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Abstract: There are not many known distributions for modeling discrete data. In this paper, we shall introduce a new count 

data model, which is obtained by compounding two parameter discrete Inverse Weibull distribution with Minimax 

distribution. The proposed model has several properties such as it can be nested to different compound distributions on 

specific parameter settings. We shall first study some basic distributional and moment properties of the new distribution. 

Then, certain structural properties of the distribution such as its unimodality, hazard rate behavior and index of dispersion 

are discussed. Finally, real data set is analyzed to investigate the suitability of the proposed distribution in modeling count 

data from medical genetics. 

Keywords: Discrete Inverse Weibull Distribution, Minimax distribution, Compound distribution, Medical science, Count 

data. 

 

1 Introduction 

   In the last few decades some papers dealing with probability distributions, the compounding of probability distribution 

has received maximum attention which is an innovative and sound technique to obtain new probability distributions. Lot of 

new discrete models [17,18] have been introduced by researchers to handle complex data. In several research papers it has 

been found that compound distributions are very flexible and can be used efficiently to model different types of data sets. 

In the early 1970s, Dubey [13] derived a compound gamma, beta and F distribution by compounding a gamma distribution 

with another gamma distribution and reduced it to the beta Ist and 2nd kind and to the F distribution by suitable 

transformations.  

Sankaran [1] introduced a compound of Poisson distribution with that of Lindley distribution for modeling count data. 

Gerstenkorn [14,15] proposed several compound distributions, he obtained compound of gamma distribution with 

exponential distribution by treating the parameter of gamma distribution as an exponential variate and also obtained 

compound of polya with beta distribution. Ghitany, Al-Mutairi and Nadarajah [2,3] introduced zero-truncated Poisson-

Lindley distribution, who used the distribution for modeling count data in the case where the distribution has to be adjusted 

for the count of missing zeros. Zamani and Ismail [4] constructed a new compound distribution by compounding negative 

binomial with one parameter Lindley distribution that provides good fit for count data where the probability at zero has a 

large value. Rashid  and Jan [5] explored a mixture  of generalized negative binomial distribution with that of generalized 

exponential distribution which contains several compound distributions as its sub cases  and  proved that this particular 

model is better in comparison to others when it comes to fit observed count data set. Most recently Adil, Ahmad and Jan [6] 

constructed a new count data model (Compound of Negative binomial distribution with Kumaraswamy distribution) with 

application in genetics and ecology. 

In this paper we propose a new count data model by compounding two parameter discrete Inverse Weibull distribution with 

Minimax distribution as there is a need to find more plausible discrete probability models or survival models in medical 

science and other fields, to fit to various discrete data sets. It is well known in general that a compound model is more 

flexible than the ordinary model and it is preferred by many data analysts in analyzing statistical data. Moreover, it presents 

beautiful mathematical exercises and broadened the scope of the concerned model being compounded. 
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2 Materialand Methods 

Discrete inverse Weibull distribution was studied by [16], which is a discrete version of the continuous inverse 

Weibull variable, defined as X-1 where X denotes the continuous Weibull random variable and the probability 

mass function (pmf) of the discrete inverse Weibull random variable is defined by: 
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Jones [7] studied two-parameter distribution on (0,1) which he has called the Minimax distribution, Minimax 

),(   ,where its two shape parameters   and   are positive. It has many of the same properties as the beta 

distribution but has some advantages in terms of tractability. Its probability density function is given by   
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where 0,  are shape parameters. The raw moments of Minimax distribution are given by 
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Minimax distribution is not very popular among statisticians because researchers have not analyzed and 

investigated it systematically in much detail.  Minimax distribution is similar to the beta distribution but unlike 

beta distribution it has a closed form of cumulative distribution function which makes it very simple to deal with. 

For more detailed properties one can see references [7,8] 

Usually the parameters   and q  in DIWD are fixed constants but here we have considered a problem in which 

the probability parameter q is itself a random variable following MD with pmf (3). 

3 Definition of Proposed Model                                                                                                                

If | ~X q DIWD  ,q  where q is itself a random variable following Minimax distribution MD   , , then 

determining the distribution that results from marginalizing over q will be known as a compound of discrete 

Weibull distribution with that of Minimax distribution, which is denoted by DIWMD  , ,   . It may be noted 

that proposed model will be a discrete since the parent distribution DWD is discrete. 

Theorem 3.1:The probability mass function of a compound of DIWD ( , )q   with MD ( , )   is given by 
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where 0,1,2,......x     and    , , 0     

Proof: Using the definition (3), the pmf of a compound of DWD  ,q  with MD ),(  can be obtained as 
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where 0,1,2,...x  and , , 0    . From here a random variable X  following a compound of DIWD with MD will 

be symbolized by DIWMD  , ,   . 

Fig.1(a) to fig.1(i) provides a pmf plot of the proposed model DIWMD   ,,  for different values of parameters. It is 

evident that the proposed model is right skewed with unimodel behavior. 

The Cumulative distribution function of the DIWMD   ,,  is given by 
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Fig.2(a) to fig.2(i) provides a CDF plot of the proposed model DIWMD  , ,    for different values of parameters. The 

initial rise of the CDF plot increases as  and   increases but as    increases, initial rise of the CDF plot  decreases. 
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Fig 1:pmf plot of Discrete Inverse Weibull Minimax Distribution 

 

Fig 2: CDF plot of Discrete Inverse Weibull Minimax Distribution 
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Fig.1: pmf plot of Discrete Inverse Weibull Minimax distribution
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Fig.2: CDF plot of Discrete Inverse Weibull Minimax distribution
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4 Nested Distributions  

In this particular section we show that the proposed model can be nested to different models under specific parameter 

setting.  

Proposition 4.1: If  ~ , ,X DIWMD    then by setting 1  , we get a compound of Inverse geometric distribution 

with Minimax distribution. 

Proof: For 1 in (1)DIWD reduces to inverse geometric distribution (IGD) hence a compound of IGD with MD is 

followed from (5) by simply substituting 1 in it. 
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which is the probability mass function of a compound of IGD with MD. 

Proposition 4.2: If  ~ , ,X DWMD    then by setting 1    ,we obtain a compound of DIWD distribution 

with uniform distribution. 

Proof:For 1   in MD reduces to Uniform (0,1) distribution, therefore a compound DWD with uniform distribution is 

followed from (5) by simply putting
1 

 in it. 
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which is probability mass function of a compound of DWD with uniform distribution. 

Proposition 4.3: If  ~ , ,X DIWMD    then by setting 1  and 1   we obtain a compound of inverse 

geometric distribution with uniform distribution. 

Proof: For 1  in (1), DIWD reduces to inverse geometric distribution and for 1  , Minimax distribution reduces to 

U(0,1) distribution hence a compound of inverse geometric distribution with uniform distribution can be obtained from (5) 

by simply substituting 1  and 1   in it.  

1
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x x
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Proposition 4.4: If  ~ , ,X DIWMD    then by setting 2 and 1  we obtain a compound of discrete inverse 

Rayleigh distribution with uniform distribution. 

Proof: For 2 
 
in (1), DIWD reduces to discrete inverse  Rayleigh distribution and for 1   , Minimax distribution 

reduces to U(0,1) distribution hence a compound of geometric distribution with uniform distribution can be obtained from 

(5) by simply substituting 2  and 1   in it.  
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which is the probability mass function of discrete inverse Rayleigh uniform distribution  

Proposition 4.5: If   ~ , ,X DIWMD    then by setting  2  , we get a compound of discrete inverse 

Rayleigh distribution with Minimax distribution. 

Proof: For 2  in (1)DIWD reduces to discrete inverse Rayleigh distribution (DIRD) hence a compound of 

DIRD with MD is followed from (5) by simply substituting 2   in it. 
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which is the probability mass function of a compound of DIRD with MD. 

5 Reliability Measures of Compound Discrete Inverse Weibull Minimax Distribution. 

If  ~ ; , ,X DIWMD X    , then the various reliability measures of a random variable X are given by  

(a) Survival Function. 
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(b) Rate of Failure Function. 

 

( 1)
[ ( , 1) ( , 1)]

( )
( )

( )
1 ( , 1)

x x
B B

p x
r x

xs x
B

 



  
 

 


 




  

 

 

0,1,2...x  and 0, 0, 0      

where

  1

( , 1)

1

x

x
B

x






















 
   

  
 

   
 

 

 



J. Stat. Appl. Pro. 6, No. 1, 185- 201 (2017) / http://www.naturalspublishing.com/Journals.asp  191 
  

 

 

         © 2017 NSP 

           Natural Sciences Publishing Cor. 
 

(c) Second Rate of Failure Function. 
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Where, B(.) refers to the beta function defined by
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Fig.3(a) to fig.3(i) provides a hazard rate function plot of the proposed model DIWMD
  ,,

 for different values of 

parameters. 

 

Fig 3:Hazard rate function plot of Discrete Inverse Weibull Minimax distribution 
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Fig.3: Hazard rate function plot of Discrete Inverse Weibull Minimax distribution
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Table1 exhibits the index of dispersion, 
2 2{ ( ) ( ( )) }/ ( )IOD E X E X E X  , mean and variance for different values of 

the parameters  ,   and   for three parameter discrete Compound Weibull Minimax distribution. It can be seen that 

this variance to mean ratio indicates that discrete Compound Weibull Minimax model is overdispersed as well as under-

dispersed. 

Table 1: Index of Dispersion, Mean and Variance of  , ,DIWMD    for different values of parameters 

 =4 

  
 

0.3 0.4 0.5 0.7 0.9 1.2 1.5 1.8 2.5 2.7 3.5 

0.01 Mean 1.789 2.095 2.332 2.676 2.917 3.171 3.354 3.494 3.726 3.777 3.941 

  Variance 2.960 3.114 3.202 3.317 3.410 3.538 3.652 3.755 3.955 4.004 4.175 

  IOD 1.654 1.486 1.373 1.239 1.169 1.116 1.089 1.075 1.061 1.060 1.060 

0.03 Mean 1.247 1.474 1.652 1.913 2.096 2.289 2.428 2.535 2.712 2.751 2.876 

  Variance 1.715 1.823 1.882 1.952 2.005 2.079 2.146 2.206 2.320 2.347 2.441 

  IOD 1.375 1.237 1.140 1.021 0.957 0.908 0.884 0.870 0.855 0.853 0.849 

1.02 Mean 0.260 0.322 0.377 0.468 0.541 0.626 0.693 0.746 0.837 0.857 0.922 

  Variance 0.285 0.336 0.375 0.428 0.460 0.488 0.503 0.510 0.515 0.515 0.514 

  IOD 1.099 1.042 0.994 0.914 0.851 0.779 0.725 0.684 0.616 0.601 0.557 

1.2 Mean 0.234 0.291 0.340 0.424 0.491 0.571 0.634 0.684 0.772 0.792 0.855 

  Variance 0.259 0.307 0.344 0.397 0.431 0.462 0.480 0.490 0.500 0.501 0.501 

  IOD 1.107 1.055 1.010 0.936 0.877 0.809 0.757 0.716 0.647 0.632 0.586 

http://www.naturalspublishing.com/Journals.asp


194        B. Para, T. Jan: Discrete inverse Weibull … 
 

 

 

© 2017 NSP 

Natural Sciences Publishing Cor. 
 

7 Parameter Estimation 

In this section the estimation of parameters of  , ,DIWMD     model will be discussed through method of 

moments and maximum likelihood estimation. 

7.1 Moments Method of Estimation 

In order estimate three unknown parameters of  , ,DIWMD    model by the method of moments , we need 

to equate first three sample moments with their corresponding population moments.  

1 1m  ; 
2 2m  and 3 3m   

Where

 

i

 

is the ith sample moment and im  is the ith corresponding population moment and the solution for ˆ ˆ, 

and ̂  may be obtained by solving above equations simultaneously through numerical methods. 

7.2 Maximum Likelihood Method of Estimation 

The estimation of parameters of  , ,DIWMD    model via maximum likelihood estimation method requires 

the log likelihood function of  , ,DIWMD     

1

( 1)
£( ; , , ) log ( ; , , ) log log([ ( , 1) ( , 1)])

n

i

x x
X L X n B B

 

        
 

 




       (9)  

The maximum likelihood estimate of  ˆˆ ˆ, ,
T

    can be obtained by differentiating (9) with respect 

unknown parameters ,  and  respectively and then equating them to zero. 
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These three derivative equations cannot be solved analytically, therefore ˆ ˆ,   and ̂ will be obtained by maximizing the 

log likelihood function numerically using Newton-Raphson method which is a powerful technique for solving equations 

iteratively and numerically. We can compute the second partial derivatives, which are useful to obtain the Fisher’s 

information matrix as follows. 
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One can show that the discrete Weibull Minimax distribution satisfies the regularity conditions (see, e.g., [10]). Hence, the 

MLE vector  ˆˆ ˆ, ,
T

     is consistent and asymptotically normal; that is, 
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converges in distribution to a normal distribution with the (vector) mean 

zero and the identity covariance matrix. Also, the Fisher’s information matrix can be computed using the approximation 
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Where ˆ ˆ,   and ̂  are the MLEs of  ,  and  , respectively (see, e.g.,[9]). Using this approximation, we may 

construct confidence intervals for parameters of the discrete Weibull Minimax model. 

8 Application of Discrete CIWMD in medical science. 

Here we analyse the dataset related to Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by 

streptonigrin (NSC-45383), Exposure-70 μg|kg. Much quantitative works seem to be done in fitting various probability 

models to the dataset of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-

45383), Exposure-70 μg|kg but so far no works has been done on fitting of discrete inverse Weibull Minimax (DIWMD) 

model for such dataset. Shanker&Hagos [11] have detailed study on the applications of Poisson Lindley distribution (PLD) 
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 to model count data of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-

45383), Exposure-70 μg|kg. Shanker ,Hagos and Teklay [12] have suggested Poisson Akasha distribution (PAD) as another 

model for studying Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), 

Exposure-70 μg|kg. In this section an attempt has been made to fit to data relating to genetics as given in table 2, using 

discrete inverse Weibull Minimax distribution (DIWMD) in comparison with discrete Weibull (DW), Poisson Akasha 

distribution (PAD), Poisson Lindley distribution (PLD), Poisson Sujatha distribution (PSD) and other classical discrete 

models. 

Table 2:Distribution of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin 

(NSC-45383), Exposure-70  μg|kg. 

Class/Exposure (  g/kg) 0 1 2 3 4 5 6+ Total 

Frequency 200 57 30 7 4 0 2  300 

 

The ML estimates provided by the fitdistr procedure in R studio are given in the table 3. 

Table 3 .Estimated parameters by ML method for fitted distributions for Counts of Mammalian cytogenetic 

dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), Exposure-70 μg|kg.. 

Distributions parameter Estimates Model function 

Discrete 

Inverse 

Weibull 

Minimax 

02.0,09.0,27.4  

)02.0 ,03.0 ,8.0(),,( SE

 

)]1,()1
)1(

,([ )( 











 x
B

x
Bxp

,...2,1,0x for 0,0,0    

Poisson 55.0  ,
04.0)( SE

 
!

)(
x

e
xp

x


;0 ,.....2,1,0x
 

Poisson 

Akasha 
62.2  ,

17.0)( SE
 

32

223

)1)(2(

))22(3(
)(






x

xx
xp





,....2,1,0x 0  

Discrete 

Weibull 

92.0 ,34.0  q

)07.0,03.0(),( qSE
 

 )1()(  xx qqxp

,.....2,1,0 0; ;10  xq 
 

Poisson 

Lindley 
35.2 , 

20.0)( SE
 3

2

)1(

)2(
)(






x

x
xp





,....2,1,0x 0  

Geometric 64.0p 02.0)( pSE
 pqxp x)( ,.....2,1,0 ;1 ;10  x-pqq

 

Poisson 

Sujatha 
79.2 , 

19.0)( SE
 

3

22

2

3

)1(

)43()4(

2
)(








x

xx
xp









,....2,1,0x 0  

NBD 
57.0,72.0  pr

)18.0,07.0(),( prSE
 

,...2,1,0,
1

)( 






 
 xqp

x

rx
xp xr

 

100  pandr
 

Discrete 

Rayleigh 
61.0q

 ,
02.0)( qSE

 
22 )1()(  xx qqxp ,.....2,1,0;10  xq

 



J. Stat. Appl. Pro. 6, No. 1, 185- 201 (2017) / http://www.naturalspublishing.com/Journals.asp  197 
  

 

 

         © 2017 NSP 

           Natural Sciences Publishing Cor. 
 

Table 4: Table for goodness of fit for Counts of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced 

by streptonigrin (NSC-45383), Exposure-70 μg|kg.  

X Observed Poisson DRayleigh Geometric PLD NBD PAD DWD DIWMD PSD 

0.00 200.00 172.51 117.49 193.13 192.03 198.98 194.07 198.82 199.89 192.03 

1.00 57.00 95.46 141.42 68.80 70.11 62.27 67.63 62.55 58.25 70.11 

2.00 30.00 26.41 37.67 24.51 24.93 23.27 24.49 23.25 27.47 24.93 

3.00 7.00 4.87 3.32 8.73 8.62 9.17 8.90 9.10 9.32 8.62 

4.00 4.00 0.67 0.10 3.11 2.90 3.70 3.19 3.67 3.00 2.90 

5.00 0.00 0.07 0.00 1.11 0.96 1.52 1.13 1.51 1.10 0.96 

6.00 2.00 0.01 0.00 0.61 0.31 1.08 0.59 1.11 0.97 0.45 

χ2 p-values 0.000 0.000 0.172 0.140 0.232 0.208 0.228 0.315 0.149 

    X: Counts of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by streptonigrin (NSC-45383), 

Exposure-70 μg|kg 

    Observed: Observed frequency of Counts of Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced 

by streptonigrin (NSC-45383), Exposure-70 μg|kg 

The p-values of Pearson’s Chi-square statistic are 0.00, 0.00, 0.172, 0.140, 0.232, 0.208, 0.228, 0.315 and 0.149 for 

Poisson, discrete Rayleigh, Geometric, Poisson Lindley, Negative binomial, Poisson Akasha, discrete Weibull , discrete 

inverse Weibull Minimax and Poisson Sujatha distributions, respectively (see  Table 4). This reveals that Poisson and 

discrete Rayleigh distributions are not good fit at all, whereas Geometric, Poisson Lindley, Negative binomial, Poisson 

Akasha, discrete Weibull, discrete inverse Weibull Minimax and Poisson Sujatha distributions are good fit distributions 

with discrete inverse Weibull Minimax model being the best one. The null hypothesis that data come from discrete inverse 

Weibull Minimax distribution is strongly accepted. 

9 Conclusion 

In this paper, a new model is proposed by compounding discrete inverse Weibull distribution (DIWD) with Minimax 

distribution (MD) and it has been shown that proposed model can be nested to different compound distributions. Some 

important probabilistic properties and the problem of estimation of its parameters are studied. In addition, the discrete 

Weibull Minimax distribution is appropriate for modeling both over and under dispersed data since, depending on the 

values of the parameters, its variance can be larger or smaller than the mean, which is not the case with some known 

standard classical discrete distributions.  
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