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Abstract: In this paper, some structural properties of generalized standard inverted exponential distribution (GIED) have 

been established. Bayesian method of estimation has been employed to estimate the parameters of GIED using  a class of 

one non-informative (extension of Jeffrey’s) prior and one informative (gamma) prior under the assumption of three loss 

functions, namely, Square error loss function, Al-Bayyati,s loss function and LINEX loss function. These methods are 

compared by using mean square error for real life data as well as simulation study with varying sample sizes in R software. 

The expression for survival function has also been established under extension of Jeffrey’s prior and gamma prior. 

Keywords: Generalized standard inverted exponential distribution, Priors, loss functions, Survival function and R Software. 

 

1 Introduction 

The exponential distribution is the most widely used 

lifetime model in reliability theory, because of its simplicity 

and mathematical feasibility. If a random variable X has 

an exponential distribution, then 
1

Y
X

 has an inverted 

exponential distribution (IED). IED has been discussed as a 

lifetime model by Lin et al. (1989) in detail. They obtained 

maximum likelihood estimates (MLEs), confidence limits 

and uniformly minimum variance unbiased estimators for 

the parameter and reliability function of IED with complete 

samples. Later IED has been considered by Killer and 

Kamath (1982) and among many others. The exponential 

distribution was generalized, by introducing a shape 

parameter, and studied extensively by Gupta and Kundu 

(1999), (2001). Raqab and Madi (2005) studied generalized 

exponential distribution (GED) from a Bayesian point of 

view. 

 On the same lines, Abouammoh and Alshingiti (2009) 

introduced a shape parameter in the IED to obtain 

generalized inverted exponential distribution (GIED). They 

derived many distributional properties and reliability 

characteristics of GIED. Assuming it to be a good lifetime 

model they obtained maximum likelihood estimators, least 

square estimators and confidence intervals of the two 

parameters involved. Sanku Dey (2010) discussed the 

Bayesian Estimation of the Shape Parameter of the 

Generalized Exponential Distribution under different loss 

functions. Hare Krishna and Kapil Kumar (2012) have 

studied the reliability estimation based on progressive type-

II censored sample under classical setup. Singh et al (2013) 

studied the estimation of parameters of generalized inverted 

exponential distribution for progressive type-II censored 

sample with binomial removals. 

Let 1 2, , , nX X X  be i.i.d. generalized standard 

inverted exponential random variables, with the shape 

parameter  and scale parameter 1, the cumulative 

distribution function becomes 
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with the corresponding probability density function (PDF) 

given by 
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where is a shape parameter. When 1 , the GIE 

distribution reduces to the standard inverse exponential 

distribution.  
  
The graphs of density function and cumulative distribution 

function are plotted for different values of shape parameter 

 are given in Figure 1 and 2 respectively.  

 

Figure 1 and 2 illustrates some of the possible shapes of the 

pdf and cdf of the GIED distribution for different values of 

the parameter . 

2 Statistical Properties of the GSIE 

Distribution 

This section provides some basic statistical properties of the 

generalized standard inverted exponential distribution. 

2.1 Reliability Analysis 

The reliability (survival) function of x is 
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and the hazard function is  
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The plots for the reliability (survival) and hazard functions 

are shown in Figure 3 and Figure 4 respectively; 

 

Figure 3 and 4 illustrates some of the possible shapes of the 

survival function and hazard function of the GIED 

distribution for different values of the parameter . 

2.2 Moments 

The rth moment of a continuous random variable X is given 

by; 
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Now using equation (1.2) in eq. (2.3), we have  
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Using the expansion of  
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expression (2.4) takes the following form: 
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On solving the above equation, we get 
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We observe that Equation (2.5) only exists when 1r . 

The implication is that the first moment, second moment 

and other higher-order moments does not exist.  

2.3 Harmonic mean of GISE distribution  

The harmonic mean (H) is given as: 
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After some calculations, 
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3 Moment Generating Function and 

Characteristic Function 

Theorem 3.1. Let X have a GSIE distribution. Then 

moment generating function of X  denoted by )(tM X is 

given by: 
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Proof:  By definition  
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  Using Taylor series 
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This completes the proof. 

Theorem3.2. Let X have a GIE distribution. Then 

characteristic function of X  denoted by )(tX is given 

by: 
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Proof:  By definition  
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This completes the proof. 

4 Quantile Function and Median  

The Quantile function is given by; 

)()( 1 uFuQ 
 

Therefore, the corresponding quantile function for the 

proposed model is given by; 

   1/1)1(1log)(


 uuQ
 

)1.4(
 

where U has the uniform U (0,1) distribution. We obtain the 

median by substituting u=0.5. Hence, the median of the 

proposed model is given by;  

   1/11 )5.01(1log
  F

 

This can be simplified to give;                                                                       

   
   1/11 )5.0(1log

  F
 

)2.4(
 

5 Estimation of Parameter 

Let us consider a random sample 1 2( , ,..., )nx x x x  of 

size n from the generalized standard inverse exponential 

distribution. Then the log-likelihood function for the given 

sample observation is 
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As the shape parameter α is assumed to be unknown, the 

ML estimator of shape   is obtained by solving the 
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6 Bayesian Inference Using Different Loss 

Functions 

The Bayesian inference requires appropriate choice of 

prior(s) for the parameter(s). From the Bayesian viewpoint, 

there is no clear cut way from which one can conclude that 

one prior is better than the other. Nevertheless, very often 

priors are chosen according to one’s subjective knowledge 

and beliefs. However, if one has adequate information 

about the parameter(s), it is better to choose informative 

prior(s); otherwise, it is preferable to use non-informative 

prior(s). In this paper we consider both types of priors: the 

extended Jeffrey’s prior and the gamma prior under squared 

error loss function, Al-Bayyati,s loss function and LINEX 

loss function. 

The extended Jeffrey,s prior proposed by Al-Kutubi (2005) 

is given as 

      RcIg
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 is the 

Fisher’s information matrix. For the model (1.2),  
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The conjugate prior in this case will be the gamma prior, 

and the probability density function is taken as 
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With the above priors, we use three different loss functions 

for the model (1.2). 

7 Bayesian Estimation of 𝜶 and Sunder the 

Assumption of Extended Jeffrey’s’ Prior 

7.1 Baye’s estimator of α 

Combining the prior distribution (6.1) and the likelihood 

function, the posterior density of  is derived as follows: 
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      Hence the posterior density of   is given as  
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which is the pdf of gamma distribution

)12,( 11  cnG   

7.1.1 Estimation under Squared Error loss function 

        By using squared error loss function 

2ˆ ˆ( , ) ( )l c     for some constant c the risk 

function is given by 
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Now solving
ˆ( , )

0
ˆ

R  







, we obtain the 

Baye’sestimator as 
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7.1.2 Estimation under Al-Bayyati,s loss function 

By using Al-Bayyati,s loss function 
2 2ˆ ˆ( , ) ( )

c
l        

the risk function is given by 
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Now solving
ˆ( , )

0
ˆ
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, we obtain the Bayes 

estimator         

1

1

1

1
1

21
1 1ln,

)12(
ˆ




























n

i

ix
AB ewhere

ccn





  
)3.7(

 

Remark 1.1: Replacing c2= 0 in (7.3), we get the same 

Bayes estimator as obtained in (7.2) corresponding to the 

SELF. 

7.1.3 Estimation under LINEX loss function 

By using LINEX loss function

     1ˆˆexp)ˆ,( 11   bbl  for some 

constant b1 the risk function is given by 
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Now solving
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0
R  












, we obtain the Bayes 

estimator as 
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7.2 Baye’s estimator of S(x) 

By using posterior distribution function (7.1), we can found 

the survival function such that  
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8. Bayesian Estimation of 𝜶 and S under the 

Assumption of Gamma Prior 

8.1 Bayes estimator of α 

Combining the prior distribution (6.2) and the likelihood 

function, the posterior density of  is derived as follows:  
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Hence the posterior density of   is given as  

   111
2

)(
)|(




 







abn
bn

e
bn

a
x

)1.8(
 

which is the pdf of gamma distribution 

 )(),( 1 bnaG  
 

8.1.1 Estimation under Squared Error loss 

function 

By using squared error loss function

2)ˆ(),ˆ(   cl for some constant c the risk 

function is given by 
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, we obtain the Baye’s 

estimator as     
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8.1.2 Estimation under Al-Bayyati,s loss function 

By using Al-Bayyati,s loss function 

2 2ˆ ˆ( , ) ( )
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l        the risk function is given by
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Now solving
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, we obtain the Bayes 

estimator   as              
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Remark 1.2: Replacing c2= 0 in (8.3), we get the same 

Bayes estimator as obtained in (8.2) corresponding to the 

SELF. 

8.1.3 Estimation under LINEX loss function 

By using LINEX loss function

     1ˆˆexp)ˆ,( 11   bbl
 for some 

constant b1 the risk function is given by 
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Now solving
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8.2 Baye’s estimator of S(x) 

By using posterior distribution function (8.1), we can found 

the survival function such that  

Table 1: MSE for ̂  under extension of Jeffery’s prior using different loss functions 

N   C1 

MLE 

ML
̂

 
SL

̂
 

AL
̂

 LL
̂

 
c2=1.3 c2=-1.3 b1=1.2 b1=-1.2 

25 

0.5 
0.5 0.009920 0.009920 0.011743 0.009561 0.009704 0.010230 

1.0 0.008248 0.006692 0.008902 0.006098 0.006404 0.007087 

1.0 
0.5 0.265436 0.265436 0.277988 0.253211 0.259886 0.271141 

1.0 0.050551 0.061059 0.047867 0.078292 0.067014 0.055367 

1.5 
0.5 0.298196 0.298196 0.409708 0.208053 0.219145 0.407304 

1.0 0.600976 0.481697 0.639827 0.350146 0.359968 0.649817 

50 

0.5 
0.5 0.008726 0.008726 0.007517 0.010199 0.009003 0.008456 

1.0 0.007174 0.008188 0.006901 0.009747 0.008480 0.007904 

1.0 
0.5 0.026544 0.026544 0.023113 0.031110 0.028309 0.024933 

1.0 0.026257 0.024287 0.027023 0.023062 0.023523 0.025429 

1.5 
0.5 0.101102 0.101102 0.087334 0.117070 0.110049 0.092561 

1.0 0.039084 0.035488 0.040549 0.033772 0.033942 0.038852 

100 

0.5 
0.5 0.002823 0.002823 0.003198 0.002542 0.002747 0.002906 

1.0 0.002771 0.003027 0.002703 0.003427 0.003107 0.002949 

1.0 
0.5 0.023899 0.023899 0.027795 0.020431 0.022060 0.025888 

1.0 0.011205 0.010305 0.011518 0.009464 0.009859 0.010844 

1.5 
0.5 0.072457 0.072457 0.083050 0.062870 0.064843 0.080931 

1.0 0.066907 0.060298 0.069002 0.052574 0.054283 0.067081 

 

Table 2: MSE for ̂  under gamma prior using different loss functions 

N   a=b 

MLE 

ML̂
 

SL̂
 

AL̂
 LL̂

 
c2=1.3 c2=-1.3 b1=1.2 b1=-1.2 

25 

0.5 
0.5 0.009924 0.010148 0.012208 0.009520 0.009868 0.010522 

1.0 0.008550 0.009547 0.013448 0.007193 0.008807 0.010417 

1.0 
0.5 0.264970 0.265044 0.277536 0.252877 0.259520 0.270723 

1.0 0.050804 0.049616 0.040210 0.062808 0.054325 0.045275 

1.5 
0.5 0.296489 0.261076 0.360422 0.181495 0.192284 0.355974 

1.0 0.597822 0.465531 0.607573 0.345912 0.354868 0.614678 

50 

0.5 
0.5 0.008724 0.008444 0.007295 0.009854 0.008709 0.008185 

1.0 0.007269 0.006781 0.005824 0.008005 0.007013 0.006558 

1.0 
0.5 0.026356 0.026228 0.022859 0.030711 0.027963 0.024645 

1.0 0.026192 0.026058 0.029797 0.023768 0.024779 0.027730 

1.5 
0.5 0.100009 0.101579 0.087744 0.117561 0.110518 0.093029 

1.0 0.038687 0.036446 0.042411 0.033623 0.034138 0.040530 

100 

0.5 
0.5 0.002824 0.002885 0.003276 0.002587 0.002805 0.002972 

1.0 0.002794 0.002678 0.002445 0.002987 0.002740 0.002621 

1.0 
0.5 0.023867 0.023690 0.027543 0.020261 0.021872 0.025656 

1.0 0.011215 0.011167 0.012634 0.010063 0.010592 0.011837 

1.5 
0.5 0.072246 0.072246 0.079717 0.060260 0.062184 0.077639 

1.0 0.066596 0.061969 0.070748 0.054137 0.055854 0.068835 
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9 Simulation Study 

In our simulation study, we chose a sample size of n=25, 50 

and 100 to represent small, medium and large data set. The 

shape parameter  is estimated for generalized standard 

inverted exponential distribution by using the Bayesian 

method of estimation under extension of Jeffrey’s and 

gamma priors by using different loss functions. Here, we 

have considered 
0.5,1.0&1.5 

 .The values of 

Jeffrey’s extension were 1 0.5 &1.0c 
and hyper 

parameters were
0.5 &1.0a b 

. The values for the 

loss parameters 2 11.3 and 1.2c b   
. This was 

iterated 1000 times and the parameter for each method was 

calculated. A simulation study was conducted in R-software 

to examine and compare the performance of the estimates 

for different sample sizes with different values for the 

(extension of Jeffrey’s and gamma)  priors and the loss 

functions. The results are presented in tables for different 

selections of the parameters. 

10 Real Data Example 

Table 3: Posterior Mean and Posterior Variance of a 

generalized standard inverted exponential distribution 

under extension of Jeffery’s prior and gamma prior 

  

Hyper 

Parameters 

a=b 

Jeffrey’s  

Extension        

C1 

Mean/P.V 

Extension 

Jeffrey’s 

prior 

 

Gamma  

prior 

 

 

0.5 

 
0.5 

0.5 
Mean 1.402551 1.398119 

post.var 0.03122458 0.030783 

 

1.0 
1.0 

Mean 1.380288 1.393784 

post.var 0.03072895 0.030353 

1.0 

0.5 0.5 
Mean 1.402551 1.398119 

post.var 0.03122458 0.030783 

1.0 1.0 
Mean 1.380288 1.393784 

post.var 0.03072895 0.030353 

1.5 

 

0.5 
0.5 

Mean 1.402551 1.398119 

post.var 0.03122458 0.030783 

 

1.0 
1.0 

Mean 1.380288 1.393784 

post.var 0.03072895 0.030353 

In this section, we consider the real life data set which 

already has been used by Smith and Naylor (1987). This 

data represents the strengths of 1.5 cm glass fibers, 

measured at the National Physical Laboratory, England. 

The data is given below: 

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 

1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59,1.61, 

1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 

1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81,1.13, 

1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 

1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 

1.89  

The MLE of the above data works out to be 

ˆ 1.402551ML 
 and its variance is 1.398119.The table 

below provides the posterior mean and posterior variance 

under the two priors, viz. extension of Jeffrey’s prior and 

Gamma prior. 

11. Results  

i. In table 1, Bayes estimation with Al-Bayytai’s Loss 

function under extension of Jeffrey’s prior provides the 

smallest values in most cases especially when loss 

parameter C2 is (-1.3). Similarly,  in table 2, Bayes 

estimation with Al-Bayytai’s Loss function under 

gamma prior  provides the smallest values in most cases 

especially when loss parameter C2 is (-1.3) whether the 

extension of Jeffrey’s prior is 0.5 & 1.0 and hyper 

parameters of gamma prior is 0.5 & 1.0. Moreover, 

when the sample size increases from 25 to 100, the 

MSE decreases quite significantly. 

ii. The posterior mean and posterior variance under the 

assumed priors is calculated by assuming the different 

values of hyper parameters. From table 3, it is clear that 

the posterior variance under the Gamma prior are less as 

compared to extension of Jeffrey’s prior, which shows 

that this prior is efficient as compared to extension of 

Jeffrey’s prior and this less variation in posterior 

distribution helps in making more precise Bayesian 

estimation of the true unknown parameter   of 
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generalized standard inverted exponential distribution. 

12. Conclusion 

In this paper, we have addressed the problem of Bayesian 

estimation for the generalized standard inverted exponential 

distribution under different loss functions each in the 

worked example as well as in the simulation study. From 

the results, we observe that in most cases, Bayesian 

estimator under Al-Bayyati’s loss function provides the 

smallest MSE values under extension of Jeffrey’s prior and 

gamma prior as compared to other loss functions and the 

classical estimator when the loss parameter 3.1is2 c . 

Thus we can say that Al- Bayyati’s loss is better than other 

loss functions. Also Bayesian estimator under the Gamma 

prior has the less posterior variance. It is also observed that 

among the priors, Gamma prior provides the Bayes 

estimators with least MSE. 
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