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Abstract: Order statistics (os) for independent non-identicallytriisted (inid) random variables (rvs) is widely discussedhe
literature, see, for example, Balakrishn&j, Balakrishnon and Subramaniad,[Barakat and Abdelkade8] and Jamjoom and Al-
Saiary [L4]. In this paper a recurrence relation is established forpging all single moments of all os arising from inid Mardkalkin
extended Burr XII (MOEB XII) rvs. Another proof for the indepdent identical distributed (iid) rvs case is also presgand numerical
examples are given.
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1 Introduction

Order statistics is an important branch of statistics wiiehls with theory and applications of ordered rvs and fonsti
involving them. The subject of os from inid rvs is discussddely in the literature see for example Davitl], Bapat

and Beg p] and David and Nagarajd l]. Barakat B] found the limit behavior of bivariate os from inid rvs. Gorget

al. [17] expressed the multivariate os by marginal ordering of imisl under discontinuous distribution functions. The
moments of order statistics of inid rvs have been treatedgutiree different approaches. The first approach is used
when there exists a basic relation between the probabgitsity function (pdf) and the cumulative distribution ftina

(cdf) see Balakrishnar8]. Applications of this approach are found in the literatfoeseveral continuous distributions
see Jamjoom and Al-Saiargj] and the references therein. In particular, Balakrishi3hagpplied this approach to derive
recurrence relations for single and product moments ofaya fnid rvs for the exponential and right truncated expoia¢nt
distributions. Childs and Balakrishna®] found the moments of os from inid rvs for the logistic distriion.

The second approach was introduced by Barakat and Abdeli@ldélthough this approach is an easier manner to
evalute the moments of os of inid rvs but its application &nieted to distributions having cdfs(x) that can be written
asF(x) = 1— A (x). Of course this approach can also be applied if the surviradtfon of the considered distribution has
an excplicit form. The first application of this second agmiowas by Barakat and Abdelkad@} {o Weibull distribution
and then a generalized version of the approach was given takBsand AbdelkadeB] where they applied it to Erlang,
positive exponential, pareto and laplace distributiorestet this approach is applied by Abdelkad&y2] to compute
the moments of os using the survival function of inid rvs hayirespectively, Gamma and Beta distributions. Further,
Jamjoom 2], Jamjoom and Al-Saiaryl[3] have applied this technique to compute the moments of asi@Burr(XIl)
distribution as well as Beta three-parameter type | distidn.

The third approach, which referred to as the moment gemegr&inction technique, is established by Jamjoom and
Al-Saiary [14] and depends mainly on the second approach. The moment&ladsrfor Burr type Il, exponential and
Erlang truncated exponential distributions, are computgig this third approach by Jamjoom and Al-Saidr [
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A rv X is said to be has a MOEB(XII) distribution if its cdf is\wgn by

a
F(x)=1— Wx>Oacm>O a=1-a, (1)

In fact the MOEB(XII) distribution is an extended class tiatludes some distributions as special cases Burr(XIl)
(a =1), Lomax @ =1, c= 1) and log-logistic or weibull exponential distributioa & 1, m=1). For the details of the
mathematical statistical properties and application $ieitthe MOEB(XII) distribution see Gharib et al.§].

In the present paper the problem of computing the moments éfoon inid rvs having MOEB(XII) distribution is
discussed using the second approach.

Let Xy,Xo,...,Xn be independent rvs and &, < Xon < ... < X,:n denote the corresponding os. Bapat and B#g [
have shown that the cdf of th& s X, (1 < r < n) can be expressed in terms of permanents, that is

n

Frn Z —| (X

) ()}7_°°<X<°°7 (2)
=r i n—

where F(x) and F(x) = 1— F(x) denote the column vector@(x), Fa(X), ..., Fa(x)) and (F1(x), Fa(X),...,Fn(X))
respectively. Moreover iy, ap, ... are column vectors then

[al, ay, },
i1 02 ...
will denote the matrix obtaind by taking copies ofay, i copies ofa; and so on. Also, in23) per(A) denotes the
permanent of a square matrix A which is defined similar to theninants except that all terms in the expansion have a

positive sign, see Min€elf].
Assume that the rv¥, 1, 2, ..., nare inid having MOEB(XII) distribution with cdfX).

In the next section, we derive théhknomentsurgf)n andui'fg of the maximum and minimum of a random sample of
size n from MOEB(XII) distribution.

2 Main result

Relation ). Forn=1,2,...andk=1,2, ...,

k n
pn =g Y (DI, 3)
=1
where
c - w 2" 0 k k
j=a'yy ..y PIDIED I LIPS 4)
1<ip<ip<...<ipn<n 1=0 up=0 n=0 =1 cc
and y
Hi'fﬁ=5|n, )

wherel,, is defined in ) whenj =n.

Proof.By definition

i =k / X (1 Fn(%)) dx,
0

whereFqn(X) is the cdf of the maximum os from inid rv§, i = 1,2, ..., n defined by

n

Frn(X) = Il:lFl (),
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and for MOEB(XII) distribution we have

then,
u = k/xk—l{l_ﬁ(l_ (ch?mio_{)}dx,
0 =
:k/ooxkl{n 5 -2 [ m « m, o
0 i= ((1+Xc)m_a) 1<17<<n ((1+XC) 1_5)((14')((:) 2_a)
ol
" 1<<p<13<n [((1+Xc)m1 —a)((14+x)™2 —a)((1+x)™s —a) A
n an
| e e e a |
putting (1+x%) =y, we get,
IJr(1l:(n =

<z olmnc)-

ccC
U1+U2 k k
B my(1+uy)+my(1+u)——,~
u;=0ux= 0 cec
el on 00 o) ) _ _z uj
ot (D)™ IYLY (Y Y Y @
1<ii<ip<...<Ip<n \u1=0ux=0 =0
This can be written as

IJrs:n =
where

||M8

© @ E u n k k
lj=al > Z B m; (14+uj) — =, ~
1<|1<|2< <|n<n up=0up n=0 J ¢
The proof of ) follows by using the relation
u —k / KL (1~ Frn(x)) dx,
0
where

Fin(0) = 1- [1(1 - F(¥)
I
is the cdf of the smallest os from inid rvs.
Thus for MOEB(XII) distribution we have

Wi = ko/xk_lilj (ﬁ) dx

(o]
1 a a
k/X (1+x°m107) IO ) ([Te)m— cr))dx
0
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putting (1+x¢) =y~1, then,

which can also be written as

sz (55 5@ )e(Eman L)

u;=0up,=0

which completes the proof.

Theorem 2.1. For=1,2,....nandk=1,2, ...
i J 1< _r+J>| .
Z 1 n—r+j,

wherelj, j =1,2,...,r is given by @) and with the convention thqné'fg =

Proof.Equation @) can be rewritten as

1 _
- n—r+ ™ Pi(x) FX)],

Fr—1:n(X) = Frn(X) +

which is equivalent to

n n
I:rfln Frn zrl I_l In— J+1(X)
P j=1

J=r

where the summation p extends over all permutat{ons, ...,in) of (1,2,...,n) for which
1<ii<iz<..<ir—1<nand 1<i; <iry1 < ... <ip—1 <n.Now let

=inf{x:FK(x) >0} >0, forall i.

Then

i = EOxEy) =k [ n(dx
0

= 1+ QI
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where

‘ 1 r—1 a 02
= X 1- + — =
% jlzzl @) -a (14X) M —a@)((1+x) "2 — @)
ot (1) —— A —_—
(I4x¢) "1 —a)((1+x¢) 2 —a)...((1+xC¢) -1 —a)
n a
[l (1) de'

Putting(1+x°) = y~1, we get

LA STA WP AL HCET)
+§ :an—(r—l) < Z z z (a)i—l’uJ)yJ e ] '

(1+x°) - Ur=0Ur;1=0 uy=0

1>

Il
s

Therefor,

_|_

0 00 k
S 3 (@ mjl<1+u1>+m (L+up)+ 3 my (Luj)—& 1+
1<|1<|2§r 1 \u;=0u>=0
00 0 00 .t
_ u
+ot (=)ot > (@)

5w (L) 3 m (1)Ko
e
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hence, applying integration we get

il (5.5, 5.0
p u=0ur11=0 up=0

(50 (555

J1 \u1=0 u=0ury1=0 up=0

n k k
(Z (14 uj) +my (1+“1)_E’E>

k k
j(1+uj)_6’6> -

M=
3

g
T
£
N——

s 5o (353 00)
33 (55w (55 5@

n k k
B(Zrmj(1+uj)+mjl(1+u1)+mj2(1+uz)—(—3,(—3)+...+
(=1 1gn S v S m; (1+uj) )]

(35 -3 @ (S

Now using the facts thgt (1) = <r21> andthat >5..y (1)= <|[]n) , for all n > m, the above relation reduces
P

1<ii<is<...<im<n

le
oOlx

to: n
® )
Q = _an Z - 1aj In—rj

=1

wherelj, j = 1,2,...,r is given by (4) andhj = #% since,

n r—1\ _ n
r—1)\j—1)"%\r-1)
This completes the proof of the theorem.

To sum up the computations for obtaining the kth momentslodslone needs to compute the seque{llq jj

which is given by 4). Then recursively applying theorem 2.1, starting with mrmimumu,gﬁ in (3) one can obtain all
moments of all ogur(;kn), r < nfrom MOEB(XII) distribution. For example if = 3, we get

k
Hék% = E(Il_ l2+13),

h=a® (i i i (E)izlui) B (m1(1+ Ul)_l_:; E) +B<mz(1+Uz>—|‘; E)

+B (rr13(1+ uz) — |—(, I—;)]
e e Sy K k
= (ZZZ” ) B (maru emasi -2 0)
+ B(m1(1+ul)+ms(1+u )—E E) +B(rr12(1+ Up) +mg(1+ug) — I—él—é)}
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I, —2l3).
sults can be put in the following table.

D —

s Iy —l2 +13

Y 12 ~23

*(K
I-11-(3) I3
The momentgur(ﬁ, r < nof order statistics arising from non-identically MOEB(Xtandom variables with = 3.

Wherep ) = £ul.
For a general form of this table see Barakat and Abdelkad®(QR
3 Independent identically distributed case

In this section, the moments of the os arising from iid MOEB)Xvs are derived in the following theorem.
Theorem 3.1. For the case of a sample of n iid arising from MO&B distributin the kth momentk = 1,2, ...) of

the rth(1 <r <n) os is given by
-1
r(l;:kzl —(n—r+1) (:1 r>|j’
=

()88 800)e(r () 22)

where

() (84 5o )e(r(Ee)-22)

Corollary 3.1. For iid MOEB(XII) rvs ) becomes

0

/ 1—&-)(c m, 5) dx

(5,5, 5,0 o(n( ) -42)

4 Numericall application

The following examples are computed when k=1.
Case 1: independent identically distributed
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Example 4.1. Let n=3 and m=2, 3, 4, and 5 table 2 shows thetsesul

m 2 3 4 5
Uz:3 4.88419 165829 0926742 062209

For example when m=3,

1
Hzz= E(|1_|2+|3)’

3
li=a" i i % (o?)i=zlui B(m S u+1 ~1 1) 0004073
u1=0ux=0u3=0 I; cc
3 3
I, = a? i i i (c?)izlui B|m u+1 _1l =0.663315
u1=0ux=0u3=0 I; cc
) ) © 3 3
I3=a? z z Z (c?)izlui B|m u+1 _1l =0.994973
u1=0ux=0u3=0 I; cc
Therefor,us.3 = 1.65829
Case 2: independent nonidentically distributed
Example 4.2.
(a) Setting n=2¢g=1.5, ¢=0.8 and a2, np=3, in (3), (4) we get
1
o==(I1—1I
a2 = (li—12),
where
2
I W 1" 11 11
I, = a? (a)=1 | B (m1(1+ up) — —,—) +B (mz(1+ ) — —, —>] =2.07087,
ulz:0uzz=0 cc c'c
2
o[ = < (72Y 11
l,=a z Z(a)lfl B m1(1+u1)+mz(1+uz)—6,(—: | =0.240458
u;=0u>=0

Thereforuy.o, = 2.28802
(b) Let n=3,0=1.5, c=0.8 and A¥2, my=3, =4 in (3), (4) we get

1
H3:3= c (I1—1l2+13) = 0.62209

Wherelq, |, andlz are given by (6).
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