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Abstract: Recently, partially accelerated life testing has become quite important in reliability and life testing studies. This 

paper discusses maximum likelihood estimation method in step-partially accelerated life tests when the lifetimes of items 

under use condition follow the exponentiated exponential distribution. Based on progressively type-I censored samples; the 

point and interval maximum likelihood estimations for the considered parameters and the tampering coefficient are 

obtained in closed forms. The observed Fisher information matrix is derived to calculate confidence intervals for the 

considered parameters. The performances of the resulting estimators of the developed model parameters are evaluated and 

investigated in terms of mean squared errors by using a Monte Carlo simulation method. 

Keywords: Partially Accelerated Life Testing, Progressive Type-I Censoring, Exponentiated Exponential Distribution, Maximum 
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1 Introduction 

It is very hard to obtain information concerning the lifetime 

of an item or system with high reliability under usual 

operating conditions. In such problems, an experimental 

process called accelerated life testing (ALT) is conducted, 

where systems are tested under higher stress than normal, to 

find and induce their failure information. The stress 

loadings are allowed to increase at some pre-assigned time 

points such that the required information on the lifetime 

parameters can be obtained more quickly than under normal 

operating conditions. Commonly used stress patterns are 

constant stress and step stress [1]. Thus, accelerated life 

tests (ALTs) or partially accelerated life tests (PALTs) are 

used to shorten the lives of test items and to reduce the 

experimental time and the cost incurred in the experiment. 

Under step-stress PALT (SSPALT), a test item is first 

subjected to normal (use) condition and, if it does not fail 

for a specified time, then it is run at accelerated condition 

until the test terminates. 

Although PALT procedure can be conducted to shorten the 

test time in an experiment, it still costs much time for an 

experimenter to wait for all the units to be failed. Therefore, 

censoring schemes have been an important tool to consider. 

The most commonly used censoring schemes are Type-I 

and Type-II censoring schemes [2]. Suppose there are n 

items under consideration in a particular experiment. Under 

the conventional Type-I censoring scheme, the experiment 

continues up to a pre-specified time T. On the other hand, 

the conventional Type-II censoring scheme requires the 

experiment to continue until a pre-specified number of 

failures m≤ n occurs. Both these censoring schemes do not 

allow the experimenter to remove the units from the 

experiment at points other than the terminal point. This 

allowance will be important when a compromise between 

reduced time of experimentation and the observations of at 

least some extreme lifetimes are sought. Also when some of 

the surviving units in the experiment those are removed 

early one can be used for some other test. These reasons 

lead us into the area of progressive censoring. Here, in this 

study, we propose to use type-I progressive censoring on 

exponentiated exponential distribution using PALT 

procedures. 

A lot of literature is available on SS-PALT analysis, for 

example, see Goel [3], DeGroot and Goel [4], 

Bhattacharyya and Soejoeti [5], Bai and Chung [6],  Abdel-

Ghani [7] and Abdel-Ghaly et al. [8], Abdel-Ghani [9], 

Recently,  Ismail [10] studied the estimation and optimal 

design problems for the Gompertz distribution in SS-PALT 

with type I censored data. Also, SSPALT has been studied 

under hybrid censoring, see Ismail [11]. In addition, Ismail 

[12] has considered SSPALT using the progressive Type-II 

censoring scheme.  

The newness in this study is to apply the step PALTs to the 

exponentiated exponential distribution using progressively 
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type-I censored data and then estimate the parameters under 

consideration using maximum likelihood method of 

estimation. 

Based on the progressive censoring scheme, few interesting 

studies have been made under ALT, for example Viveros 

and Balakrishnan [13], Balakrishnan and Sindhu ([14], 

[15]), Balasooriya and Balakrishnan [16], Ng, et al ([17], 

[18]), Gouno et al [19], Balasooriya and Low [20] and 

Soliman [21].  Abdel-Hamid [22] considered the constant-

partially accelerated life tests for Burr type-XII distribution 

with progressive type-II censoring. Wu, et al [23] discussed 

the same problem considering progressive type-I censoring 

with grouped data. 

The exponentiated exponential distribution has been quite 

extensively used in reliability analysis to analyze many 

lifetime data and has been effectively used in place of two-

parameter Weibull or Gamma distribution. The distribution 

has received considerable attention in the field of reliability 

and lifetime data. Gupta and Kundu [24] compared the 

performance various estimation procedures of the 

distribution parameters. Abdel-Hamid and Al-Hussaini [25] 

studied the estimation of the EE parameters in step-stress 

ALT under type-I censoring. Chen and Lio [26] considered 

the parameter estimation of EE distribution using 

progressive type-I interval censoring. Recently David Han 

[27], under the time constraint, presented the estimation in 

step stress life tests with complementary risks from the 

exponentiated exponential distribution. 

The rest of the paper is organised as follows: In Section 2, a 

description of the model and a discussion of progressive 

type-I censoring scheme is presented. Closed forms of the 

maximum likelihood estimates (MLEs) of the parameters 

under consideration are derived in Section 3. Simulation 

studies are provided in the section 4. Lastly, conclusions 

and future possible research is discussed in section 5. 

2 Model Description and Test Method 

In this section, a design is framed to estimate the 

parameters and the tampering coefficient in SSPALT under 

type-I progressive censoring scheme assuming that the 

failure times follow exponentiated exponential distribution.  

2.1 Basic assumptions 

1. Under SSPALT, the product is first tested at a 

normal stress level S0 and at time τ the same is 

increased to 101 , SSS 
. 

2. The total lifetime T of a unit under normal and 

accelerated conditions is given by 

 
 

, 0 ,
1

/ , ,

Y Y
T

Y Y



   

 
 

  
 

where Y is the lifetime of an experimental unit at normal 

conditions,  is the stress change time and  1   is the 

tampering coefficient. 

3. Suppose the random variable Y has exponentiated 

exponential distribution with scale parameter

 0 and a shape parameter  0  . Thus the 

cumulative density function (CDF) of  Y is given 

by 

     1 , 0. 2yF y e y
    

2.2 The Testing under Progressive type-I 

Censoring Scheme       

Under PALT scheme, the procedure for applying 

progressive type-I censoring is given below. Suppose n 

items are placed under test and each is initially run under 

normal stress condition until time  01  . At this time 

point, the number of failure units 1n are counted and 1R

units are randomly withdrawn from the experimental 

process. When time  02   is reached, at this point 2n

failed units are counted and 2R of the surviving 

11 Rnn  units are withdrawn from the test. The process 

will continue and similarly at time point  0k , the kn

failed units are counted and kR units are removed from the 

test. Here, at this time point all the remaining kk Rnn 

surviving units are placed under accelerated condition and 

run until time 1k at which point the number of failures, 

1kn are counted and 1kR surviving units are removed from 

the test. The test procedure is continued at accelerated 

condition in the same way until K is reached and at this 

point 

1

1 1

K K

K i i

i i

R n n R


 

    surviving units are 

removed, thereby terminate the test. The above censoring 

times Kk  ,...,,...,1 are fixed in advance. The observed 

data in the SSPALT for exponentiated exponential 

distribution under progressive type-I censoring is given as 
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Using equation (1) and variable transformation, we form 

the probability function of a unit under step stress PALT as, 
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The survival function is given by 

 
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3 Estimation Method 

The MLE is used here because it is very sound and gives 

the estimates of the parameters with good statistical 

properties. Here, in this section we describe the point and 

interval estimation of the tampering coefficient and 

parameters of exponentiated exponential model based on 

progressive type-I censoring. The likelihood function using 

the censoring times 
 Kk  ,...,...,,1  and the progressive 

type-I censored sample in (3), is formed as 
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Using the value of equations (4) in the above likelihood 

function and taking logarithm on both sides, we get 
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Where  t k ij kt      ,  k i k       , 
ijt

is the 
thj unit in the 

thi semi closed time interval  1,i i 

, 0 0  , 
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i
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

  and 
2

1

K

i

i k

N n
 

  , is the number of 

units which get failed before and after the time point k , 

respectively. Also 1 2N N N  . In the rest of the paper 

we will denote 
ijt by t . 

3.1 Point estimation 

In this subsection, we discuss the process of obtaining the 

point ML estimates of parameters and tampering coefficient 

of the model formed in section 3. We equate the partial 

derivatives of equation (7) to zero with respect to the each 

parameter in the parameter set Θ = (α, β, λ).  
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Where, 
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Equations (8), (9) and (10) are non-linear equations as these 

are functions of population parameters, which are 

themselves functions of the solutions of these equations. 

Due to this difficulty, it is not possible to find exact 

solution and in order to obtain the MLEs of α, β, and λ, 

their solutions will be obtained numerically by using 

Newton Raphson method. 

3.2 Interval estimates 

We know, the asymptotic variance-covariance matrix of α, 

β, and λ is obtained by inverting the fisher information 

matrix, 
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therefore, we have the approximate 100(1-υ)% confidence 

intervals for α, β and λ as 
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where 
/2Z is the  100 1 % percentile of a standard 

normal variate. 

4 Simulation Studies  

Since the analytical comparison of the estimators in 

complicated expressions is almost impossible to compute. 

Therefore, Monte Carlo method of simulation is carried out 

to compute them.The study is carried out to compute the 

relative absolute biases (RABs), mean squared errors 

(MSEs) and 90% approximate confidence intervals (CIs) of 

the model parameters. Based on 10000 simulations, the 

results are estimated and reported in tabular form. The 

simulation study is carried according to the following steps. 

1. Generate a random sample of size n from uniform 

distribution U(0,1) and obtain the order statistics 

 1: 2: :, ,...,n n n nU U U  

2. Given the values of parameters  ,  , stress 

change time ,k acceleration factor  and 

censoring time K ; we define 
*

1n and 
*

2n such that 

              

 * *
1 1: :

1 k

n n n n
U e U




  

 

              and
   * * * *

2 1 2 1: 1:
1 k K k

n n n n n n
U e U


      

  
  

 

3. From step 2, the ordered observations   

Knnnnnknnn tttt  


*

:

*

:1

*

:

*

:1 *
2

*
1

*
1

*
1

......

 are calculated as follows 

        

 
  














.1,/1

,1,1

*

2

*

1

*

1

/1

::

1

*

1

/1

:

1

*

:
nninUIn

niUIn
t

nikk

ni

ni








 

              Where the ordered observations   
* * *

: 1 2, 1,...,i nt i n n  represent the type-I censored 

sample generated from the exponentiated 

exponential distribution under PALT. 

4. For given values of &k K , apply the progressive 

type-I censoring scheme to the observations 

generated in step 3 to obtain the observations 

given in expression (3), where  

*

1

1

k

i i

i

n n R


  and    
*

2

1

K

i i

i

n n R


  . 

5. Finally, we consider the following four 

progressive censoring schemes and for each 

setting, the bias and MSEs based on 10000 

simulations are estimated and reported in tabular 

form. 

Scheme1:

        
;&0...

1

121 


 
K

I

iKK nnRRRR   

Scheme 2:  

               ;1&

1...,0...

1

1121










kKnnR

RRRRR

K

I

iK

Kkk

 

Scheme 3:  

              ;&

0...,1...

1

1121

knnR

RRRRR

K

I

iK

Kkk










 

Scheme 4:  

       
1 2 1

1

... 1 & 1;
K

K K i

I

R R R R n n K



         

 

 

 

Table 1: Mean values of MLEs with Bias and MSEs when , , , &k K     are set at 0.60, 0.70, 1.1, 4 & 6 respectively. 

n schemes 
Estimates of α Estimates of β Estimates of λ 

MLE Bias MSE MLE Bias MSE MLE Bias MSE 

 

20 

1 
2 

3 

4 

0.732 
0.710 

0.478 

0.510 

0.247 
0.350 

0.298 

0.376 

0.213 
0.310 

0.276 

0.389 

0.556 
0.769 

0.766 

0.567 

0.238 
0.332 

0.256 

0.385 

0.258 
0.366 

0.282 

0.393 

1.217 
1.049 

1.003 

1.302 

0.230 
0.297 

0.255 

0.317 

0.222 
0.312 

0.240 

0.359 

 

30 

1 
2 

3 

4 

0.512 
0.671 

0.690 

0.571 

0.235 
0.339 

0.287 

0.367 

0.191 
0.254 

0.212 

0.286 

0.645 
0.655 

0.743 

0.768 

0.196 
0.251 

0.205 

0.295 

0.206 
0.298 

0.246 

0.309 

1.300 
1.002 

1.045 

1.198 

0.204 
0.241 

0.210 

0.276 

0.183 
0.269 

0.209 

0.281 

 

50 

1 

2 

3 
4 

0.676 

0.734 

0.751 
0.665 

0.210 

0.329 

0.256 
0.356 

0.143 

0.219 

0.163 
0.219 

0.765 

0.729 

0.654 
0.681 

0.131 

0.196 

0.145 
0.220 

0.154 

0.240 

0.179 
0.266 

1.202 

1.038 

1.067 
1.042 

0.141 

0.208 

0.154 
0.217 

0.138 

0.191 

0.146 
0.212 
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75 

1 

2 

3 
4 

0.576 

0.678 

0.545 
0.551 

0.150 

0.259 

0.162 
0.280 

0.121 

0.184 

0.139 
0.211 

0.739 

0.710 

0.675 
0.755 

0.108 

0.168 

0.124 
0.188 

0.130 

0.169 

0.136 
0.191 

1.008 

1.054 

1.189 
1.187 

0.107 

0.159 

0.140 
0.192 

0.101 

0.147 

0.130 
0.186 

 
100 

1 

2 
3 

4 

0.663 

0.677 
0.566 

0.619 

0.105 

0.159 
0.116 

0.161 

0.095 

0.121 
0.108 

0.136 

0.755 

0.776 
0.664 

0.881 

0.089 

0.138 
0.110 

0.153 

0.090 

0.124 
0.107 

0.150 

1.098 

1.056 
1.088 

1.041 

0.067 

0.114 
0.101 

0.155 

0.067 

0.111 
0.096 

0.126 

 
150 

1 

2 
3 

4 

0.620 

0.611 
0.678 

0.623 

0.049 

0.093 
0.061 

0.091 

0.043 

0.089 
0.059 

0.101 

0.641 

0.702 
0.711 

0.692 

0.051 

0.090 
0.067 

0.104 

0.037 

0.081 
0.052 

0.096 

1.123 

1.109 
1.130 

1.089 

0.031 

0.098 
0.062 

0.095 

0.032 

0.060 
0.043 

0.078 

 

Table 2: Mean values of MLEs with Bias and MSEs when , , , &k K     are set at 0.65, 0.75, 1.2, 5 & 7 respectively. 

n Schemes 
Estimates of α Estimates of β Estimates of λ 

MLE Bias MSE MLE Bias MSE MLE Bias MSE 

 
20 

1 

2 
3 

4 

0.682 

0.704 
0.635 

0.592 

0.192 

0.228 
0.206 

0.249 

0.266 

0.302 
0.280 

0.321 

0.812 

0.802 
0.789 

0.723 

0.227 

0.285 
0.248 

0.311 

0.267 

0.293 
0.273 

0.311 

1.341 

1.447 
1.130 

1.436 

0.341 

0.387 
0.344 

0.441 

0.311 

0.404 
0.332 

0.456 

 
30 

1 

2 
3 

4 

0.719 

0.549 
0.593 

0.599 

0.138 

0.205 
0.144 

0.235 

0.201 

0.254 
0.223 

0.290 

0.799 

0.763 
0.804 

0.693 

0.202 

0.248 
0.220 

0.283 

0.220 

0.249 
0.227 

0.280 

1.470 

1.092 
1.278 

1.042 

0.271 

0.361 
0.261 

0.341 

0.259 

0.346 
0.267 

0.376 

 

50 

1 
2 

3 

4 

0.704 
0.642 

0.678 

0.632 

0.112 
0.154 

0.128 

0.181 

0.145 
0.198 

0.167 

0.211 

0.732 
0.697 

0.770 

0.741 

0.160 
0.197 

0.173 

0.217 

0.139 
0.178 

0.144 

0.211 

1.138 
1.421 

1.155 

1.119 

0.141 
0.233 

0.245 

0.285 

0.178 
0.267 

0.188 

0.284 

 

75 

1 
2 

3 

4 

0.687 
0.645 

0.617 

0.621 

0.102 
0.128 

0.116 

0.161 

0.151 
0.182 

0.167 

0.197 

0.780 
0.712 

0.779 

0.741 

0.117 
0.134 

0.125 

0.178 

0.119 
0.151 

0.137 

0.188 

1.289 
1.067 

1.448 

1.022 

0.145 
0.210 

0.197 

0.231 

0.123 
0.171 

0.131 

0.200 

 

100 

1 

2 

3 
4 

0.635 

0.648 

0.607 
0.672 

0.081 

0.105 

0.090 
0.126 

0.108 

0.135 

0.116 
0.133 

0.756 

0.782 

0.781 
0.736 

0.089 

0.118 

0.107 
0.134 

0.061 

0.119 

0.078 
0.144 

1.289 

1.147 

1.110 
1.301 

0.087 

0.166 

0.094 
0.187 

0.076 

0.105 

0.088 
0.122 

 
150 

1 

2 
3 

4 

0.633 

0.662 
0.659 

0.636 

0.033 

0.073 
0.047 

0.086 

0.061 

0.087 
0.063 

0.101 

0.746 

0.743 
0.758 

0.746 

0.019 

0.069 
0.040 

0.078 

0.040 

0.067 
0.052 

0.088 

1.211 

1.289 
1.167 

1.198 

0.044 

0.065 
0.051 

0.099 

0.032 

0.051 
0.044 

0.065 

 

5 Concluding Remarks and Further Studies 

In this study, we considered the likelihood estimation of 

exponentiated exponential distribution parameters and 

acceleration factor under step stress partially accelerated 

life testing plan using progressive type-I censoring. Using 

Newton-Raphson method, we obtain the numerical values 

of MLEs of model parameters. Their performances are 

analyzed and discussed in terms of bias and MSE. It has 

seen that, as the sample size increases the biases and MSEs 

of the estimated parameters decreases. This indicates that 

the maximum likelihood estimators are consistent and 

asymptotically normally distributed. As a future work, 

Bayesian inferences under the SSPALT assuming the same 

censoring proposed in this article will be considered.  
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