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In this paper a numerical method is proposed for solving optimal control problems gov-

erned by Fredholm integral equations (OCF). The method is based upon sinc wavelet

and parametrization method and transforms the problem to a nonlinear programming

problem. Control functionu(t) and state function are approximated by a finite combi-

nation of elements of a basis and by a finite combination of sinc wavelet respectively.

Numerical examples show the validity and applicability of the proposed method.
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1 Introduction

The optimal control problem governed by Fredholms integral equations is used in the

modeling of a wide variety of real process in science and technology. Existence and unique-

ness of the optimal control problem governed by Fredholm integral equations is presented

in [7]. Several numerical methods for approximating the solution of the (OCF) are ex-

isted in the literature. A method of successive approximations which introduced in [13] are

extended in [3, 14]. Recently by using a collective Gauss-Seidel scheme and a multigrid

scheme, an iterative method is proposed for (OCF) of second kind.

Nowadays, wavelet theory has attracted considerable attention due to the advantages

wavelets have over traditional Fourier transforms in accurately approximating functions

that have discontinuities and sharp peaks. Wavelets have become a popular tool for speech

processing, identification and the modeling and control of the dynamical behavior of sys-

tems.

Recently optimal control problems described by ODE is recently solved by a Haar wavelets

method in [4], but no attempts have been made to apply the wavelet to solve (OCF).

Since the sinc method is a highly efficient numerical method developed by Frank Stenger,



Optimal control of fredholm integral equations 515

we use an approximation of state function by a combination of sinc function with unknown

parametrization and control function by a combination of elements of basis [8] .

In this paper, we first introduce the sinc wavelets properties, then we assume that the state

variables in the (OCF) be expressed in the form of sinc function with unknown coefficients

and the control variables is approximated in a finite dimension space. This method is based

on reducing the (OCF) to an optimal problem governed by fredholm integral equations.

This paper develops in six section as follows: Section 2 defines the optimal control prob-

lem of ferdholm integration. Section 3 is the introduction of Sinc function properties. In

Section 4 we describe our approach. In Section 5 we introduce our algorithm. In Section 6

we report our numerical finding. Section 7 is conclusion.

2 Problem statement

Optimal control problem of nonlinear Fredholm integral equations is formulated as the

following:

Minimize J(x, u) =
∫ tf

t0

f(t, x(t), u(t))dt, (2.1)

subject to:

x(t) = G(t) +
∫ tf

t0

K(ξ, t, x(ξ), u(ξ))dξ, (2.2)

where

x(t) = (x1(t), x2(t), · · · , xl(t))t,

G(t) = (g1(t), g2(t), · · · , gl(t))t,

K(ξ, t, u(ξ), x(ξ)) = (k1(ξ, t, u(ξ), x(ξ)), k2(ξ, t, u(ξ), x(ξ)), · · · , kl(ξ, t, u(ξ), x(ξ)))t,

andu(t) = (u1(t), u2(t), · · · , um(t))t, andf ∈ C([t0, tf ]× Rl × Rm).

3 Sinc function properties

The sinc function is defined on the whole real line by

sinc(t) =

{
sin(πt)

πt , t 6= 0,

1, t = 0.
(3.1)

Forh > 0, the translated sinc functions with evenly spaced nodes are given as

S(j, h)(t) = sinc(
t− jh

h
), j = 0,±1,±2, · · · . (3.2)
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If f is defined on the real line, then forh > 0 the series

C(f, h) =
∞∑

j=−∞
f(jh)sinc(

t− jh

h
),

is called the Whittaker cardinal expansion off whenever this series converges. These

properties are derived in the infinite stripDd of the complex plane where ford > 0

Dd = {ζ = ξ + iη : |η| < d ≤ π

2
}.

In addition, we choose

h =

√
πd

αN
, 0 < α ≤ 1. (3.3)

To construct approximation on interval(a, b), which are used in this paper, consider the

conformal map

φ(t) = ln(
t− a

b− t
). (3.4)

The mapφ carries the eye-shaped region

DE = {z = x + iy : |arg(
z − a

b− z
)| < d ≤ π

2
},

ontoDd. The basis functions on(a, b) are then given by

S(j, h) ◦ φ(t) = sinc(
φ(t)− jh

h
).

Notice that these functions exhibit Kronecker delta behavior on the grid pointstj ∈ (a, b)
defined by

tj = φ−1(jh) =
a + bejh

1 + ejh
. (3.5)

The mesh size h represents the mesh size inDd for the unform grids{jh}, j =
0,±1,±2, . . .. The sinc grid pointstj ∈ (a, b) in DE will be denoted bytj because

they are real, let us also defineρ by ρ(z) = eφ(z), andΓ be defined byΓ = {z ∈ C : z =
φ−1(t), t ∈ R}, we need the following definitions and theorems in [2].

Theorem 3.1. If φF ∈ Lα(D) then for allx ∈ Γ

|F (z)−
∞∑

k=−∞
F (zk)S(k, h) ◦ φ(z)| ≤ 2N(Fφ

′
)

πd
e−πd/h.

Moreover, if|F (z)| ≤ Ce−α|φ(z)|, z ∈ Γ, for some positive constantsC andα, and if the

selectionh =
√

πd/αN ≤ 2πd/ ln 2, then

|F (z)−
N∑

k=−N

F (zk)S(k, h) ◦ φ(z)| ≤ C2

√
Ne−

√
πdαN , z ∈ Γ,

whereC2 depends only onF, d andα.
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The above expressions show sinc interpolation onLα(D) converges exponentially [10].

Theorem 3.2. LetLα(D) be the set of all analytic functions, letF
φ′

∈ Lα(D), let N be a

positive integer and leth be selected by the formula

h = (
πd

αN
)

1
2 ,

then there exist positive constantc1, independent ofN , such that

|
∫

Γ

F (z)dz − h

N∑

k=−N

F (zk)
φ′(zk)

| ≤ c1e
(−πdαN)

1
2 .

Corollary 3.1. Let F
φ′

∈ Lα(D), and let h be selected by (3.3), then

|
∫

Γ

F (z)S(k, h) ◦ φ(z)dz − h
F (zk)
φ′(zk)

| ≤ c2e
(−πdαN)

1
2 . (3.6)

Lemma 3.1. Let φ be the conformal one-to-one mapping of the simply connected domain

DE ontoDE , given by (3.1). Then

δ
(0)
ji = [S(j, h) ◦ φ(t)] |t=ti =

{
1, j = i,

0, j 6= i.
(3.7)

4 Wavelet approach

In this section we construct continuous control functionu(t) by a finite combination of

elements of a basis [8],{qj} which is dense inC([t0, tf ]) as follow

u(t) =
k∑

j=0

wjqj , (4.1)

by using sinc collocation, we approximatex(t) as

x(t) =
N∑

j=−N

cjS(k, h) ◦ φ(t). (4.2)

Obviously by using (3.5), (3.7) in (4.2) we have

x(tj) = cj , j = −N . . .N.

Replacing approximation defined in (4.1), (4.2), in cost function (2.1) we obtain

J(x, u) =
∫ tf

t0

f(t,
N∑

j=−N

cjS(k, h) ◦ φ(t),
k∑

j=0

wjqj)dt, (4.3)
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we rewrite the fredholm integration equation (2.2) as

N∑

j=−N

cjS(j, h) ◦ φ(t) = G(t) +
∫ tf

t0

K(ξ, t,
N∑

j=−N

cjS(j, h) ◦ φ(ξ),
k∑

j=0

wjqj)dξ, (4.4)

substitutingt = ti, i = −N . . . N and by using theorem 3.1 in (4.4) we obtain

ci − h

N∑

j=−N

K(ξj , ti)cj

φ′(ξj)
= G(ti), i = −N . . . N, (4.5)

equation (4.5) consists 2N + 1 nonlinear algebraic equations with 2N + k + 2 unknown

{cj}N
j=−N and {wj}k

j=0. The approximate control function and state function could be

obtained by solution of the following optimal problem

min(c−N ,··· ,cN ,w0,··· ,wk) Jk(c−N , · · · , cN , w0, · · · , wk) =

∫ tf

t0
f(t,

∑N
j=−N cjS(k, h) ◦ φ(t),

∑k
j=0 wjqj)dt,

subject to:





c−N − h
∑N

j=−N
K(ξj ,t−N )cj

φ′ (ξj)
= G(t−N )

c−N+1 − h
∑N

j=−N
K(ξj ,t−N+1)cj

φ′ (ξj)
= G(t−N+1)

...

cN − h
∑N

j=−N
K(ξj ,tN )cj

φ′ (ξj)
= G(tN ).

(4.6)

AssumingJ∗k as optimal value of (4.6) inkth iteration, a stopping criteria may be consid-

ered as follows

|J∗k − J∗k−1| < ε, (4.7)

small positive numberε could be chosen according to the accuracy desired. The above

results have been summarized in an algorithm.

5 Algorithm of the method

In this section, we propose an algorithm basis on the above discussions. This algorithm

is presented in two stages, initialization step and main step.

Initialization step: Chooseε > 0 for the accuracy desired and setk = 1, and go to the

main step.

Main step:
Step 1. Setu(t) andx(t) by (4.1), (4.2) and go to Step 2.

Step 2. Computetj andξj by (3.5) and go to Step 3.
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Step 3. Then compute nonlinear algebraic equations by (4.5).

Step 4. Finally compute optimization problem (4.6).

Step 5. ComputeJ∗k = infJk in (4.6) if k = 1 go to step (7) otherwise go to step

6.

Step 6. If the stopping criteria (4.7) holds, stop; Otherwise, go to step 7.

Step 7.k = k + 1 and go step 1.

6 Convergency of the approach

In this section we are going to study the convergency of the proposed method in section

3.

Definition 6.1. Pair(x(t), u(t)) is called an admissible, if it satisfies in (2.2). We defineξ

as the set of admissible control functions andϕ as the set of admissible pairs.

Defineϕr
N andϕr as follows:

ϕr
N = {(xN (t), ur(t)) | ur(t) =

r∑

j=0

cjqj(t), ur(t) ∈ ξ, xN (t) =
N∑

j=−N

cjS(k, h)◦φ(t)}

ϕr = {(x(t), ur(t)), ur(t) ∈ ξ, x(t) =
∞∑

j=−∞
cjS(k, h) ◦ φ(t)}

At first we express the following theorems.

Theorem 6.1. Assume that the exact solution of equation (2.2), isxr(t) with approxima-

tion ur(t) for control functionu(t), andxr,N (t) is the numerical solution of the equation

(2.2), then

sup
N∈N

|xr(t)−
N∑

j=−N

cjS(k, h) ◦ φ(ξ)| ≤ C1

√
Ne−

√
πdαN

whereC1 is a positive constant.

Proof:
Assume that the exact solution isxr(t), i.e.

xr(t) = G(t) +
∫ tf

t0

K(ξ, t, x(ξ), ur(ξ))dξ,
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also assume that the numerical solution isxr,N (t), then

xr,N (t) = G(t) +
∫ tf

t0

K(ξ, t,
N∑

j=−N

cjS(k, h) ◦ φ(ξ), ur(ξ))dξ,

sup
N∈N

|xr(t)− xr,N (t)| ≤ |
∫ tf

t0

K(ξ, t, x(ξ), ur(ξ))dξ

−
∫ tf

t0

K(ξ, t,
N∑

j=−N

cjS(k, h) ◦ φ(ξ), ur(ξ))dξ|

≤ ∇K(ξ, t, x(ξ), ur(ξ))|xr(t)−
N∑

j=−N

cjS(k, h) ◦ φ(ξ)|,

assume∇K is bounded

∇K(ξ, t, x(ξ), ur(ξ)) ≤ M,

by using theorem (3.1), we have

|xr(t)−
N∑

j=−N

cjS(k, h) ◦ φ(ξ)| ≤ C2

√
Ne−

√
πdαN ,

then

sup
N∈N

|xr(t)−
N∑

j=−N

cjS(k, h) ◦ φ(ξ)| ≤ MC2

√
Ne−

√
πdαN .

LettingC1 = MC2 completes proof of the theorem.

If we defineαr
N = inf ϕr

NJ and also assumeinf ϕrJ is finite, unique and equal toαr,

then we will have

Theorem 6.2. Show the following relation is hold:

α1 ≥ α2 ≥ · · · ≥ αr ≥ · · · ≥ α = inf
(x,u)∈ϕr

J(x, u).

Proof: By definitionϕr

ϕ1 ⊆ ϕ2 ⊆ · · · ⊆ ϕr ⊆ · · · ⊆ ϕ.

Theorem 6.3. Showlimr→∞ αr = α in whichαr = inf(x,u)∈ϕr J(x, u).
Proof: It can be concluded that{αr} is convergent, because it is a non-increasing and

bounded sequence. By the continuity off0 and density of polynomials inC(I), the theorem

holds.
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Theorem 6.4. ( [11]). Suppose thatX andY be metric space andE ⊂ X, f : E −→ Y,

andp is limit pointE

limx→pf(x) = q,

if and only if relation follow

limn→∞f(pn) = q,

for all sequence{pn} in E that

pn 6= p, limn→∞pn = p

Theorem 6.5. Now we prove limk→∞ limn→∞αr
N = α, in which α =

inf(x,u)∈ϕJ(X, U) = J(X∗, U∗).
Proof: By above theorems the theorem holds.

7 Numerical examples

In this section we three (OCF) problems will be tested by using the method discussed

in section 4. In both examples we consider the monomial functions{tj} as dense basis

of C([t0, tf ]) and we chooseα = 1/2 andd = π/2 which lead toh = π/
√

N . All

computations were carried out by MAPLE programming. In examples, the maximum

absolute error at sinc grid points is taken as

‖ Ex ‖= max−N≤i≤N |xexact solution(ti)− xour method(ti) |.

Example 1. Consider the following optimal control problem which is minimization

of the functional

J =
∫ 2

1

(x(t)− cosh(2t− 3) + cosh(1))2 + (u(t)− t

3
)2dt, (7.1)

subject to:

x(t) = cosh(2t− 3) + (
t

2
− 1) cosh(1)− t

2
sinh(1) +

∫ 2

1

tu(ξ)x(ξ)dξ,

With the optimal control functionu(t) = t
3 and exact state functionx(t) =

cosh(2t− 3)− cosh(1).
By applying the proposed method the computed results have been shown in Table 1. We

report the absolute value of the errors of our method forN = 10 andN = 20 in Tables 2.

Table.1. Numerical results in Example 1.

k J∗k
N=10 N=20

0 0.56587 0.56575
1 0.45932 2.74037× 10−17
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Table.2. Absolute errors forx(t) andu(t) in Example 1 (k = 1).

N Ex Eu

10 0.700531 0.73925
20 5.22537× 10−9 6.77317× 10−9

Example 2.Consider the following optimal control of fredholm equation problem

Minimize J =
∫ π

2

0

(x(t)− sin(t))2 + (u(t)− cos(t))2dt,

subject to:

x(t) = sin(t)− t2

3
+

∫ π
2

0

t2u(ξ)2x(ξ)dξ.

The exact optimal trajectory and control functions arex(t) = sin(t) andu(t) = cos(t), re-

spectively. Results of applying the given algorithm are presented in Table 3. Also, reported

the absolute value of the errors of our method forN = 10 andN = 20 in Tables 4.

Table.3. Numerical results in Example 2.

k J∗k
N=10 N=20

4 7.3341× 10−9 6.8388× 10−9

5 5.2484× 10−10 2.9656× 10−11

Table.4. Absolute errors forx(t) andu(t) in Example 2 (k = 5).

N Ex Eu

10 2.0653× 10−5 2.6408× 10−5

20 5.1497× 10−8 1.6535× 10−5

30 1.4172× 10−8 1.6536× 10−5

Example 3.Consider the following (OCF) problem

Minimize J =
∫ 1

−1

(x1(t)− t2 + 1)2 + (x2(t)− 1 + t2)2 + (u(t)− sin(t))2 dt,

subject to:

x1 = t2 − 1 +
∫ 1

−1

t3u(ξ)(x1(ξ) + x2(ξ)) dξ,

x2 = 1− t2 +
∫ 1

−1

(ξ − u(ξ))(x1(ξ) + x2(ξ)) dξ.
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The exact control function and exact state functions of this problem areu(t) = sin(t),
x1(t) = t2 − 1 andx2(t) = 1 − t2, respectively. Results of applying the given algorithm

are presented in Table 5. Also, reported the absolute value of the errors of our method for

N = 10 andN = 20 in Tables 6.

Table.5. Numerical results in Example 3.

k J∗k
N=10 N=20

4 1.88493383× 10−7 1.88493381× 10−7

5 6.88× 10−12 6.88× 10−12

Table.6. Absolute errors forx(t) andu(t) in Example 3 (k = 5).

N Ex1 Ex2 Eu

20 3.0945× 10−14 5.1672× 10−9 7.1× 10−6

8 Conclusion

In this article, the sinc functions and parametrization approach are used to solve the op-

timal control problem governed by Fredholms integral equations. Numerical results given

in tables show high accuracy of the proposed method, with increasing the N, errors are

decreased more rapidly. We can get much better results with increasing the N.
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