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Abstract: Order statistics (os) for independent non-identically distributed (inid) random variables (rvs) is widely discussedin the
literature, see, for example, Balakrishnan [3], Balakrishnon and Subramanian [4], Barakat and Abdelkader [8] and Jamjoom and Al-
Saiary [14]. In this paper a recurrence relation is established for computing all single moments of all os arising from inid Marshall-Olkin
extended Burr XII (MOEB XII) rvs. Another proof for the independent identical distributed (iid) rvs case is also presented and numerical
examples are given.
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1 Introduction

Order statistics is an important branch of statistics whichdeals with theory and applications of ordered rvs and functions
involving them. The subject of os from inid rvs is discussed widely in the literature see for example David [10], Bapat
and Beg [5] and David and Nagaraja [11]. Barakat [6] found the limit behavior of bivariate os from inid rvs. Gungor et
al. [17] expressed the multivariate os by marginal ordering of inidrvs under discontinuous distribution functions. The
moments of order statistics of inid rvs have been treated using three different approaches. The first approach is used
when there exists a basic relation between the probability density function (pdf) and the cumulative distribution function
(cdf) see Balakrishnan [3]. Applications of this approach are found in the literaturefor several continuous distributions
see Jamjoom and Al-Saiary [15] and the references therein. In particular, Balakrishnan [3] applied this approach to derive
recurrence relations for single and product moments of os from inid rvs for the exponential and right truncated exponential
distributions. Childs and Balakrishnan [9] found the moments of os from inid rvs for the logistic distribution.

The second approach was introduced by Barakat and Abdelkader [8]. Although this approach is an easier manner to
evalute the moments of os of inid rvs but its application is restricted to distributions having cdfsF(x) that can be written
asF(x) = 1−λ (x). Of course this approach can also be applied if the survival function of the considered distribution has
an excplicit form. The first application of this second approach was by Barakat and Abdelkader [7] to Weibull distribution
and then a generalized version of the approach was given by Barakat and Abdelkader [8] where they applied it to Erlang,
positive exponential, pareto and laplace distributions. Later this approach is applied by Abdelkader [1,2] to compute
the moments of os using the survival function of inid rvs having, respectively, Gamma and Beta distributions. Further,
Jamjoom [12], Jamjoom and Al-Saiary [13] have applied this technique to compute the moments of os of inid Burr(XII)
distribution as well as Beta three-parameter type I distribution.

The third approach, which referred to as the moment generating function technique, is established by Jamjoom and
Al-Saiary [14] and depends mainly on the second approach. The moments of inid os for Burr type II, exponential and
Erlang truncated exponential distributions, are computedusing this third approach by Jamjoom and Al-Saiary [14].
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A rv X is said to be has a MOEB(XII) distribution if its cdf is given by

F(x) = 1−
α

(1+xc)m−ᾱ , x > 0, α, c, m > 0, ᾱ = 1−α, (1)

In fact the MOEB(XII) distribution is an extended class thatincludes some distributions as special cases Burr(XII)
(α = 1), Lomax (α = 1, c = 1) and log-logistic or weibull exponential distribution (α = 1, m = 1 ). For the details of the
mathematical statistical properties and application fields of the MOEB(XII) distribution see Gharib et al. [16].

In the present paper the problem of computing the moments of os from inid rvs having MOEB(XII) distribution is
discussed using the second approach.

Let X1,X2, ...,Xn be independent rvs and letX1:n ≤ X2:n ≤ ... ≤ Xn:n denote the corresponding os. Bapat and Beg [5]
have shown that the cdf of the rth osXr:n (1≤ r ≤ n) can be expressed in terms of permanents, that is

Fr:n(x) =
n

∑
i=r

1
i! (n− i)!

per
[

F(x) F̄(x)
]

i n− i
, −∞ < x < ∞, (2)

where F(x) and F̄(x) = 1− F(x) denote the column vectors(F1(x), F2(x), ..., Fn(x))̀ and (F̄1(x), F̄2(x), ..., F̄n(x))̀
respectively. Moreover ifa1, a2, ... are column vectors then

[

a1, a2, ...
]

i1 i2 ...

,

will denote the matrix obtaind by takingi1 copies ofa1, i2 copies ofa2 and so on. Also, in (2) per(A) denotes the
permanent of a square matrix A which is defined similar to the determinants except that all terms in the expansion have a
positive sign, see Mine [18].

Assume that the rvsXi, 1, 2, ..., n are inid having MOEB(XII) distribution with cdf (1).

In the next section, we derive the kth momentsµ (k)
n::n andµ (k)

1:n of the maximum and minimum of a random sample of
size n from MOEB(XII) distribution.

2 Main result

Relation (3). Forn = 1,2, ... andk = 1,2, ...,

µ (k)
n:n =

k
c

n

∑
j=1

(−1) j+1 I j, (3)

where

I j = α j ∑∑ ...∑
1<i1<i2<...<in≤n





∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

ᾱ
n
∑

j=1
u j



B

(

n

∑
j=1

mi j(1+ u j)−
k
c
,

k
c

)

, (4)

and

µ (k)
1:n =

k
c

In, (5)

whereIn is defined in (4) when j = n.

Proof.By definition

µ (k)
n:n = k

∞
∫

0

xk−1 (1−Fn:n(x))dx,

whereFn:n(x) is the cdf of the maximum os from inid rvsXi, i = 1,2, ...,n defined by

Fn:n(x) =
n

∏
i=1

Fi(x),
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and for MOEB(XII) distribution we have

Fn:n(x) =
n

∏
i=1

(

1−
α

(1+xc)mi−ᾱ

)

,

then,

µ (k)
n:n = k

∞
∫

0

xk−1

{

1−
n

∏
i=1

(

1−
α

(1+xc)mi−ᾱ

)

}

dx,

= k

∞
∫

0

xk−1

{

n

∑
i=1

α
((1+ xc)mi − ᾱ)

− ∑∑
1≤i1<i2≤n

[

α2

((1+ xc)mi1 − ᾱ)((1+ xc)mi2 − ᾱ)

]

+ ∑∑∑
1≤i1<i2<i3≤n

[

α3

((1+ xc)mi1 − ᾱ)((1+ xc)mi2 − ᾱ)((1+ xc)mi3 − ᾱ)

]

+ ...

+(−1)n+1
[

αn

((1+ xc)mi1 − ᾱ)((1+ xc)mi2 − ᾱ)...((1+ xc)min − ᾱ)

]}

dx,

putting(1+ xc) = y−1
, we get,

µ (k)
n:n =

k
c

{

α
n

∑
i=1

(

∞

∑
u=0

(ᾱ)u

)

B

(

mi (1+ u)−
k
c
,

k
c

)

−

−α2 ∑∑
1≤i1<i2≤n

(

∞

∑
u1=0

∞

∑
u2=0

(ᾱ)u1+u2

)

B

(

mi1(1+ u1)+mi2(1+ u2)−
k
c
,

k
c

)

+...+(−1)n+1αn ∑∑ ...∑
1≤i1<i2<...<in≤n

(

∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=1
ui

)

B

(

n

∑
j=1

mi j (1+ u j)−
k
c
,

k
c

)}

.

This can be written as

µ (k)
n:n =

k
c

n

∑
j=1

(−1) j+1 I j,

where

I j = α j ∑∑ ...∑
1<i1≤i2≤...≤in<n

(

∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=1
ui

)

B

(

n

∑
j=1

mi j (1+ u j)−
k
c
,

k
c

)

The proof of (5) follows by using the relation

µ (k)
1:n = k

∞
∫

0

xk−1 (1−F1:n(x))dx,

where

F1:n(x) = 1−
n

∏
i=1

(1−Fi(x)) ,

is the cdf of the smallest os from inid rvs.
Thus for MOEB(XII) distribution we have

µ (k)
1:n = k

∞
∫

0

xk−1
n

∏
i=1

( α
(1+xc)mi−ᾱ

)

dx

= k

∞
∫

0

xk−1
( α
((1+xc)m1−ᾱ)

α
((1+xc)m2−ᾱ)

...
α

((1+xc)mn−ᾱ)

)

dx
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putting(1+ xc) = y−1, then,

µ (k)
1:n =

k
c

αn

1
∫

0

y

n
∑

i=1
mi−

k
c −1

(1− y)
k
c−1

(

∞

∑
u1=0

(ᾱym1)u1
∞

∑
u2=0

(ᾱym2)u2...

∞

∑
un=0

(ᾱymn)un

)

dy

=
k
c

αn

(

∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=1
ui

)

B

(

n

∑
i=1

mi(1+ ui)−
k
c
,

k
c

)

=
k
c

In,

where

In = αn

(

∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=1
ui

)

B

(

n

∑
i=1

mi(1+ ui)−
k
c
,

k
c

)

which can also be written as

In = ∑∑ ...∑
1≤i1<i2<...<in≤n

αn

(

∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=1
ui

)

B

(

n

∑
i=1

mi(1+ ui)−
k
c
,

k
c

)

which completes the proof.

Theorem 2.1. Forr = 1,2, ...,n andk = 1,2, ...

µ (k)
r:n = µ (k)

r−1:n +
r

∑
j=1

(−1) j−1
(

n− r+ j
j−1

)

In−r+ j,

whereI j, j = 1,2, ...,r is given by (4) and with the convention thatµ (k)
0:n = 0.

Proof.Equation (2) can be rewritten as

Fr−1:n(x) = Fr:n(x)+
1

(r−1)! (n− r+1)!
per

[

F(x) F̄(x)
]

,

r−1 n− r+1

which is equivalent to

Fr−1:n(x) = Fr:n(x)+∑
p

n

∏
j=1

Fi j(x)
n

∏
j=r

Fin− j+1(x),

where the summation p extends over all permutations(i1, i2, ..., in) of (1,2, ...,n) for which
1≤ i1 < i2 < ... < ir−1 ≤ n and 1≤ ir < ir+1 < ... < in−1 ≤ n. Now let

xi0 = inf{x : Fi(x)> 0} ≥ 0, for all i.

Then

µ (k)
r:n = E(X k

r:n) = k

∞
∫

0

xk−1F̄r:n(x)dx

= µ (k)
r−1:n +Q(k)

r:n,

c© 2017 NSP
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where

Q(k)
r:n = k

∞
∫

0

xk−1∑
p

r−1

∏
j=1

(1− F̄i j(x))
n

∏
j=r

F̄i j (x)dx

= k

∞
∫

0

xk−1∑
p

r−1

∏
j=1

(

1−
α

(1+xc)
mi j −ᾱ

) n

∏
j=r

α
(1+xc)

mi j −ᾱ
dx

= k

∞
∫

0

xk−1∑
p

[

1−
r−1

∑
j1=1

α
(1+xc)

mi j1 −ᾱ
+

α2

((1+ xc)
mi j1 − ᾱ)((1+ xc)

mi j2 − ᾱ)

+...+(−1)r−1 αr−1

((1+ xc)
mi j1 − ᾱ)((1+ xc)

mi j2 − ᾱ)...((1+ xc)
mi jr−1 − ᾱ)

]

n

∏
j=r

α
(1+xc)

mi j −ᾱ
dx.

Putting(1+ xc) = y−1, we get

n

∏
j=r

α
(1+xc)

mi j −ᾱ
= αn−(r−1)

(

∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=r
u j

)

y

n
∑
j=r

mi j (1+u j)

.

Therefor,

Q(k)
r:n =

k
c ∑

p

1
∫

0

αn−(r−1)

(

∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=r
u j

)



y

n
∑
j=r

mi j (1+u j)−
k
c−1

−

−α
r−1

∑
j1=1

(

∞

∑
u1=0

ᾱu1

)

y
mi j1

(1+u1)+
n
∑
j=r

mi j (1+u j)−
k
c −1

+

+ α2 ∑∑
1≤i1<i2≤r−1

(

∞

∑
u1=0

∞

∑
u2=0

(ᾱ)u1+u2

)

y
mi j1

(1+u1)+mi j2
(1+u2)+

n
∑
j=r

mi j (1+u j)−
k
c −1

+

+...+(−1)r−1αr−1





∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
ur−1=0

(ᾱ)

r−1
∑

i=1
u j





y

r−1
∑

j=1
mi j (1+u j)+

n
∑
j=r

mi j (1+u j)−
k
c−1

(1− y)
k
c −1



dy
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hence, applying integration we get

Q(k)
r:n =

k
c ∑

p

[

αn−(r−1)

(

∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=r
u j

)

B

(

n

∑
i=r

mi j (1+ u j)−
k
c
,

k
c

)

−

−αn−r+2
r−1

∑
j1

(

∞

∑
u1=0

ᾱu1

)(

∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=r
u j

)

B

(

n

∑
i=r

mi j (1+ u j)+mi j1
(1+ u1)−

k
c
,

k
c

)

+αn−r+3 ∑∑
1≤i1<i2≤r−1

(

∞

∑
u1=0

∞

∑
u2=0

(ᾱ)u1+u2

)(

∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=r
u j

)

B

(

n

∑
i=r

mi j (1+ u j)+mi j1
(1+ u1)+mi j2

(1+ u2)−
k
c
,

k
c

)

+ ...+

+(−1)r−1αn

(

∞

∑
ur=0

∞

∑
ur+1=0

...

∞

∑
un=0

(ᾱ)

n
∑

i=1
u j

)

B

(

n

∑
i=1

mi j (1+ u j)−
k
c
,

k
c

)]

.

Now using the facts that∑
p
(1) =

(

n
r−1

)

and that ∑∑ ...∑
1≤i1<i2<...<im≤n

(1) =

(

n
m

)

, for all n ≥ m, the above relation reduces

to:

Q(k)
r:n =

k
c

αn
n

∑
j=1

(−1) j−1a j In−r− j

whereI j, j = 1,2, ...,r is given by (4) anda j =
(n−r+ j)!

(n−r+1)! ( j−1)! since,

(

n
r−1

)(

r−1
j−1

)

= a j

(

n
r−1

)

.

This completes the proof of the theorem.

To sum up the computations for obtaining the kth moments of all os, one needs to compute the sequence
{

I j
} j=n

j=1

which is given by (4). Then recursively applying theorem 2.1, starting with themaximumµ (k)
n:n in (3) one can obtain all

moments of all osµ (k)
r:n , r ≤ n from MOEB(XII) distribution. For example ifn = 3, we get

µ (k)
3:3 =

k
c
(I1− I2+ I3) ,

where

I1 = α3





∞

∑
u1=0

∞

∑
u2=0

∞

∑
u3=0

(ᾱ)

3
∑

i=1
ui



 [B

(

m1(1+ u1)−
k
c
,

k
c

)

+B

(

m2(1+ u2)−
k
c
,

k
c

)

+B

(

m3(1+ u3)−
k
c
,

k
c

)

]

I2 = α2





∞

∑
u1=0

∞

∑
u2=0

∞

∑
u3=0

(ᾱ)

3
∑

i=1
ui





[

B

(

m1(1+ u1)+m2(1+ u2)−
k
c
,

k
c

)

+ B

(

m1(1+ u1)+m3(1+ u3)−
k
c
,

k
c

)

+B

(

m2(1+ u2)+m3(1+ u3)−
k
c
,

k
c

)]

I3 = α3





∞

∑
u1=0

∞

∑
u2=0

∞

∑
u3=0

(ᾱ)

3
∑

i=1
ui



B

(

m1(1+ u1)+m2(1+ u2)+m3(1+ u3)−
k
c
,

k
c

)

(6)

c© 2017 NSP
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µ (k)
1:3 =

k
c I3

µ (k)
2:3 =

k
c (I2−2I3).

These results can be put in the following table.

µ∗(k)
3:3 I1 −I2 +I3

µ∗(k)
2:3 I2 −2I3

µ∗(k)
1:3 I3

The momentsµ (k)
r:n , r ≤ n of order statistics arising from non-identically MOEB(XII) random variables withn = 3.

Whereµ∗(k)
r:n = c

k µ (k)
r:n .

For a general form of this table see Barakat and Abdelkader (2000).

3 Independent identically distributed case

In this section, the moments of the os arising from iid MOEB(XII) rvs are derived in the following theorem.
Theorem 3.1. For the case of a sample of n iid arising from MOEB(XII) distributin the kth moment(k = 1,2, ...) of

the rth(1≤ r ≤ n) os is given by

µ (k)
r:n = k

r

∑
j=1

(−1) j−(n−r+1)
(

j−1
n− r

)

I j,

where

I j = α j
(

n
j

)





∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

j
∑

i=1
ui



B

(

m

(

j

∑
i=1

ui +1

)

−
k
c
,

k
c

)

.

Proof.

I j =

(

n
j

) ∞
∫

0

xk−1[F̄(x)] jdx

=

(

n
j

) ∞
∫

0

xk−1
[ α
(1+xc)m−ᾱ

] j
dx

= α j
(

n
j

)





∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

j
∑

i=1
ui



B

(

m

(

j

∑
i=1

ui +1

)

−
k
c
,

k
c

)

.

Corollary 3.1. For iid MOEB(XII) rvs,µ (k)
1:n becomes

µ (k)
1:n = k

∞
∫

0

xk−1
( α
(1+xc)mi−ᾱ

)n
dx

= k αn





∞

∑
u1=0

∞

∑
u2=0

...

∞

∑
un=0

(ᾱ)

j
∑

i=1
ui



B

(

m

(

j

∑
i=1

ui +1

)

−
k
c
,

k
c

)

.

4 Numericall application

The following examples are computed when k=1.
Case 1: independent identically distributed
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Example 4.1. Let n=3 and m=2, 3, 4, and 5 table 2 shows the results:

m 2 3 4 5
µ3:3 4.88419 1.65829 0.926742 0.62209

For example when m=3,

µ3:3 =
1
c
(I1− I2+ I3) ,

I1 = αn





∞

∑
u1=0

∞

∑
u2=0

∞

∑
u3=0

(ᾱ)

3
∑

i=1
ui



B

(

m

(

3

∑
i=1

ui +1

)

−
1
c
,
1
c

)

= 0.994973

I2 = α2





∞

∑
u1=0

∞

∑
u2=0

∞

∑
u3=0

(ᾱ)

3
∑

i=1
ui



B

(

m

(

3

∑
i=1

ui +1

)

−
1
c
,
1
c

)

= 0.663315

I3 = α3





∞

∑
u1=0

∞

∑
u2=0

∞

∑
u3=0

(ᾱ)

3
∑

i=1
ui



B

(

m

(

3

∑
i=1

ui +1

)

−
1
c
,
1
c

)

= 0.994973

Therefor,µ3:3 = 1.65829.
Case 2: independent nonidentically distributed
Example 4.2.
(a) Setting n=2,α=1.5, c=0.8 and m1=2, m2=3, in (3), (4) we get

µ2:2 =
1
c
(I1− I2) ,

where

I1 = α2





∞

∑
u1=0

∞

∑
u2=0

(ᾱ)

2
∑

i=1
ui



 [B

(

m1(1+ u1)−
1
c
,
1
c

)

+B

(

m2(1+ u2)−
1
c
,
1
c

)

] = 2.07087,

I2 = α2





∞

∑
u1=0

∞

∑
u2=0

(ᾱ)

2
∑

i=1
ui



 [B

(

m1(1+ u1)+m2(1+ u2)−
1
c
,
1
c

)

] = 0.240458.

Thereforµ2:2 = 2.28802.
(b) Let n=3,α=1.5, c=0.8 and m1=2, m2=3, m3=4 in (3), (4) we get

µ3:3 =
1
c
(I1− I2+ I3) = 0.62209.

WhereI1, I2 andI3 are given by (6).
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