_’i—dieid"le*hiel; 6, di, hy > 0, and the prior distribution of ¢ follows the gamma distrilautiwith probability

d3
density functionf(c) = Pidscd'a‘*le*hﬁ; C, d3, h3 > 0. From the likelihood function in ), and the prior density
functions offy, 6,, and c. The joint posterior density function&f, 6>, andc is given by

2 2. n

2 n;
1 (61, 62, C|Xq, %) O explzl(ni +di—1)In6 + (ds—1)Inc—chg+ ZZ Ingy(xj;c) — ZG. <hi + Z gl(xij;c)ﬂ )
i= i=1j=1 i= =1

We find the marginal posterior distribution &fis gamma with parametefén;+d;) , (hi+ z?‘:l 91 (Xij ;C))) =12,
respectively, and the marginal posterior distributiore &f

2 n 2 n;
7 (¢)x.%) = Ki exp [(ds— Dine—chy 33 Inghxj:6) 3 ()i <hi +y gm:c)ﬂ ,
i=1j= = =1

where,
2 N 2

(dg—1)Inc—chg+ ZZ Ingy (xij;¢) — Z(ni +di)In <hi + % 91(%j ;C)ﬂ dc.
i=1]=1 i= =1

K1 :/ exp

However, the marginal posterior distribution of ¢ doespk like any known distribution, in order to solve our
problem we shall use the Gibbs sampling and MetropolisiHgs{see, Asgharzadeh et dl0]). The Metropolis-Hastings
with Gibbs sampling algorithm follows the following steps.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 2, 391-400 (2017)www.naturalspublishing.com/Journals.asp NS = 395

Algorithm 2.

1.Choose a starting valu&” .

2.Forj=1to N times.

3.Generatd®"! from Gamma( (ni+di) (h-+z?‘ 101 (ij' “*D)))' i=1, 2, respectively.

4.Generate')) from 71 (c| xq,%,) using the Metropolis-Hastings algorithm with the normagosal distributionT ~
N(cli-D 1),

a.Generaté from the proposal distributiorr.

. o m(&| X, %) m(ci—Y)
b.DefineQ —mln{l, (0 U] x, %) 7E) [

. u<
c.Generate u from Uniform (0, 1). Tak&)= ({1)_' U= Q’. .
cU~Y; otherwise

5.Compute th&) at (Glm, 62“)) from (3).
6.Endj loop. _ _ _
7.Repeat the steps 2-6, N times, and ofdlef = 1,..., N, asRil<... < RIN),

8.Construct thé1—a)100% Bayesian credible interval of R éﬁg(a/z), ﬁg(l—a/Z)) where Ry(q/2) andRy(1_q/2) are
the (a/2)th and(1—a/2)th quantiles of R, respectively.

2.4.2 Mixed priors (M-BCI)

Let X;;i=1, 2 be two independent random samples from populations witlrivar function (1). Let 6 have
independent gamma prior distributions with parameteksh;), i = 1,2, respectively, and ¢ has a non-informative
uniform prior distribution with probability density furion f(c) = 1;c > 0. From the likelihood function ing) and the
prior density functions 08y, 6,, and c, so the joint posterior density function@af 6,, and ¢ can be obtained as

2 2 N

2 n;
15 (61, 02, C X1, %) O exph(ni +di—1)In6 + Ziz Ingy (xij;¢) — 219. (hi +3 gl(m:C)ﬂ :
i= i=1j=1 i= =1

The marginal posterior distribution & will be gamma with parametef$n;+d), (hi+z?‘zlgl (Xij ;C))); i=1,2,
respectively, while the marginal posterior distributidrcavill be

2 N 2 nj
TB(C| X1, %) = Kz_leXplZZ |ng/1(xij Zi ni+di)in <h| + Z 01(%ij; ))1
i=1]=1

where,
00 2 n 2 N
Ko = /mexp[izljzllng’l(mj;c) —i;(ni +di)In <hi +12191(Xij;0)>] de

Itis observed that, the marginal posterior distributior & not known. Using Algorithm 2 of the Metropolis-Hastings
with Gibbs sampling, thél—a)100% Bayesian credible interval of R can be obtaineél%fﬁ(a/z), ﬁma,a/z)), where,
Rm(a/2) adRy1_q/2) are the(a/2)th and(1-a/2)th quantiles of R.

Similarly, for the case of the inverse exponential formd)y the (1—0a)100% Bayesian credible intervals for R can be
obtained assuming gamma priors and mixed priors.

3 Simulation

In this section we present a simulation study, to observéb#tevior of the estimators obtained by different methods
for different sample sizes and different parameter valWéss.compare different interval estimators Rf= P (X3 <Xz),
namely approximate, generalized, bootstrap (percentitethand Bayesian with gamma priors and mixed priors when
X;; i =1, 2, have the general exponential or the general inverse expiahfamms in (L) or (2), respectively. We generate
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Figure 1. Average length for Weibull and inverse Weibull distributions.

Average length for Weibull Average length for inverse Weibull Average |ength for Weibull Average length for inverse Weibull
distribution when R=0.6 distribution when R=0.6 distribuionwhenR=07 distribution when R=0.7

Average length

Average length for Weibull Average length for inverse Weibull Average length for Weibull Average length for inverse Weibull
distribution when R=0.8 distribution when R =08 distribution when R=0.9 distribution whenR=0.9

Average length
AveragJe length
Average length
Average length

n n n n

Average length for Weibull Average length for inverse Weibull Average length for Weibull Average length for inverse Weibull
distribution when R=0.95 distribution when R=095 distribution when R =0.99 distribution when R = 0.99

Average length

1000 samples of sample sizeg,(ny) = (10, 10) (small) and (30, 30) (large) from the underlyingtiibutions ofX; and

Xz, with unknown parameters. The Weibull distribution is ddesed as an example of the general exponential form, and
the inverse Weibull distribution as an example of the gdrievarse exponential form. Taking = 0.05, average length,
average coverage probability, left tail and right tail esrof the(1—a)100% confidence intervals are calculated. We select
the parameter values that produce the values of R = 0.6, 8,70®, 0.95, and 0.99.

_ LetX;;i=1, 2, be two independent random samples from Weibull distrimstivith the survival function given as
Fx, (x;bi,c)=exp[—6 (b;,c) g1 (x;,c)] ; i =1,2, where,6= —c, i = 1,2, andg; (x;c) =x°. For the approximatél—a)100%
confidence interval for R, using the MLE@:, 61, 92, R), where, the MLE c”of ¢ is obtained from T) by the
Neyvton Raphson iterative method, and the MIGEs and R can be expressed from9)( and (L0)

asf=== i=1, 2,andR=—-=—1 . For the generalized confidence interval, Gygcan be obtained from
b Z] lXICJ 1+62 1+<bl>

Ge R
(12), where,ng(i) , Ge=(§) =2, and Gy, = ( ) boi= ( ) boii = 1, 2, and (o, b01,b02) denotes the
observed value of the MLE@: bl,bz) Thoman et al. [11] showed that the distributions of thesantjtiesc™= (Cl)

andb* ( ) ;i=1,2, do not depend on any unknown parameters, and so they aralpiu@ntities. The MLES*] b*

of ¢, by can be obtained respectively by generating independemilearfrom Exp(1) distribution (see, Krlshnamoorthy
et al. [12]). We introduce the following algorithm to estireahe generalized confidence interval of R, using any
programming language as R-language (see, Krishnamoanthiia [13]).

Algorithm 3.
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Figure 2: Average coverage probability for Weibull and inverse Weibull distribulions.

i Average coverage probability for " Average coverage probability for
ﬁ,‘;ﬁ{,‘:.‘?.%?;‘,’%ﬂ&:mﬁ:ﬁ 'FL'*Z S‘_’é inverse Weibull distribution when c}ﬁﬂ‘ﬁ%ﬂ’;ﬁ;ﬂgﬁf{fﬁ;&’gtx{,‘_’7’ inverse Weibull distribution when

R=06 R=07

Average coverage
Average coverage

n n n n
Average coverage probability for Average coverage probability for Average coverage probability for Average coverage probability for
Weibull distribution when R = 08 inverse WEIbIﬂlglﬂSglbullvn when Woibugll distribut‘i’or:’when RZO.Q Inverse Welblﬂl_dbsglbutlon when

Average coverage
Average coverage

n B n B
Average coverage probability for Average coverage probability for
inysrage coverage probability for | iy erse Weibull distribution when | (j4erage coverage probabiity for | 0ol d\Weibull distribution when

=095 R=

Average coverage

&
5
&
B
5
5
&
5
&
5
5
B

1.Generate two independent random samplesrom Weibull(b;, c);i=1, 2, respectively, compute the MLEs
(éo, b()l, bog) of (C, bl,bz).

2.Generate two independent random samglefom Exp(1); i = 1, 2, compute the MLEE(C*, 61,63).

3.Compute the GPQS&, Gy, Gg, and G,ii =1, 2.

4.Repeat the steps 2-3, N times to obtain a set of sampIeGRofsay{GRj;j :1,...,N}, and the ordered

Grij =1,..., N, will be denoted agpy < -+ < G-
5.Construct thé1—a)100% generalized confidence interval of R(@g(q/2), Gr(1-a/2))-

We can also obtain thél—a)100% bootstrap and Bayesian confidence intervals of R, usiggrithm 1 and 2,

respectively.
If X; and X, are two independent random samples from inverse Weibull trilolisions

Fx (x;bi,c) =exp[—ni (bi,c) g2 (x,C)] ;i = 1, 2, respectively, wheregi= ;i = 1,2, andg, (x;c) = . We used the MLEs
(C N1, A2, ) to obtain the approximatél—a)100% confidence mterval for R, where, the McBof ¢ is obtained
numerically, usmg the Newton—Raphson iterative methodd ahe MLEsA;, and R can be obtained as

Ge
fli=ge= W =12 andR_H% 1+(b> . The Gr given from (2), where,G,,= ( i) ,Ge=(8) =2, and
1

Gbiz( i) boi= ( ) boi;i = 1, 2, and (o, b01,b02) is the observed value of the MLES, bl,bz) andc® _(—é) and
br=

I by

independent samples from inverse exponential distribufg (x) exp[——] ;i=1 2. Using the same techniques in
Algorithms (1-3), we can obtain thél—a)100% bootstrap, Bayesian, and generallzed confidencevaigeof R,
respectively.

(b') ;i=12, are pivotal quantities. The MLEs* ‘b* of ¢, bj can be obtained respectively by generating
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Figure 3: Leyt tail error for Weibuil and inverse Weilhull Jistrirutiors.

Left tail error for Weibull distribution Left tail error for inverse Weibull Left tail error for Weibull distribution |  Left tail error for inverse Weibull
whenR=06 distribution when R =0.6 whenR=07 distribution when R=0.7

Left tail error for inverse Weibull
distributionwhen R =08

Left tail error for inverse Weibull
distribution when R=0.9

Left tail error for inverse Weibull Left tail error for Weibull distribution | | eft tail error for inverse Weibull
distribution when R=0.95 whenR=0.99 distribution when R =099
Raci
Soa
Elp oot 042504
ggﬂg‘ = 01000
Rung £ oo
j 00500 R¥

0.02501

000002

In the Bayesian estimation, we choose the values of the fyg@meters in both cases (gamma priors and mixed
priors) for both general forms on basis of same means, bigtrdift variances.

For gamma priors: lefds, h1)= (3, 3/2), (dz, ho)= (2, 1), and(ds, h3)= (1, 1/2).

For mixed priors: letds, h1)= (3, 3/2), (d2, hp)= (2, 1).

The comparison on the basis of average length, averageam®/deft and right tail errors are introduced for the
Weibull and the inverse Weibull distributions. Figure 1 ahgresent the average lengths and the average coverage
probabilities of the different intervals (ACI, GCI, P-bodi-boot, G-BCI, and M-BCI) for both Weibull & inverse
Weibull distributions. Figures 3 and 4 present the left agHtrtail errors of the same intervals for the same distrdns.
From Figure 1, we see that the boot is the largest averagélerigenR = 0.6&0.7, atR= 0.8 — 0.99, G-BClI and ACI
have the largest and the smallest average length, resplgctiv Figure 2, the average coverage probability of GCI is
roundly the anticipated—a) 100%, the P-boot gives better results than T-boot, we sedrais Figure 2 that, ACI and
T-boot affected by n and R. We observe in Figure 3 that, theGB{ias the largest left tail error whdd= 0.8 — 0.99.
From Figure 4 we see that, the right tail error of T-boot isléirgest and G-BCl is the smallest. We note that in Figures
1-4, the G-BCI and M-BCI are very close to each other. In Fégut, 3, and 4R andn affect average length, and tail
errors of all confidence intervals except BCI.
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Figure 4: Right tail error for Weibuil and inverse Weibull (Bstributions.
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