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Abstract: In this work, we propose to solve an equivalent real-valued second order differential equation instead of solving 

the complex-valued Schrödinger equation itself using the finite difference time domain method (FDTD). This reduces the 

number of variables involved and hence memory space requirements and code amount. This allows obtaining also a more 

relaxed stability relation which reduces time requirements. Some examples are given at the end to validate the proposed 

formulation.  
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1 Introduction  

The Finite Difference Time Domain (FDTD) Method is a 

numerical method developed to solve the problems of 

electromagnetism [1]. It has been extended later to include 

other domains of science and engineering [2]. The Quantum 

FDTD (Q-FDTD) is a variant of the FDTD method 

developed to solve quantum physics problems. Since the 

Schrödinger equation is the fundamental equation in 

quantum physics, it has gained most of developers’ interest. 

Because it is a complex valued equation and can not be 

implemented directly using a time domain method, different 

approaches were introduced to allow the integration of the 

Schrödinger equation in the FDTD code. 

Soriano and his co-workers [3] divided the complex wave 

function into two parts: real part and imaginary part. After 

inserting this complex wave function in the Schrödinger 

equation, they obtained two coupled real-valued equations 

to be solved following a leapfrog scheme.  

The main drawback of this approach is its memory space 

and CPU time consumption. To reduce these computational 

costs, different schemes were introduced later: for instance, 

a parallel algorithm in [4], a non-linear grid mapping in [5] 

and a generalized algorithm in [6, 7].   

Sudartha and Geldart [8] transformed the Schrödinger 

equation into a diffusion equation with imaginarytimeand 

applied it for the calculation of the ground state and excited 

states’ eigenvalues and eigenfunctions of electrons in a 

potential well.  

The use of imaginary time nevertheless, leads to decaying 

solutions, notably for higher order modes, which 

complicates the extraction of the eigenvalues of those modes 

[5].  

In this work, a new approach for the solution of the 

Schrödinger equation is presented. It consists of solving a 

real-valued second order differential equation equivalent to 

the Schrödinger equation, instead of solving the Schrödinger 

equation itself. Details of the implementation of the obtained 

wave equation will be given and the stability relation 

presented. Some numerical examples will be presented also 

to show the validity and efficiency of the proposed 

approach. 

2 Derivation 

Schrödinger equation in its simple form is written as 

   , ,E r t H r t     (1) 

,where: E and H are the energy and the Hamiltonian 

operators respectively; 
 tr,

 is the wave function (state 

function), having the expression 

   ,
jEt

r t r e


                   (2) 

where 
34

100504.1


 .  

The left term of (1) can be obtained by multiplication of the 

time derivative of (2) with the quantity
j
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Consequently, we can rewrite (1) as follows 

Quantum Physics Letters 
An International Journal 

http://dx.doi.org/10.18576/qpl/060108


54                                                                                                            A. Benouatas: Alternative Approach for the Time Domain … 

 

 

 

© 2017 NSP 

Natural Sciences Publishing Cor. 
 























V

m
H

t
j

2

22


  (4) 

V
m

H 



2

22

                 (5) 

where m  is the mass of the particle and  V  is the time-

independant potential energy.  

The equation (4) is the time dependent Schrödinger 

equation; It contains a complex number and can not be 

implemented directly using the FDTD method. For this 

reason, two main different approaches were presented for its 

implementation.  

In the first approach [3], the complex wavefunction (2) is 

assumed to have the form 

ir j 
   (6) 

, where ‘r’ and ‘i’ refer to the real and the imaginary parts 

respectively. Inserting (6) in (4), we obtain two coupled real-

valued equations 

i
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t
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                               (7) 
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                                   (8) 

that can be updated following a leapfrog scheme. The details 

of the discretization as well as the stability criteria are 

presented in [3].  

This algorithm was used later in many applications, for 

instance, for the solution of the coupled Maxwell-

Schrödinger equations [9, 10] and for the simulation of 

electrons in quantum dots [3] [11]. 

This algorithm nevertheless requires large memory space. 

At least, we need two arrays for each component (

ir   and 
), one for the storage of the old variables ( 1

2n

), and the other for the new ones ( 1
2n ). For the sake of 

reducing these requirements, different schemes were 

proposed [4, 5, 6, and 7]. 

In the second approach [8], the expression of the 

wavefunction (2) is written using the concept of imaginary 

time
jt

 

    
E

ertr
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  (9) 

Consequently (4) transforms  to a diffusion-like equation 





H



    (10) 

to be solved in the imaginary time domain.  

This approach leads to decaying solutions notably for higher 

order modes, which complicates the post processing and the 

extraction of numerical results. This approach has gained 

little interest and was used in very few papers.  

In the following, an alternative approach is proposed. 

Multiplying the second time derivative of (2) with the 

quantity
2 , we get  
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From (11), (1) and (5), we obtain 
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  (12) 

This is a real-valued second order differential equation that 

we propose to solve instead of solving the complex-valued 

Schrödinger equation (4) itself. 

Actually, we can obtain (12) from the couple of equationss 

(7) and (8). Derivating both of them with respect to time, we 

obtain  
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From (13) and (8), we obtain  
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Similarly, from (14) and (7), we obtain 
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Note that the two equtions (15) and (16) are identical and 

can be written  

p
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with p=r, i. If we omit the indice p, we will get the equation 

(12). 

3 Discretization 

From (12) and (5), we obtain  
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Using the approximating formula for the time derivative 
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and similar formulas for the special derivatives 
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Note that the potential as well as the mass of the particle are 

denser in this equation than they are in the Schrödinger 

equation – this would allow a better treatment of complex 

problems where different regions with different values of 

the potential are involved.    

4 Stability Analysis 

To obtain the stability condition of the proposed algorithm, 

we follow a similar approach to that used in [3].  

4.1 Temporal Eigenvalue 

Expressing the left-hand side of (12) in terms of the 

temporel eigenvalue t  , we obtain 
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Introducing the groth factor  
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The stability requires that  
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From (27), we can see that this condition is verified when 
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4.2 Special Eigenvalue 

Similarly, expressing the right-hand side of (12) in terms of 

the spacial eigenvalue 
s  , we obtain 
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4.3 Stability Relation 

The stability requires that  

ts      (35) 

From (31) and (34), we obtain 
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When 0x , we obtain 
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This stability relation (40) is more relaxed than that of [3], 

and the maximum value allowed for the time step is larger. 

The two relations are identical only when 0V .  

5 Numerical Results and Discussion 

In the first example, we alalyse the quantum tunneling 

phenomena of an electron through a potential barier. 

Figure 1 shows the obtained results for the transmission 

coefficientg of an electron with enegy eVE 500  through 

a barrier of potential 0 600V eV . The width of the barrier 

W  varies from 0 to dx5 , where 
pmdx 054.0

 is the space 

step.  

Figure 2 shows the results obtained for the transmission 

coefficient of the electron through a potential barrier of 

width dxW 1 .  

The magnitude of the potential varies from 500eV  to 

eV750 . 

The maximum value allowed for the time step maxt
is 

obtained from (13). For instance, for 750V eV , we get 
19

max 1026.2 t
, whereas the obtained value from the 

relation of [3] is 
19

max 2.00 10t    , which means an 

increment of %13 .  

In both figures, the obtained results are compared with other 

results obtained using the formulation of [3] and the exact 

results obtained from the relation  
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Good agreement was obtained.  

 

Figure 1: variation of the transmission coefficient in 

function of the width of the potential barriar. 

 

Figure 2: variation of the transmission coefficient in 

function of the potential of the barriar. 

Table 1 shows a comparison between this method and the 

usual one in terms of time and memory-space required for 

the simulation.  

Table 1. Comparison of Efficiency. 

 This Usual 

Memory Space 

(bytes) 
19400 38600 

Processing Time  

(steps) 
541 611 

 

The simulation was performed using a 1D scheme; in the 3D 

scheme, the difference between the two methods will be 

much more significant.  

 



Quant. Phys. Lett.  6, No. 1, 53-57 (2017) / http://www.naturalspublishing.com/Journals.asp                                                           57 
 

 

        © 2017 NSP 

         Natural Sciences Publishing Cor. 
 

6 Conclusion 

In this paper, we derived a second-order differential 

equation from the Schrodinger equation. This equation 

involves only real entities and can be implemented directly 

using the finite-difference time-domain method. The 

derivation of the discretized form of the obtained equation 

as well as its stability relation was presented. It was applied 

later for the calculation of the transmission coefficient of an 

electron through a potential barier for different values of the 

potential and the width of the barrier and the obtained results 

were in agreement with the exact results and with other 

results obtained using the usual FDTD algorithm, which 

proves the accuracy of the present approach. A significant 

reduction in memory-space and time requirements was also 

observed, which proves the efficiency of the present 

approach.   
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