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Abstract: We propose an approach to achieve quantum computation with atomics qubits in a cavity QED. We encode a single qubit
on a pair of atoms. The qubit is typically encoded by two two-levels atoms with one is in the ground state while the other in the excited
state. We propose an universal set of gates including two rotations X and Z on the Bloch sphere of each single qubit and a Controlled
NOT gate of each two-qubit.
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1 Introduction:

Usually the quantum information processing in a cavity
QED uses either the atoms or photons as qubits. The
problem of storing and manipulating entangled atomic
and photon states has recently received much attention in
the context of recent proposals for implementing quantum
logic gates, such as photons in the polarization degree of
freedom (DOF) [1,2,3] and those in both the polarization
and the spatial-mode DOFs (the hyper-parallel photonic
quantum computing) [4,5,6], nuclear magnetic resonance
[7,8,9,10], quantum dots [11,12,13,14,15], diamond
nitrogenvacancy center [16,17,18], superconduting qubits
[19,20], superconducting resonators (microwave photons)
[21,22], and hybrid quantum systems [23,24]. Atomic
systems are excellent quantum memories and are more
suitable for large scale quantum computation. Whereas
photons are robust against decoherence and can be easily
transmitted over long distances. We will discuss the setup
where atoms are the qubits and photons are used to
manipulate the atoms. A single two-level atom coupled to
a single cavity mode is one of the simplest quantum
systems. Each qubit can be represented as a linear
combination of the two atom states (i.e the ground state
|g〉 and the excited state|e〉). In this work we adapt a
different approach by encoding a single qubit on a pair of
atoms. If we consider two atoms 1 and 2 with levels (|g1〉,

|e1〉) and (|g2〉, |e2〉) respectively, the qubit is typically
encoded by two two-levels atoms with one is in the level
|g〉 while the other in the level|e〉. The idea of encoding a
single qubit on a pair of atoms is similar to dual-rail qubit
representation [34,35] which is encoded by the presence
of a single photon in one or the other of two optical cavity
modes. The concept of using the représentation|g1e2〉
and|e1g2〉 is not new [36,37,38], but existing methods for
quantum logic do not, to our knowledge, use the all
advantageous of this representation.

2 Universal Set of Logic Gates:

If we let two atoms 1 and 2 simultaneously interacting
with a single mode in a cavity QED and if we assume the
atoms are intially in the states|g1e2〉 or |e1g2〉 (see
figure1). Then the state|g1e2〉 encode the qubit state|−〉
and|e1g2〉 encode the qubit state|+〉 (see table.1):

For a universal set of gates, we need a
multi-qubit-entangling gate and two rotations on the
Bloch sphere of each single qubit [25]. We choose the
rotations about x and z axes for a single qubit and a
CNOT gate for an entangling multi-qubit gate to achieve
the universal set of gates.
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Table 1: The qubit is encoded by two atoms with one is in the
level |g〉 and the other in the level|e〉 .

atoms states qubit
|g1e2〉 7−→ |−〉
|e1g2〉 7−→ |+〉

Fig. 1: The alternative representation of qubit which is encoded
as a two atoms with one is in the level|g〉 and the other in the
level |e〉 (|g1e2〉 ≡ |−〉 and|e1g2〉 ≡ |+〉).

2.1 Rotation about the x-axis

To construct a rotation about the x-axis, we consider two
identical two-level atoms numbered 1 and 2
simultaneously interacting with a single-mode cavity field
with frequencyωa and driven by a classical field with
frequencyω . The two atoms are initially in the states
|g1e2〉 or |e1g2〉. We will see that the photon-number
dependent parts in the effective Hamiltonian are canceled
with the assistant of a strong classical driving field.

The general HamiltonianH for the system, with the
dipôle and rotating wave approximations, can be written
as (̄h = 1) [26,27,28]:

H = ω0

N

∑
j=1

Sz, j +ωaâ+â+
N

∑
j=1

[

g
(

â+S−j + âS+j

)

+Ω
(

S+j e−iωt + S−j eiωt
)]

(1)

whereN is the number of atoms (hereN = 2). â and
â+ is the boson operators for the cavity mode,g is the
atom-field coupling constant,Ω is the Rabi frequency of
the classical field,ω0 is the frequency for atomic
transition and Sz, j = 1

2

(
∣

∣e j
〉〈

e j
∣

∣−
∣

∣g j
〉〈

g j
∣

∣

)

,
S+j =

∣

∣e j
〉〈

g j
∣

∣, S−j =
∣

∣g j
〉〈

e j
∣

∣.
Assumingω0 =ω andδ =ω0−ωa, we have following

Hamiltonian in the interaction picture [26,27,28]

Hi =
N

∑
j=1

[

g
(

e−iδ t â+S−j + eiδ t âS+j

)

+Ω
(

S+j + S−j

)]

(2)

When Ω ≫ δ ,g and δ ≫ g, we can obtain the
evolution operator of the system in the interaction picture
[26,27]

UI(t) = e−iH0te−iHet (3)

with

H0 = Ω
N

∑
j=1

(

S+j + S−j

)

(4)

and

He =
λ
2

[

N

∑
j=1

(
∣

∣e j
〉〈

e j
∣

∣+
∣

∣g j
〉〈

g j
∣

∣

)

+
N

∑
j,k=1,i6= j

(

S+j S+k + S+j S−k +H.C
)

]

(5)

whereλ = g2

2δ . Then, the time evolution of the initial
states|g1e2〉 and|e1g2〉 (N = 2), can be given as [26]:

|g1e2〉 7−→ e−iλ t {η1 [(δ1 |g1〉− iδ2 |e1〉)(δ1 |e2〉− iδ2 |g2〉)]
−iη2 [(δ1 |e1〉− iδ2 |g1〉)(δ1 |g2〉− iδ2 |e2〉)]}

|e1g2〉 7−→ e−iλ t {η1 [(δ1 |e1〉− iδ2 |g1〉)(δ1 |g2〉− iδ2 |e2〉)]
−iη2 [(δ1 |g1〉− iδ2 |e1〉)(δ1 |e2〉− iδ2 |g2〉)]} (6)

with δ1 = cos(Ω t), δ2 = sin(Ω t), η1 = cos(λ t) and
η2 = sin(λ t).

The global phase factore−iλ t is omitted in the
following equations. By using the definition of qubits
(|g1e2〉 ≡ |−〉 and |e1g2〉 ≡ |+〉) and by settingΩ t = π ,
one finds that:

|−〉 7−→ cos(λ t) |−〉− isin(λ t) |+〉
|+〉 7−→ cos(λ t) |+〉− isin(λ t) |−〉 (7)

so that, finally the x-rotation operation becomes:

Rx(t) = cos(λ t)I − isin(λ t)σx

σx is the pauli-X gate andI is the identity gate.

2.2 Rotations about the z-axis

we adopt the following scheme to achieve the rotation
about z-axis [see figure2]. If we take two different
two-levels atoms passing through a cavity QED and
simultaneously interacting with a single-mode cavity. We
assume that the system{atom1+atom2+cavity mode} is
initially in one of the states|g1,e2,1〉 or |e1,g2,1〉 . We
consider a very high detuning between the first atom and
the cavity mode, and a large detuning between the second
atom and the cavity mode.

We know that for a large detuning, a system with a two
level atom interacting with a single mode cavity, remains
in its initial state and a phase shift can be produced as [29]:
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Fig. 2: Representation of two two-levels atoms with a very high
detuning∆1 for the first atom and a large detuning∆2 for the
second atom.

|g,n〉 7−→ eiΦ(n) |g,n〉
|e,n〉 7−→ e−iΦ(n+1) |e,n〉 (8)

with Φ(n) can be expressed as [29]:

Φ(n) =
∆
2v

L
∫

0

dz





√

1+ n

(

g(z)
∆/2

)2

−1



 (9)

wherev is the velocity of the atom passing through the
cavity,L is the cavity length,n is the number of photons in
cavity andg(z) is the coupling constant which in our case
is independent of z.

Whereas for a very high detuning the system remains
in its initial state. From these considerations, we can say
that the first atom state remains unchnaged while for the
evolution of the second atom, we will introduce a phase
shift as:

|g1,e2,1〉 7−→ e
−i

2g2
2

∆2
t |g1,e2,1〉

|e1,g2,1〉 7−→ e
i

g2
2

∆2
t |e1,g2,1〉 (10)

that we can write as (|g1e2〉 ≡ |−〉 and|e1g2〉 ≡ |+〉):

|−〉 7−→ e
−i

g2
2

2∆2
t
e
−i

3g2
2

2∆2
t |−〉

|+〉 7−→ e
−i

g2
2

2∆2
t
e

i
3g2

2
2∆2

t |+〉 (11)

So, the z-rotation operation can be constructed as (the

global phase facore
−i

g2
2

2∆2
t
is omitted):

Rz(t) = cos(
3g2

2

2∆2
t)I− isin(

3g2
2

2∆2
t)σz (12)

σz is the pauli-Z gate.

2.3 Entangling Multi-Qubits Gate

In addition to the one qubit x-rotation and z-rotation
gates, we also need to an entangling multi-qubit gate to
complete a universal set of gates. The CNOT gate, which
is the most obvious condidate for a multi-qubit entangling
gate, can be implemented by using the definition of such
logical qubits.

We consider four identical two-level atoms
numbered 1, 2, 3 and 4 simultaneously interacting with a
single mode cavity field with frequencyωa and driven by
a classical field with frequencyω . The four atoms are
initially in the states|g1e2g3e4〉, |g1e2e3g4〉, |e1g2g3e4〉,
or |e1g2e3g4〉. We have the same scheme as that of section
2.1, but with four atoms instead of two. We use the
equations (1) to (5) withN = 4 to develop the evolution

operator of eq.(3). We defineSx = 1
2 ∑4

j=1

(

S+j + S−j

)

.

Then the eqs. (4) and (5) reduce toH0 = 2ΩSx and
He = 2λ S2

x respectively and the eq. (3) becomes:

UI(t) = e−i2ΩtSx e−i2λ tS2
x (13)

whereλ = g2

2δ .

By considering the matrix representation ofSx,
we develop the evolution operatorUI(t) in the space
spanned by the basis states{|g1g2g3g4〉, |g1g2g3e4〉,
|g1g2e3g4〉,|g1g2e3e4〉,|g1e2g3g4〉,|g1e2g3e4〉,|g1e2e3g4〉,
|g1e2e3e4〉,|e1g2g3g4〉,|e1g2g3e4〉,|e1g2e3g4〉,|e1g2e3e4〉,
|e1e2g3g4〉,|e1e2g3e4〉,|e1e2e3g4〉,|e1e2e3e4〉} as:

UI(t) = αS2
x +β I+ γJ+ µSx +νS

′
x (14)

with

α =

(

e−i8λ t cos(4Ω t)−1
)

4
,

β =

(

4e−i2λ t cos(2Ω t)− e−i8λ t cos(4Ω t)+5
)

8
,

γ =

(

−4e−i2λ t cos(2Ω t)+ e−i8λ t cos(4Ω t)+3
)

8
,

µ =− i
(

2e−i2λ t sin(2Ω t)+ e−i8λ t sin(4Ω t)
)

4
,

ν =− i
(

−2e−i2λ t sin(2Ω t)+ e−i8λ t sin(4Ω t)
)

4

I is the matrix IdentitéI = I1⊗ I2⊗ I3⊗ I4 etJ = σx,1⊗
σx,2⊗σx,3⊗σx,4.

The matrix representation ofSx andS
′
x are defined as:
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Sx =



























































0 1
2

1
2 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0

1
2 0 0 1

2 0 1
2 0 0 0 1

2 0 0 0 0 0 0
1
2 0 0 1

2 0 0 1
2 0 0 0 1

2 0 0 0 0 0
0 1

2
1
2 0 0 0 0 1

2 0 0 0 1
2 0 0 0 0

1
2 0 0 0 0 1

2
1
2 0 0 0 0 0 1

2 0 0 0
0 1

2 0 0 1
2 0 0 1

2 0 0 0 0 01
2 0 0

0 0 1
2 0 1

2 0 0 1
2 0 0 0 0 0 0 1

2 0
0 0 0 1

2 0 1
2

1
2 0 0 0 0 0 0 0 01

2
1
2 0 0 0 0 0 0 0 01

2
1
2 0 1

2 0 0 0
0 1

2 0 0 0 0 0 0 1
2 0 0 1

2 0 1
2 0 0

0 0 1
2 0 0 0 0 0 1

2 0 0 1
2 0 0 1

2 0
0 0 0 1

2 0 0 0 0 01
2

1
2 0 0 0 0 1

2
0 0 0 0 1

2 0 0 0 1
2 0 0 0 0 1

2
1
2 0

0 0 0 0 01
2 0 0 0 1

2 0 0 1
2 0 0 1

2
0 0 0 0 0 0 1

2 0 0 0 1
2 0 1

2 0 0 1
2

0 0 0 0 0 0 01
2 0 0 0 1

2 0 1
2

1
2 0



























































,

S′x =



























































0 0 0 0 0 0 01
2 0 0 0 1

2 0 1
2

1
2 0

0 0 0 0 0 0 1
2 0 0 0 1

2 0 1
2 0 0 1

2
0 0 0 0 01

2 0 0 0 1
2 0 0 1

2 0 0 1
2

0 0 0 0 1
2 0 0 0 1

2 0 0 0 0 1
2

1
2 0

0 0 0 1
2 0 0 0 0 01

2
1
2 0 0 0 0 1

2
0 0 1

2 0 0 0 0 0 1
2 0 0 1

2 0 0 1
2 0

0 1
2 0 0 0 0 0 0 1

2 0 0 1
2 0 1

2 0 0
1
2 0 0 0 0 0 0 0 01

2
1
2 0 1

2 0 0 0
0 0 0 1

2 0 1
2

1
2 0 0 0 0 0 0 0 01

2
0 0 1

2 0 1
2 0 0 1

2 0 0 0 0 0 0 1
2 0

0 1
2 0 0 1

2 0 0 1
2 0 0 0 0 01

2 0 0
1
2 0 0 0 0 1

2
1
2 0 0 0 0 0 1

2 0 0 0
0 1

2
1
2 0 0 0 0 1

2 0 0 0 1
2 0 0 0 0

1
2 0 0 1

2 0 0 1
2 0 0 0 1

2 0 0 0 0 0
1
2 0 0 1

2 0 1
2 0 0 0 1

2 0 0 0 0 0 0
0 1

2
1
2 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0



























































We use the logical qubits (i.e|g1e2〉 ≡ |−1〉, |e1g2〉 ≡
|+1〉, |g3e4〉 ≡ |−2〉 and|e3g4〉 ≡ |+2〉), then we would be
interested in the time evolution of the initial states
|g1e2g3e4〉, |g1e2e3g4〉, |e1g2g3e4〉 and|e1g2e3g4〉 :

|g1e2g3e4〉 →
1
2
[α |g1g2g3g4〉+ µ |g1g2g3e4〉+ν |g1g2e3g4〉

+α |g1g2e3e4〉+ µ |g1e2g3g4〉 (15)

+2(α +β ) |g1e2g3e4〉+α |g1e2e3g4〉
+µ |g1e2e3e4〉+ν |e1g2g3g4〉+α |e1g2g3e4〉
+2γ |e1g2e3g4〉+ν |e1g2e3e4〉+α |e1e2g3g4〉
+µ |e1e2g3e4〉+ν |e1e2e3g4〉+α |e1e2e3e4〉]

|g1e2e3g4〉 →
1
2
[α |g1g2g3g4〉+ν |g1g2g3e4〉+ µ |g1g2e3g4〉

+α |g1g2e3e4〉+ µ |g1e2g3g4〉+α |g1e2g3e4〉
+2(α +β ) |g1e2e3g4〉+ µ |g1e2e3e4〉
+ν |e1g2g3g4〉+2γ |e1g2g3e4〉+α |e1g2e3g4〉
+ν |e1g2e3e4〉+α |e1e2g3g4〉+ν |e1e2g3e4〉
+µ |e1e2e3g4〉+α |e1e2e3e4〉] (16)

|e1g2g3e4〉 →
1
2
[α |g1g2g3g4〉+ µ |g1g2g3e4〉+ν |g1g2e3g4〉

+α |g1g2e3e4〉+ν |g1e2g3g4〉+α |g1e2g3e4〉
+2γ |g1e2e3g4〉+ν |g1e2e3e4〉+ µ |e1g2g3g4〉
+2(α +β ) |e1g2g3e4〉+α |e1g2e3g4〉
+µ |e1g2e3e4〉+α |e1e2g3g4〉+ µ |e1e2g3e4〉
+ν |e1e2e3g4〉+α |e1e2e3e4〉] (17)

|e1g2e3g4〉 →
1
2
[α |g1g2g3g4〉+ν |g1g2g3e4〉+ µ |g1g2e3g4〉

+α |g1g2e3e4〉+ν |g1e2g3g4〉+2γ |g1e2g3e4〉
+α |g1e2e3g4〉+ν |g1e2e3e4〉+ µ |e1g2g3g4〉
+α |e1g2g3e4〉+2(α +β ) |e1g2e3g4〉
+µ |e1g2e3e4〉+α |e1e2g3g4〉+ν |e1e2g3e4〉
+µ |e1e2e3g4〉+α |e1e2e3e4〉] (18)

If we choose:

λ t =
π
4

(19)

and

Ω t = (2k+1)
π
2

(20)

we can getα = 0, β = 1+i
2 , γ = 1−i

2 , µ = 0, ν = 0 and the
time evolution of the initial states of the system becomes:











|g1e2g3e4〉 → β |g1e2g3e4〉+ γ |e1g2e3g4〉
|g1e2e3g4〉 → β |g1e2e3g4〉+ γ |e1g2g3e4〉
|e1g2g3e4〉 → γ |g1e2e3g4〉+β |e1g2g3e4〉
|e1g2e3g4〉 → γ |g1e2g3e4〉+β |e1g2e3g4〉

(21)

We representUI(t) in the subspace spanned by the
basis states of the previous wavevector
{|−1−2〉 , |−1+2〉 , |+1−2〉 , |+1+2〉}, one finds:

U
′
I (t) =

1+i
2 0 0 1−i

2
0 1+i

2
1−i
2 0

0 1−i
2

1+i
2 0

1−i
2 0 0 1+i

2

(22)

This matrix is equivalent to CNOT up to one-bit
operations (see figure.3).

Hence, we can achieve the CNOT gate. We take the
interaction time t such thatλ t = π

4 and next we can choose
the Rabi frequencyΩ appropriately to satisfy eq (20).
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Fig. 3: Representation of CNOT gate whereH represents
the Hadamard transformation and (Rx(θ ), Ry(θ ) and Rz(θ ))
represent respectively a rotation of angleθ around axis (x, y and
z).

2.3.1 Discussion:

To investigate the experimental feasibility of this
proposal, let us consider Rydberg atoms which interact
with a high Q cavity. The photon decay time is about
Tc = 10−3s [32] and the coupling constant is
g = 50×2πKHz [32]. Thus, the interaction time is about
τ = π

4λ = πδ
2g2 . Settingδ = 10g, we haveτ ≃ 5.10−5s,

which is much smaler than the photon decay time.
-Fidelity: In the derivation of effective Hamiltonian in

eq. (5) and by assumingΩ ≫ δ ,g, we have neglected the
terms oscillating fast [27]:

∆H(t) =
4

∑
j=1

g

[

e−iδ ta+
(

1
2

σ+
j eiΩt − 1

2
σ−

j e−iΩt
)

+H.C

]

(23)
In this equation, we use the atomic basis:

∣

∣+ j
〉

= 1√
2

(∣

∣g j
〉

+
∣

∣e j
〉)

and
∣

∣− j
〉

= 1√
2

(∣

∣g j
〉

−
∣

∣e j
〉)

to

defineσ+
j and σ−

j : σ+
j =

∣

∣+ j
〉〈

− j
∣

∣ and
∣

∣− j
〉〈

+ j
∣

∣ (Do
not confuse with the notation of the logical qubit that we
have discussed in this proposal).

These terms induce Stark shifts on the states
∣

∣g j
〉

and
∣

∣e j
〉

and could reduce the fidelity of the gate. Here we
calculate the dependence of fidelity considering these
errors. We can also write∆H(t) as:

∆H(t) =
4

∑
j=1

ig
[

sin(Ω t)S j
z − cos(Ω t)S j

y

]

aeiδ t +H.C

(24)
With S j

z = 1
2

(∣

∣e j
〉〈

e j
∣

∣−
∣

∣g j
〉〈

g j
∣

∣

)

and

S j
y = 1

2i

(∣

∣e j
〉〈

g j
∣

∣−
∣

∣g j
〉〈

e j
∣

∣

)

. For theS j
z terms, we can

use the spin-echo technique to eliminate the errors. Then
we will only study the effect of theS j

y terms on the gate
operation. For these terms, we use the method described
in Ref.[33] to study their effect.

Changing to the interaction picture, we may find the
propagatorUI(t) from the Dyson series:

UI(t) = 1− i
∫ t′

0
dt ′∆HI(t

′)

−
∫ t′

0

∫ t′′

0
dt ′dt ′′∆HI(t

′)∆HI(t
′′)+ ... (25)

where the interaction Hamiltonian∆HI(t) is given by:
∆HI(t) = U+(t)∆H(t)U(t). We can treatU(t) as a
constant during the integration because∆H(t) is
oscillating much faster than the propagator. Then we get:

UI(t) = 1− i
2g
Ω

sin(Ω t)
4

∑
j=1

U+(t)S j
yU(t)

− g2

Ω2

4

∑
j,k=1

(1− cos(2Ω t))U+(t)S j
ySk

yU(t)+ ...

(26)

Near the time τ = πδ
2g2 and for the initial state

|g1e2g3e4〉, |g1e2e3g4〉, |e1g2g3e4〉 or |e1g2e3g4〉, we
obtain the fidelity:

F ≃ 1− 2g2

Ω2 (1− cos(2Ωτ)) (27)

Next , we show the plot of fidelity as a function ofΩ
g in

figure.4. We find that high fidelity is obtained forΩ
g ≥ 10,

which is in good agreement with the approximation made
by neglecting the terms oscillating fast (Ω ≫ δ ,g)

Fig. 4: Fidelity as a function ofΩg for the implementation of
CNOT gate(δ = 10g). Here we consider the errors introduced by
the Stark Shifts.

It should be noted that the estimation of Fidelity is
obtained in the interaction picture.

3 Conclusion

In summary, we have shown that the quantum gates
in cavity can be realized when the qubits are encoded by
two circular Rydberg atoms with one is in the ground
state and the other in the excited state. We have also seen
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that this logical representation of qubits can realize a
universal set of logic gates. In this regard we have
implemented two rotations X and Z on the Bloch sphere
of each single qubit and a Controlled NOT gate of each
two qubit. The system seem promissing for scalability
and through all these methods, we believe that more
complex gates could be built up. However, the
atom-cavity interaction appear to be in the range of
practicality and other applications such as the creation of
entangled states in cavity resonators may be achieved
with these logical qubits.
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