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Abstract: In this paper, we present interval estimators ofP(X1<X2), when bothX1 andX2 follow some distributions with general
exponential or general inverse exponential forms, with different unknown parameters. Different interval estimatorsare derived. Since
many distributions in the literature belong to the general exponential and the general inverse exponential forms discussed, the results
obtained may directly be applied to a numerous number of distributions. To compare the different interval estimators obtained, a
simulation study is performed with applications on Weibull, and inverse Weibull distributions. The comparison is based on length,
probability coverage, and tail errors.
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1 Introduction

The estimation ofR= P(X1<X2) has been widely used in the fields of aeronautical, civil, mechanical and electronic
engineering. For example,X1 may be the voltage output of a transformer (power supply), while X2 may represent the
breakdown voltage of a capacitor, Hall [1]. Reiser and Guttman [2] presented a rocket motor experiment data where
X1 represents the operating pressure andX2 represents the chamber burst strength. Due to the practicalimportance of
R= P(X1<X2) model, a numerous number of researches are presented in the literature concerning inferences on R. Kotz
et al. [3] compiled the work done on R until year 2003, after year 2003;see for example, Rezaei et al [4], Amiri et al. [5],
and Al-Mutairi et al. [6].

Mokhils et al. [7] introduced point and interval estimation ofR= P(X1<X2) when X1 and X2 have a general
exponential form or a general inverse exponential form withthe survival functions given respectively by either

F̄Xi (x;θi)=exp[−θi g1 (x;c)] ,

or
F̄Xi (x;ηi)= 1−exp[−ηi g2 (x;c)] ; i = 1, 2,

where, the functiong1 (x;c) is continuous, monotone increasing, differentiable function such that,g1(x;c) → 0 asx→0
andg1(x;c)→ ∞ asx→∞, the functiong2 (x;c) is a continuous, monotone decreasing, differentiable function, such that,
g2 (x;c)→∞ asx→0 andg2 (x;c)→ 0 asx→∞, θi andηi are unknown parameters, whilec is common known parameter.

In the present article, we obtain interval estimators ofR= P(X1<X2), whereX1 andX2 are non-negative independent
and continuous random variables, having the same general forms discussed by Mokhils et al. [7], with the survival
functions given by either

F̄Xi (x;bi ,c)=exp[−θi(bi ,c) g1 (x;c)] , (1)

or,
F̄Xi (x;bi ,c)= 1−exp[−ηi(bi,c) g2 (x;c)] ; i = 1,2, (2)
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where,θi(bi ,c) andηi(bi ,c) are differentiable functions in two unknown parametersbi andc; i = 1,2. Of course, they
could be functions of justbi ; i = 1, 2. Consequently, ifX1 andX2 follow the forms in (1) or (2), then R will take the
following forms

R= P(X1<X2)=
θ1(b1,c)

θ1(b1,c)+θ2(b2,c)
, (3)

or,

R= P(X1<X2) =
η2(b2,c)

η1(b1,c)+η2(b2,c)
. (4)

For simplicity, we shall refer toθi (bi ,c) andηi(bi ,c) by θi andηi ; i = 1, 2, respectively.
We construct approximate confidence intervals for R, using the maximum likelihood estimator (MLE) of R.

Generalized confidence intervals are obtained, using the generalized variable (GV) approach. Two bootstrap confidence
intervals (percentile and t) are also presented. Bayesian credible intervals of R are obtained, using Markov chain Monte
Carlo method (MCMC) in two cases. The different interval estimators are compared via a simulation study.

2 Confidence limits ofR= P(X1 < X2)

In this section, we present different confidence intervals of R namely: the approximate, generalized, bootstrap (percentile
andt) and Bayesian with different priors.

2.1 Approximate confidence interval of R (ACI)

Suppose thatXi=(Xi1, Xi2, . . . , Xini ) ; i = 1, 2, be two independent random samples from populations with survivor
function given by (1). The likelihood function is

L1 (x1,x2|b1,b2,c) = exp

[
2

∑
i=1

ni lnθi +
2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

θi

ni

∑
j=1

g1(xi j ;c)

]
, (5)

where, g
′

1 (xi j ;c) is the first derivative ofg1 (xi j ;c) w.r.t xi j . The log-likelihood function is

l1 (x1,x2|b1,b2,c) =
2

∑
i=1

ni lnθi +
2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

θi

ni

∑
j=1

g1(xi j ;c). (6)

Differentiatingl1 with respect to the parameters c,b1, b2 and equating with zero, we get

∂ l1
∂c

=
2

∑
i=1

ni

θi

∂θi

∂c
+

2

∑
i=1

ni

∑
j=1

∂
∂c

lng′1(xi j ;c)−
2

∑
i=1

∂θi

∂c

ni

∑
j=1

g1(xi j ;c)−
2

∑
i=1

θi

ni

∑
j=1

∂
∂c

g1(xi j ;c) = 0 (7)

∂ l1
∂bi

=

(
ni

θi
−

ni

∑
j=1

g1(xi j ;c)

)
∂θi

∂bi
= 0; i = 1,2. (8)

The MLE ĉ of c can be obtained by solving (7) numerically. Solving (8), the MLEsθ̂i of θ i ; i = 1,2, are given by

θ̂i =
ni

∑ni
j=1g1(xi j ; ĉ)

; i = 1, 2, (9)

see [7]. The corresponding MLÊRof R is

R̂=
θ̂1(b̂1, ĉ)

θ̂1(b̂1, ĉ)+ θ̂2(b̂2, ĉ)
(10)

It is known that, the MLER̂ is asymptotically normal with meanRand varianceσ2
R̂
=NtV−1N, where,V−1 the inverse

of the Fisher information matrix V of(c,b1,b2), Nt is the transpose of matrixN, (see, Rao [8]), where,

V =−E




∂ 2l1
∂c2

∂ 2l1
∂c∂b1

∂ 2l1
∂c∂b2

∂ 2l1
∂b1∂c

∂ 2l1
∂b2

1

∂ 2l1
∂b1∂b2

∂ 2l1
∂b2∂c

∂ 2l1
∂b2∂b1

∂ 2l1
∂b2

2


 , N =




∂R
∂c
∂R
∂b1
∂R
∂b2


 ,
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∂ 2l1
∂c2 =

2

∑
i=1

ni

θi

∂ 2θi

∂c2 −
2

∑
i=1

ni

θ 2
i

(
∂θi

∂c

)2

+
2

∑
i=1

ni

∑
j=1

∂ 2

∂c2 lng′1(xi j ;c)−
2

∑
i=1

θi

ni

∑
j=1

∂ 2

∂c2 g1(xi j ;c)

−
2

∑
i=1

∂ 2θi

∂c2

ni

∑
J=1

g1(xi j ;c)−2
2

∑
i=1

∂θi

∂c

ni

∑
j=1

∂
∂c

g1(xi j ;c),

∂ 2l1
∂c∂bi

=
∂ 2l1

∂bi∂c
=

ni

θi

∂ 2θi

∂c∂bi
−

ni

θ 2
i

∂θi

∂c
∂θi

∂bi
−

(
∂θi

∂bi

) ni

∑
j=1

∂
∂c

g1(xi j ;c)−

(
∂ 2θi

∂c∂bi

) ni

∑
j=1

g1(xi j ;c),

∂ 2l1
∂b2

i

=
ni

θi

∂ 2θi

∂b2
i

−
ni

θ 2
i

(
∂θi

∂bi

)2

−

(
∂ 2θi

∂b2
i

) ni

∑
j=1

g1(xi j ;c); i = 1,2,
∂ 2l1

∂b1∂b2
=

∂ 2l1
∂b2∂b1

= 0,

∂R
∂b1

=
θ2

∂θ1
∂b1

(θ1+θ2)
2 ,

∂R
∂b2

=
−θ1

∂θ2
∂b2

(θ1+θ2)
2 , and

∂R
∂c

=
θ2

∂θ1
∂c −θ1

∂θ2
∂c

(θ1+θ2)
2 .

The approximate(1−α)100% confidence interval forR is
(

R̂±z(1−α/2)

√
σ̂2

R̂

)
, where,z(1−α/2) is the (1−α/2)th

quantile of the standard normal distribution andσ̂2
R̂

is the estimator ofσ2
R̂
, and it is obtained by replacing c,θi and R

with ĉ, θ̂i andR̂, respectively. It is important to mention that, the explicit expression ofσ2
R̂

depends onθi , g
′

1(xi j ;c) and
g1 (xi j ;c); j = 1, . . .,ni , i = 1, 2.

Similarly, if Xi ; i = 1, 2, are two independent random samples from populations with survivor function given by (2),
the MLE ĉ of c can be obtained numerically by solving the following equation

2

∑
i=1

∂ηi

∂c
ni

ηi
+

2

∑
i=1

ni

∑
j=1

∂
∂c

ln
(
−g′2(xi j ;c)

)
−

2

∑
i=1

ηi

ni

∑
j=1

∂
∂c

g2(xi j ;c)−
2

∑
i=1

∂ηi

∂c

ni

∑
j=1

g2(xi j ;c) = 0,

where, g
′

2(xi j ;c) is the first derivative ofg2 (xi j ;c) w.r.t xi j . The MLEsη̂i of ηi will be η̂i =
ni

∑
ni
j=1 g2(xi j ;ĉ)

; i = 1, 2. The

corresponding MLER̂ of R will be R̂= η̂2(b̂2,ĉ)
η̂1(b̂1,ĉ)+η̂2(b̂2,ĉ)

, and hence, the approximate(1−α)100% confidence interval for

Rwill be easily obtained in a similar manner as that of the caseof the general exponential form (1).

2.2 Generalized confidence interval of R (GCI)

The generalized pivotal quantity (GPQ) is a function of observed statistics and random variables whose distribution is
free of unknown parameters. The useful feature of the GV approach is that the GPQ for a function of unknown
parameters can be obtained by simply plugging their GPQs in the function. LetXi=(Xi1, Xi2, . . . , Xini ) ; i = 1, 2, be two
independent random samples from populations with survivorfunction (1) or (2) having unknown parametersθi or
ηi ; i = 1, 2, respectively, and a common unknown parameter c. The GPQ for R given respectively by

GR= R
(
Gθ1, Gθ2

)
=

Gθ1

Gθ1+ Gθ2

, (11)

or,

GR= R(Gη1, Gη2)=
Gη2

Gη1+ Gη2

. (12)

where,Gθi=θi(Gbi , Gc) andGηi=ηi(Gbi , Gc); Gθi , Gηi , Gbi
, andGc denote the GPQs forθi , ηi , bi , andc; i = 1, 2,

respectively. It is necessary to mention that,Gθi and Gηi may be depend onGbi only. The (1−α)100% generalized
confidence interval ofR can be obtained as

(
GR(α/2), GR(1−α/2)

)
, where,GR(α/2) andGR(1−α/2) are the(α/2)th and

(1−α/2)th quantiles of R.

2.3 Bootstrap confidence interval of R (boot)

Suppose thatXi=(Xi1,Xi2, . . . ,Xini ); i = 1, 2 are two independent random samples from populationswith survivor function
(1) having unknown parametersθi ; i = 1, 2, respectively, and a common unknown parameter c. For generating bootstrap
samples, we apply the following algorithm, (see, Efron [9]).
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Algorithm 1.

1.From the original dataXi ; i = 1, 2, compute the MLEs
(
ĉ, θ̂1, θ̂2, R̂

)
of (c,θ 1,θ2,R) using (7), (9) and (10).

2.Resample two independent random samplesX∗∗
i ; i = 1,2, with replacement from the original samplesXi ; i = 1,2,

respectively; compute the MLEs
(
ĉ∗∗, θ̂ ∗∗

1 , θ̂ ∗∗
2 , R̂∗∗

)
of (c,θ 1,θ2,R) from (7), (9) and (10).

3.Repeat the step 2, N times to obtain a set of bootstrap samples of R, say
{

R̂∗∗
j ; j = 1, . . . ,N

}
, and order

R̂∗∗
j ; j = 1, . . . , N, ascending aŝR∗∗1

j ≤ ·· · ≤ R̂∗∗(N)
j .

4.Construct two different bootstrap intervals of R.

a.The(1−α)100% percentile bootstrap confidence interval of R (P-boot)given by
(

R̂∗∗
(α/2), R̂∗∗

(1−α/2)

)
, where,R̂∗∗

(α/2)

andR̂∗∗
(1−α/2) are the(α/2)th and(1−α/2)th quantiles of R, respectively.

b.The(1−α)100% t-bootstrap confidence interval of R (T-boot) given by
(
R̂−t̂(1−α/2)S

∗∗, R̂−t̂(α/2)S
∗∗
)
, where,S∗∗ is

the sample standard deviation of
{

R̂∗∗
j ; j = 1, . . . ,N

}
andt̂(α) be the(α)th quantile of

{
R̂∗∗

j −R̂
S∗∗ ; j = 1, . . . ,N

}
.

The two different bootstrap intervals of R for the form (2) can be obtained, using a similar algorithm as Algorithm 1,
if Xi ; i = 1, 2 being two independent random samples from populations with survivor function (2).

2.4 Bayesian Credible Interval of R (BCI)

To explore the sensitivity of prior distributions of the unknown parameters, we apply MCMC method for estimating the
Bayesian credible interval of R in two cases. In the first casewe assume gamma priors forθ1,θ2, and c, while in the
second case we consider independent gamma priors forθ1,θ2 and uniform prior for c as the available prior information
is weak for c. In Bayesian statistics, there are generally two MCMC algorithms that use the Gibbs sampling and the
Metropolis-Hastings algorithm. If the full conditional distribution for each parameter is known, the Gibbs sampling can
be used. If the full conditional doesn’t look like any known distribution, in this case the Metropolis-Hastings algorithm
can be useful.

2.4.1 Gamma priors (G-BCI)

Suppose thatXi ; i = 1, 2 are two independent random samples from populations with survivor function (1), and also
suppose that,θi ; i = 1, 2 having independent gamma prior distributions with probability density function

f (θi) =
h

di
i

Γ di
θ di−1

i e−hiθi ; θi , di , hi > 0, and the prior distribution of c follows the gamma distribution with probability

density function f (c) =
h

d3
3

Γ d3
cd3−1e−h3c; c, d3, h3 > 0. From the likelihood function in (5), and the prior density

functions ofθ1,θ2, and c. The joint posterior density function ofθ1,θ2, andc is given by

π1 (θ1,θ2, c|x1,x2) ∝ exp

[
2

∑
i=1

(ni +di −1) lnθi +(d3−1) lnc− ch3+
2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

θi

(
hi +

ni

∑
j=1

g1(xi j ;c)

)]
.

We find the marginal posterior distribution ofθi is gamma with parameters((ni+di) ,
(

hi+∑ni
j=1g1(xi j ;c)

))
; i = 1,2,

respectively, and the marginal posterior distribution ofc is

π1(c|x1,x2) = K−1
1 exp

[
(d3−1) lnc− ch3+

2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

(ni +di) ln

(
hi +

ni

∑
j=1

g1(xi j ;c)

)]
,

where,

K1 =
∫ ∞

−∞
exp

[
(d3−1) lnc− ch3+

2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

(ni +di) ln

(
hi +

ni

∑
j=1

g1(xi j ;c)

)]
dc.

However, the marginal posterior distribution of c doesn’t look like any known distribution, in order to solve our
problem we shall use the Gibbs sampling and Metropolis-Hastings (see, Asgharzadeh et al. [10]). The Metropolis-Hastings
with Gibbs sampling algorithm follows the following steps.
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Algorithm 2.

1.Choose a starting valuec(0).
2.For j=1 to N times.

3.Generateθ ( j)
i from Gamma

(
(ni+di) ,

(
hi+∑ni

j=1g1

(
xi j ;c( j−1)

)))
; i=1, 2, respectively.

4.Generatec( j) from π1 (c | x1,x2) using the Metropolis-Hastings algorithm with the normal proposal distributionπ ∼

N(c( j−1),1).
a.Generateξ from the proposal distributionπ .

b.DefineQ=min

{
1,

π1(ξ | x1, x2) π(c( j−1))
π1(c( j−1)| x1, x2) π(ξ )

}
.

c.Generate u from Uniform (0, 1). Takec( j)=

{
ξ ; u≤ Q,

c( j−1); otherwise
.

5.Compute theR( j) at
(

θ ( j)
1 ,θ ( j)

2

)
from (3).

6.End j loop.
7.Repeat the steps 2-6, N times, and orderRj ; j = 1, . . . , N, asRj1< · · ·< Rj(N).

8.Construct the(1−α)100% Bayesian credible interval of R as
(

R̃g(α/2), R̃g(1−α/2)

)
, where,R̃g(α/2) andR̃g(1−α/2) are

the(α/2)th and(1−α/2)th quantiles of R, respectively.

2.4.2 Mixed priors (M-BCI)

Let Xi ; i = 1, 2 be two independent random samples from populations with survivor function (1). Let θi have
independent gamma prior distributions with parameters(di , hi), i = 1,2, respectively, and c has a non-informative
uniform prior distribution with probability density function f (c) = 1;c> 0. From the likelihood function in (5) and the
prior density functions ofθ1,θ2, and c, so the joint posterior density function ofθ1,θ2, and c can be obtained as

π2(θ1,θ2, c|x1,x2) ∝ exp

[
2

∑
i=1

(ni +di −1) lnθi +
2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

θi

(
hi +

ni

∑
j=1

g1(xi j ;c)

)]
.

The marginal posterior distribution ofθi will be gamma with parameters((ni+di) ,
(

hi+∑ni
j=1g1(xi j ;c)

))
; i = 1, 2,

respectively, while the marginal posterior distribution of c will be

π2 (c|x1,x2) = K−1
2 exp

[
2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

(ni +di) ln

(
hi +

ni

∑
j=1

g1(xi j ;c)

)]
,

where,

K2 =
∫ ∞

−∞
exp

[
2

∑
i=1

ni

∑
j=1

lng′1(xi j ;c)−
2

∑
i=1

(ni +di) ln

(
hi +

ni

∑
j=1

g1(xi j ;c)

)]
dc.

It is observed that, the marginal posterior distribution ofc is not known. Using Algorithm 2 of the Metropolis-Hastings

with Gibbs sampling, the(1−α)100% Bayesian credible interval of R can be obtained as
(

R̃m(α/2), R̃m(1−α/2)

)
, where,

R̃m(α/2) andR̃m(1−α/2) are the(α/2)th and(1−α/2)th quantiles of R.
Similarly, for the case of the inverse exponential form in (2), the(1−α)100% Bayesian credible intervals for R can be

obtained assuming gamma priors and mixed priors.

3 Simulation

In this section we present a simulation study, to observe thebehavior of the estimators obtained by different methods
for different sample sizes and different parameter values.We compare different interval estimators ofR= P(X1<X2),
namely approximate, generalized, bootstrap (percentile and t) and Bayesian with gamma priors and mixed priors when
Xi ; i = 1, 2, have the general exponential or the general inverse exponential forms in (1) or (2), respectively. We generate
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1000 samples of sample sizes (n1, n2) = (10, 10) (small) and (30, 30) (large) from the underlying distributions ofX1 and
X2, with unknown parameters. The Weibull distribution is considered as an example of the general exponential form, and
the inverse Weibull distribution as an example of the general inverse exponential form. Takingα = 0.05, average length,
average coverage probability, left tail and right tail errors of the(1−α)100% confidence intervals are calculated. We select
the parameter values that produce the values of R = 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99.

Let Xi ; i = 1, 2, be two independent random samples from Weibull distributions with the survival function given as
F̄Xi (x;bi ,c)=exp[−θi(bi ,c) g1 (x;c)] ; i = 1,2, where,θi=

1
bc

i
; i = 1,2, andg1(x;c)=xc. For the approximate(1−α)100%

confidence interval for R, using the MLEs
(
ĉ, θ̂ 1, θ̂2, R̂

)
, where, the MLE ˆc of c is obtained from (7) by the

Newton–Raphson iterative method, and the MLEsθ̂i , and R̂ can be expressed from (9) and (10)
asθ̂i=

1
b̂ĉ

i
= ni

∑
ni
j=1 xĉ

i j
;i = 1, 2, andR̂= 1

1+
θ̂2
θ̂1

= 1

1+

(
b̂1
b̂2

)ĉ . For the generalized confidence interval, theGR can be obtained from

(11), where,Gθi=
(

1
Gbi

)Gc
, Gc=

(
c
ĉ

)
ĉ0=

ĉ0
ĉ∗ , and Gbi=

(
bi
b̂i

) 1
Gc b̂0i=

(
1
b̂∗i

) 1
Gc b̂0i ;i = 1, 2, and

(
ĉ0, b̂01, b̂02

)
denotes the

observed value of the MLEs
(
ĉ, b̂1, b̂2

)
. Thoman et al. [11] showed that the distributions of these quantitiesĉ∗=

(
ĉ1
c1

)

andb̂∗i =
(

b̂i
bi

)
;i = 1,2, do not depend on any unknown parameters, and so they are pivotal quantities. The MLEs ˆc∗, b̂∗i

of c, bi can be obtained respectively by generating independent samples from Exp(1) distribution (see, Krishnamoorthy
et al. [12]). We introduce the following algorithm to estimate the generalized confidence interval of R, using any
programming language as R-language (see, Krishnamoorthy and Lin [13]).

Algorithm 3.
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1.Generate two independent random samplesXi from Weibull(bi , c); i = 1, 2, respectively, compute the MLEs(
ĉ0, b̂01, b̂02

)
of (c, b1,b2).

2.Generate two independent random samplesX∗
i from Exp(1); i = 1, 2, compute the MLEs

(
ĉ∗, b̂∗1, b̂

∗
2

)
.

3.Compute the GPQs,Gc,Gbi ,Gθi , and GR;i = 1, 2.
4.Repeat the steps 2-3, N times to obtain a set of samples ofGR, say

{
GRj ; j = 1, . . . ,N

}
, and the ordered

GRj ; j = 1, . . . , N, will be denoted asG(1)
Rj

< · · ·< G(N)
Rj

.

5.Construct the(1−α)100% generalized confidence interval of R as
(
GR(α/2), GR(1−α/2)

)
.

We can also obtain the(1−α)100% bootstrap and Bayesian confidence intervals of R, usingAlgorithm 1 and 2,
respectively.

If X1 and X2 are two independent random samples from inverse Weibull distributions
FXi (x;bi ,c)=exp[−ηi (bi ,c)g2(x;c)] ;i = 1, 2, respectively, where,ηi=

1
bc

i
;i = 1,2, andg2 (x;c)= 1

xc . We used the MLEs
(
ĉ, η̂1, η̂2, R̂

)
to obtain the approximate(1−α)100% confidence interval for R, where, the MLE ˆc of c is obtained

numerically, using the Newton–Raphson iterative method, and the MLEsη̂i , and R̂ can be obtained as

η̂i=
1
b̂ĉ

i
= ni

∑
ni
j=1 x−ĉ

i j
;i = 1, 2, andR̂= 1

1+
η̂1
η̂2

= 1

1+

(
b̂2
b̂1

)ĉ . The GR given from (12), where,Gηi=
(

1
Gbi

)Gc
,Gc=

(
c
ĉ

)
ĉ0=

ĉ0
ĉ∗ , and

Gbi=
(

bi
b̂i

) 1
Gc b̂0i=

(
1
b̂∗i

) 1
Gc b̂0i ;i = 1, 2, and

(
ĉ0, b̂01, b̂02

)
is the observed value of the MLEs

(
ĉ, b̂1, b̂2

)
, andĉ∗=

(
ĉ
c

)
and

b̂∗i =
(

b̂i
bi

)
;i = 1,2, are pivotal quantities. The MLEs ˆc∗, b̂∗i of c, bi can be obtained respectively by generating

independent samples from inverse exponential distribution FXi (x)=exp
[
− 1

x

]
;i = 1, 2 . Using the same techniques in

Algorithms (1-3), we can obtain the(1−α)100% bootstrap, Bayesian, and generalized confidence intervals of R,
respectively.
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In the Bayesian estimation, we choose the values of the hyper-parameters in both cases (gamma priors and mixed
priors) for both general forms on basis of same means, but different variances.

For gamma priors: let(d1, h1)= (3, 3/2) , (d2, h2)= (2, 1), and(d3, h3)= (1, 1/2).

For mixed priors: let(d1, h1)= (3, 3/2) , (d2, h2)= (2, 1).

The comparison on the basis of average length, average coverage, left and right tail errors are introduced for the
Weibull and the inverse Weibull distributions. Figure 1 and2 present the average lengths and the average coverage
probabilities of the different intervals (ACI, GCI, P-boot, T-boot, G-BCI, and M-BCI) for both Weibull & inverse
Weibull distributions. Figures 3 and 4 present the left and right tail errors of the same intervals for the same distributions.
From Figure 1, we see that the boot is the largest average length whenR= 0.6&0.7, at R= 0.8−0.99, G-BCI and ACI
have the largest and the smallest average length, respectively. In Figure 2, the average coverage probability of GCI is
roundly the anticipated(1−α)100%, the P-boot gives better results than T-boot, we see also from Figure 2 that, ACI and
T-boot affected by n and R. We observe in Figure 3 that, the G-BCI has the largest left tail error whenR= 0.8−0.99.
From Figure 4 we see that, the right tail error of T-boot is thelargest and G-BCI is the smallest. We note that in Figures
1-4, the G-BCI and M-BCI are very close to each other. In Figures 1, 3, and 4,R andn affect average length, and tail
errors of all confidence intervals except BCI.
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