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1 Introduction

Fractional calculus is a powerful tool in applied mathecsto investigate several problems from various fields of
science and engineering, with many break-through resuitshwcan be seen in physics, finance, hydrology, biophysics,
thermodynamics, control theory, statistical mechanisgoahysics, and bioengineering; 2,3,4,5]. There has been a
significant development in ordinary and partial fractioddferential equations in recent years. We recommend the
reader to check the monographs of Ableasl. [6,7], Kilbas et al. [8], Miller and Ross 9], Zhou [10], the papers of
Abbaset al.[11,12,13,14], Vityuk et al.[15,16,17,18], and the references therein.

Convergence of successive approximations for ordinargtfonal differential equations as well as for integral
functional equations is a well established property. It baen studied by De Blasi and Myjak9], Chen (], Faina
[21], Shin [22], and the references therein. Cztapihskg|[got the global convergence of successive approximatiens a
well as the uniqueness of solutions for the Darboux problem

Dyyz(%,Y) = f(X,Y,Zxy)); if (xy) € J:=[0,a] x [0,b], )
Z(Xay) = CD(Xay); if (va) €Ep:= (—oo7a] X (—oo7b]\(0’ a] X (Oa b]7

wheref : Jx Z — R and® : Eg — R are given functions, ané is a phase space. 124], Abbaset al. presented some
global convergence of successive approximations of theviolg partial Hadamard integral equation

u(xy) = H(X,y)f/l'x/ly (Iogg)rrl (Iog%)rzl%dtds if (x,y) € J, @)

whered :=[1,a] x [1,b], a,b> 1, ry,r> >0, u:J =R, f:IxR — R are given continuous functions, and-) is the
(Euler's) Gamma function defined by

r@) = /Omtf—le—‘dt; 70,
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Also in [24], the authors discussed the global convergence of sugeeagiproximations for the fractional partial
Hadamard integral inclusion

U(X,y) - [J(X,y) € (H IBF)(Xaya U(X,y)); (Xay) € J7 (3)
whereg = (1,1), F : Jx R — Z(R) is a compact valued multi-valued mdfl;F is the definite Hadamard integral for
the set-valued functioR of orderr = (rq,r») € (0,0) x (0,0), andu : J — R is a given continuous function, an# (R)
is the family of all nonempty subsets &f

Motivated by the above papers, in the present article, waudsthe global convergence of successive approximations
for the fractional partial differential equation

CDrSU(va) = f(X,y,U(X,y)); if (va) €J, (4)

with the initial conditions
U(X,O) = ¢(X); Xe [O,a],
u(0,y) = g(y); y € [0,b], (5)
¢(0) = y(0),

wherea,b > 0, 6 = (0,0), °Dj, is the fractional Caputo derivative of ordet= (rq,r2) € (0,1] x (0,1], f :JxE—Eisa
given functionsk is a (real or complex) Banach space, gnd0,a] — E, ¢ : [0,b] — E are given absolutely continuous
functions.
Next, we discuss the global convergence of successive sippaiions for the fractional partial differential inclusi
Dyu(x,y) € F(x.y,u(x,y)); if (x,y) €J, (6)

with the initial conditions§), whereF : J x E — Z(E) is a compact valued multi-valued mag,(E) is the family of all
nonempty subsets of the Banach spBce

This paper initiates the convergence of successive appaiidns for fractional differential equations and inctrss.
The paper is organized as follows. In Section 2 some preéinginesults are introduced. The main result is presented in
Section 3, and two examples are presented in the last section

2 Preliminaries

Denotel!(J) the space of Bochner-integrable functians] — E with the norm

a b
= [ utcy)ledyax

where||.||e denotes a norm oB.
AC(J) denotes the space of absolutely continuous functions franto E, and% := C(J) is the Banach space of all
continuous functions frord into E with the norm||.||, namely

[ulleo = sup [[u(x,y)|[e-
(xy)€d

Definition 1. The function f: J x E — E is said to be E-Caratheodory if

() (x,y) — f(X,y,u) is measurable for each@ E;
(iju — f(x,y,u) is continuous for almost allx,y) € J;
(iii)there exists a real positive functioh < L'(J) such that

I (xy,u)||e < d(x,y); forallue E and almost all(x,y) € J.

Let (X,d) be a metric space. We use the following notations:

Ppd(X) ={Y € 22(X) :Y bounded, Zy(X)={Y € 2(X):Y closed,
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Pep(X) ={Y € Z(X):Y compac}, and Z(X)={Y € Z(X):Y convex.

A multivalued mapG : X — £?(X) hasconvex (closed) valuésG(x) is convex (closed) for akt € X. We say thats
is boundedn bounded sets &(B) is bounded irX for each bounded s&of X, i.e.,

suga{sup{ lull: ue G(X)}} < oo.

G is called upper semi-continuous (u.s.c.)Xiif for eachxg € X, the setG(xg) is a nonempty closed subsetXfand if
for each open sétl of X containingG(Xp), there exists an open neighborhddgof xo such thalG(Np) C N. Finally, we
say thatG has dixed pointf there existsx € X such thak € G(x).

For eachu € ¢ let the setS-., known asthe set of selectofsom F defined by

Sou={ve L) :v(xy) e F(xyu(xy))) , ae xye}.
For more details on multivalued maps we refer to the booksedfriling [25] and Gorniewicz 26].
ConsideHy : Z(X) x 2(X) — R+ U{w}, given by
Hy(/, %) = max{ sup d(a, %) , supd(«,b) },
acd/ be#
whered(«7,b) = in); d(a,b), d(a,#) = binf} d(a,b). Then (Ppqa(X),Hq) is a metric space and?(X),Hy) is a
ac./ € '
generalized (complete) metric space (sZ8)[
Definition 2. A multivalued map FJ x E — Z(E) is said to be Caratbodory if

() (x,y) — F(x,y,u) is measurable for each@ E;
(iDu — F(x,y,u) is upper semicontinuous for almost &l y) € J.

F is said to be E-Caratheodory if(i), (i) and the following condition holds;
(iii)for each c¢> 0, there existwr; € L(J, R, ) such that

IFxy,u)ll» = sup{[[f]|: f e F(xy,u)}
< o¢(x,y) forall |u]| < cand forae (x,y) € J.

Now, we introduce notations, definitions and a preliminagyrima concerning to partial fractional calculus theory.
Definition 3. [15] Let r1,r; € (0,0) and r= (ry,r2). For u € L1(J), the expression

(Ipu)(x,y) = m/OX/Oy(x_s)rl—l(y_t)rz—lu(s,t)dtds

is called the left-sided mixed Riemann-Liouville integribrder r, wherel” (.) is the (Euler's) Gamma function defined
byl (&) = [y’ t*~tetdt; € > 0.

In particular,
0 (11 Y
(18u)(x,y) = u(xy), (15 f)(x,y):/ / u(st)dtds for almost all(x,y) € J.
0 Jo

For instancel, f exists for allry,r; € (0,0), whenf € L1(J). Note also that when € ¢, then(1§f) € €, moreover

(15U)(x.0) = (15)(0.y) = 0; x€ [0,a], y € [0.b].

Example 1Let A, w € (0,0) andr = (r1,r2) € (0,0) x (0,0), then
. X)‘ yw X)‘ +r1yw+r2

= ; foralmost all(x,y) € J.
TA+MrA+w) TA+A+r) (1+w+ry) ()
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By 1—rwe mean1—rq,1—r2) € [0,1) x [0,1). Denote byD)Z(y = %, the mixed second order partial derivative.

Definition 4. [6,18] Letr € (0,1] x (0,1] and ue L(J). The Caputo fractional-order derivative of order r of u is chefil
by the expression

cpr _(11-rp2 _ stu
Dou(x,y) = (g ' Dyu)(x.y) = FA-mra-n / / X srily dtds
The case = (1,1) is included and we have

DS u)(xy) = (Dgu)(x,y); for almost all(x,y) € J

Example 2Let A, w € (0,0) andr = (r1,r2) € (0,1] x (0,1], then

cp’ X)‘yw _ XA7r1w7r2
T+ rA+w) TA+A—r) (1+w—ry)

; for almost all(x,y) € J

In the sequel, we need the following Lemmas:

Lemma 1.[11] Let r1,ro € (0,1] and p(x,y) = ¢(x) + @(y) — ¢(0). A function ue ¥ is a solution of the fractional
integral equation

u(x,y) = H(x.y) +/ / (= Srl it Zt))rz f(st,u(s )dtds )

if and only if u is a solution of the problemM)¢(5).
Lemma 2.[14] Let r1,ro € (0,1] and p(x,y) = ¢(x) + @(y) — ¢(0). A function ue ¥ is a solution of the fractional

integral equation
X S r— 1 t)rz—l
oo y) = (xy) +/ / o fstads ®)
2

where fe S, if and only if u is a solution of the |nclu3|o»6XW|th the initial conditions ).

3 Successive Approximations and Unigqueness Results

In this section, we present the main result for the globalreagence of successive approximations to a unique solution
of our problems.

Definition 5. A generalized solution of the proble@{(5) is an absolutely continuous function satisfying the fiacal
integral equation 7) almost everywhere on J

Define the successive approximations of the probléa{g) as follows:

uO(xy) = p(xy); (xy) €,

I'l 1 ro—1
A xy) = pxy) + [ / (x=9) r? f(st.u (st)dtds (xy) €
2

SetJy :=[0,08] x [0, 0b]; for anyo € [0, 1]. Let us introduce the following hypotheses.

(H1)The functionf : J x E — E is L-Carathéodory,
(H2)There exist a constapt > 0 and a Carathéodory function: J x [0,2p] — [0, ) such thatv(x,y,.) is nondecreasing
for almost all(x,y) € J, and the inequality

||f(X,y,U)— f(xvyvU)”ESW(vaaHu_U”E) )

holds for all(x,y) € J andu,T € E such that|u—T||g < 2p,
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(Hz)v =0 is the only function in€'(J,, [0,2p]) satisfying the integral inequality

V(% y) < // (x— Srll 2';)rz1W(s,t,v(s,t))oltds (10)

with o <A <1.

Theorem 1. Assume that the hypothesg) — (Hs) are satisfied. Then the successive approximatidfis o< N are
well defined and converge to the unique solution of the pral#®-(5) uniformly on J

Proof. From (H;), the successive approximations are well defined. Furtheznibe sequence@™(x,y); ne N} is
equi-continuous od. Indeed, for eaclixs,y1), (X2,¥2) € J with X3 < Xz andy; < y», and for all(x,y) € J, we have

Ju® (X2,Y2)—U )(x1,y1)||E < || (xa, Y1) — H(%2,Y2)||E
X y
/ ' / =9y — )2 L (x— 9 Yyy — )2
F(ry)f(r2) Jo Jo
x || f(s.t,u™Y(st))||edtds
1 Y2
+7/ / Xo —9) 1Ly, —t) 27 f(s,t,u™ V(s t))||g dtds
I'(rl)/'(z 5 (X2e—9)"t " (y2—t)"27 7| f( (st)le
X
Frorm b a9 e -y st sy fedtas
|’1 (r2) V1

X2 1
crmmrag e [ a9 e -y (st Vs edtds
1

r
(r
then, from hypothesis (iii) of Definitiod, we obtain

Ju” (X27y2)_u( ) (x1,y1)|le < || (xa,y1) — H(%2,Y2)||E
X yl _ rl l rzfl_ _ rlfl _ rzfl
[(%2 (y2—t) (Xx1—9)"1 " (y1—1)"277]
|’1 (r2)

x &( ,t)dtds

+W/m /yz(Xz—S)'l Yy, —t)2715(s t) dtds

1 Xl Ly -1
// (X2 — )Ly, — )2 15(s,t) dt ds
y1

rl)l' rz
1 X2 y1

// (X2— 91 Y(yp — )2 15(s.t)dt ds
I']_ r2 X1

—0,asx — X and y — Yo.

Let
T:=sup{o € [0,1] : {u"(x,y)} converges uniformly ody }.

If T =1, then we have the global convergence of successive approgimaSuppose that < 1, then the sequence
{uM(x,y)} converges uniformly od,. Since this sequence is equi-continuous, then it convergésmly to a continuous
functionu(x,y). If we prove that there exists € (7,1] such that{u"(x,y)} converges uniformly od,, this will yield a
contradiction.

Putu(x,y) = ((x,y); for (x,y) € J;. From (Hy), there exist a constamt > 0 and a Carathéodory functiom: J x
[0,2p] — [0, ) satisfying inequality9). Also, there exish € [1,1] andng € IN, such that, for al(x,y) € J, andn,m> ng,
we have

U™ 06y) —u™ (% y) e < 2p.

For any(x,y) € J,, put

VM (y) = U (6 y) = U™ (xy) e, and W (xy) = sup vt (xy).

n,m>k
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Since the sequenad (x,y) is non-increasing, it is convergent to a functigix,y) for each(x,y) € J,. From the equi-
continuity of {v¥ (x,y)} it follows thatkirzlv<k> (X,y) = v(x,y) uniformly onJ, . Furthermore, fofx,y) € J, andn,m> Kk,
we have

v (o y) = U™ (% y) = u™ (xy) e

S sup [u™(s.t) —u™(s )|
[Oy]

e

x || f(s,t,u™ >(s t)) - f(s,t,u<m—1>(s,t))||Edtds

Aa rAb X S ri— 1 y t)rz 1
/ / I"2)
x || f(s,t,u™ >(s,t)) — f(st,u™Y(st))|edtds

Thus, by @) we get

nm Xy //\a//\b X SI']_ l t)rzfl
fz)

x W(s,t, [lu™ (st) <m D(s,t)||g)dtds

Aa pAb r1 l ro—1
_ / / (x=9) rt)> w(s, t, V"M (s t))dtds
2

Hence

Aa rAb r1 1 r2—1
)(x,y) < / / (x=$) G ;) w(s,t,vk~Y (s t))dtds
(r2

By the Lebesgue dominated convergence theorem we get

Aa rAb r— 1 ro—1
vixy) < // (x=9) yrzg) W(st,v(st))dtds

Then, by the Carathéodory condiigii ), and(Hs) we getv= 0 onJ,, which yields that limv¥ (x,y) = 0 uniformly on
—00

Jr. Thus{u®(x,y)}¥_, is a Cauchy sequence dp. Consequenthfu®(x,y)}i_, is uniformly convergent od, which
yields the contradiction.

Thus{u®(x,y)}%_, converges uniformly od to a continuous function*(x,y). By the Carathéodory conditidfiii )
and the Lebesgue dominated convergence theorem, we get

r— 1 ro—1
Iim// (X= YU o u(s t)dtds
k—»co r2)

rh— 1 ro—1
—// (x=9) y ;) f(st,u"(s,t)dtds
(r2

for each(x,y) € J. This yields thau* is a solution of the problen®}-(5).

Finally, we show the uniqueness of solutions of the probl&(%). Let u; andu, be two solutions of7). As above,
put
T:=sup{o € [0,1] : ui(x,y) = uz(x,y) for (x,y) € g},

and suppose that < 1. There exist a constaqt > 0 and a comparison functiow : J; x [0,2p] — [0,) satisfying
inequality ). We choosé\ € (o,1) such that

ur(xy) —U2(x,Y)[[e < 2p; for (x,y) €.
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Then for all(x,y) € J, we obtain

ta ,tb (yw _g)\f1—1(y_t)r2—1
||u1(x,y)—lJ2(><7y)HES/O /o < sl")(rl)/('y(fzg)

x || f (s,t,ul(st))—f(s,t,uz( ))IIEdtds

TN

xW(s,t, |lui(st) — uz(s,t)||E)dtds

Again, by the Carathéodory conditidiii ), and (Hz) we getu; — uz = 0 onJ,. This givesu; = up onJ,, which yields a
contradiction. Consequently,= 1 and the solution of the problem)¢(5) is unique onJ.

Now, we present the main result for the global convergenceiotessive approximations to a unique solution of the
problem €)-(5).

Definition 6. A function ue % is a generalized solution of the proble®)<(5), if u is an absolutely continuous function,
and there exists € S,y such that u satisfie8) almost everywhere on J

Define the successive approximations of the problga{g) as follows:
U9 (xy) = pxy); (xy) €3,

rl 1 rzfl
u<”+l( H(X,Y) +/ / (x=9) ;) fo(s,t)dtds (x,y) € J
(ra

wherefy € S with || fo]| = [[F(X, Y, n)]| 2

SetJy :=[0,08] x [0,0b]; for anyo € [0,1]. Let us introduce the following hypotheses.

(H7)The multifunctionF : J x E — 2 (E) is L1-Carathéodory,
(H3)There exist a constapt > 0 and a Carathéodory functian: J x [0, p] — [0,) such thaw(x,y,.) is nondecreasing
for almost all(x,y) € J, and the inequality

Hd(F(x,y,u),F(x,y,U)) SW(XMHU—UHE) (11)

holds for all(x,y) € J andu,t € E such thatju—1t||g < p,
(H%)v = 0is the only function irfg’(J,, [0, p]) satisfying the integral inequality

rl 1 —t)r2 1
v(X,y) < / / (x=9) G )) w(s,t,v(s,t))dtds (12)
2
witho <A <1
Theorem 2. Assume that the hypothes(e!ris_’L ) are satisfied. Then the successive approximatiéfis o< N are

well defined and converge to the unique solutlon of the prolg®-(5) uniformly on J

Proof. From (H}), the successive approximations are well defined. Furthexmbe sequencei™(x,y); n€ N} is
equi-continuous od. Let

T:=sup{o € [0,1] : {u"(x,y)} converges uniformly odg}.

If T =1, then we have the global convergence of successive approgimaSuppose that < 1, then the sequence
{uM(x,y)} converges uniformly od,. Since this sequence is equi-continuous, then it convergésmly to a continuous
functionu(x,y). If we prove that there exists € (7,1] such that{u"(x,y)} converges uniformly od,, this will yield a
contradiction.

Putu(x,y) = G(x,y); for (x,y) € Jr. From (H5), there exist a constamt > 0 and a Carathéodory functioam: J x
[0, p] — [0, ) satisfying inequality11). Also, there exish € [1,1] andng € IN, such that, for al(x,y) € J, andn,m> ng,
we have
U™ (xy) —u™ (xy)[e < p.
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For any(x,y) € J,, put

v (xy) = U™ () —u™ (x y)lle, and V(xy) = sup vt (x,y).

n,m>k

Since the sequenad (x,y) is non-increasing, it is convergent to a functigix,y) for each(x,y) € J,. From the equi-
continuity of {v¥ (x,y)} it follows thatklim vi¥(x,y) = v(x,y) uniformly onJ, . Furthermore, fofx,y) € J, andn,m> k,
—»00

there existin_1 € Sroy,_; aNdfm-1 € Srouy , With | fo_a]l = [ F (Y Un1)]1» and]| ]| = [IF (Y, tm-1) | . Such that

v (xy) = [l (xy) —u™ (xy) e

S sup [u™(s,t) —u™(st)[|e
st)el [Oy]

ey

|| fo_1(s,t) — fm_ (st)||Edtds

Aa rAb X Srl 1 t)rZ 1
/ / I'z)

x Ha(F(s t, Unfl)), F(s,t,um,l)))dtds

Thus, by (1) we get

nm xy //\a//\bx Srlly t)rzl

fz)
x W(s,t, [ju™ (st) <m D(s,t)||g)dtds

Aa rAb r— 1 ro—1
_ / / (x=9) yrzt)) w(s.t, v 2m-D (s t))dtds

Hence

Aa rAb r1 1 r2—1
)(x,y) < / / (x=9) G ;) w(s,t, v« V(s t))dtds
(r2

By the Lebesgue dominated convergence theorem we get

Aa pAb i1 r—1
VoY) < // %3 r;) w(s,t,v(s,t))dtds
2

Then, by the Carathéodory conditigii ), and(H3) we getv= 0 onJ,, which yields that I|mv (x, y) = 0 uniformly on

Jy- Thus{u®(x,y)}¥_, is a Cauchy sequence dp. Consequentlfu®(x,y)}2 , is unlformly convergent od, which
yields the contradiction.

Thus{u®(x,y)}%_, converges uniformly od to a continuous function*(x,y). By the Carathéodory conditidfiii )
and the Lebesgue dominated convergence theorem, for(eaghe J we get

I'l 1 ro—1
lim / / (x=9) r” fi(s t)dtds
2

k— 0o )
rl l _t ro—1
—/ / (x=9) )2 ¢ (s t)dtds
I(rz)
wherefy € Sroy, andf, € Sgoy, With || fi|| = ||F(x,y, Uk)Hg and|| f.|| = |[F(X,y,u.)|| 2. This yields thatu* is a solution

of the problem )-(5).

Finally, we show the uniqueness of solutions of the problé)(%). Let u; andu, be two solutions ofg). As above,
put
T:=sup{o € [0,1] 1 ua(x,y) = U2(x,y) for (x,y) € Jo},
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and suppose that< 1. There exist a constapt> 0 and a comparison functiam: J; x [0, p] — [0, o) satisfying inequality
(10). We chooseé\ € (0,1) such that

[u1(xy) — Ua(x,Y)[[e < p; for (xy) € .
Then for all(x,y) € J, we obtain

ta ,tb (yx _g)\f1—1(y_t)r2—1
||u1(x,y)—U2(X7Y)HE§/ / < S)(rl)/('y(rzg)

x Hg(F(s,t,ui(s;t)),F (s t,ux(s,t)))dtds

th X Srl 1 t)rz 1
/ / rz)

xw(s,t,||u1(s,t) uz(s,t)||E)dtds

Again, by the Carathéodory conditidiii ), and(H3) we getu; — u, = 0 onJ,. This givesu; = up onJ,, which yields a
contradiction. Consequently,= 1 and the solutlon of the problerB)¢(5) is unique onJ.

4 Examples

Let

Example 1.Consider the following partial hyperbolic functional difential equation of the form

xyety-3

(*Diyup) (x,y) = 1+ [up(xy)|

;(%y) €10,1] x [0,1]; pe N*, (13)

with the initial conditions

{u(x,O):(1+x2,0,...,0,...);xe[O,l], (14)

u(0,y) = (¢,0,...,0,...); ye [0,1],
where(rq,r2) € (0,1] x (0,1],
u=(Up,Uz,...,Up,...), “Dgu= (°Dyu1,°Dyla,....°DiUp,...), f=(f1,fz,...,fp,...).

For eachp € N*, set

xyety-3
1+ |up(x,y)]
Foreachu, U E, pe N* and(x,y) € [0,1] x [0,1] we have

fp(X,y,u(x,y)) = ; (x,y) €[0,1] x [0,1].

|fp(XaYa U) - fp(xay7U)| < Xyé(+y|up _Up :
Thus, for eachu, T € E and(x,y) € [0,1] x [0,1], we get
H f(Xaya U(X,y)) - f(X,y,U(X,y))”E
= z |fp(XayaU(X7Y)) - fp(xay7U(XaY))|
p=1

(o)
<Xy |up—Tp
2

= xye&Y||u—Te.
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This means that conditior®) holds with any(x,y) € [0,1] x [0,1], p > 0 and a comparison functiom: [0, 1] x [0,1] x
[0, p] — [0, ) given by
W(X,Y,V) = xy& v,

We see thatv satisfies the Carathéodory conditions with[0, 1] x [0, 1] — [0, ) given byd(x,y) = pxyety.
The integral equatiorilQ) in our case takes the form
y r— 1 ro—1ast+t
vixy) < / / Stx=9)% 7y (rt)) € (s tdtds (15)
2

Sincew is nondecreasing with respecttdhen integral inequalityl(8) has only the zero solution. Consequently, Theorem
1implies that the successive approximatiafi; n < IN, defined by

u@(xy) = (% +¢,0,...,0,...); (x,y) €[0,1] x [0,1],

UMY (x,y) = uO(xy)

// (x— S“ y 2;)r2_1f(s,t,um)(s,t))dtds (xy) €[0.1] x [0,1],

converge to a unigue solution of the problelﬂ)((14) uniformly on|0,1] x [0,1].

Example 2.Consider now the following partial functional differeritiaclusion of the form

(CDfeupxx,y)e[ VeV P e e (0,1 0.1 pe N, (16)
(14+2P)(1+ |up(x,y)]) " 2P(1+ [up(x,Y)|)
with the initial conditions

{u(x,O):(1+x2,0,.. ,0,...); x€[0,1], 17)

u(0,y) = (¢".0,...,0,...); y€ [0, 1],
where(r1,r2) € (0,1] x (0,1],
u= (ug,Up,...,Up,...), Dgu= (‘Dyu,“DyUy,...,°Dhup,...), F=(F1,F,...,Fp,...).

For eachp € N*, set

xye -2 xygtty-3 *
) ; (Xy) €10,1] x[0,1]; pe IN*.
1520 (L w0yl 2P+ ooy | Y € 0L x 0.2 p

FP(Xayvu(Xay)) = |:
Foreachu, T€ E, (x,y) € [0,1] x [0,1] andp € N*, we have
Ha (Fp(t, X, Up) — Fp(t, X, Tp)) < xy&™Y3ju—T.

Thus,
Hd(F(vavu(Xay))vF(vavu(xay))) = z Hd(Fp(XaYaUp(XaY))aFp(XaYaUp(XaY)”
p=1
<xyeV 2§ |up—Tp|
p; p—Up

= xy€HY3|lu—1le.

This means that conditior1Q) holds with any(x,y) € [0,1] x [0,1], p > 0 and a comparison functiom: [0,1] x [0, 1] x
[0,p] — [0,) given by
W(X,Y,V) = xy& Vv,

We see thatv satisfies the Carathéodory conditions with|[0,1] x [0,1] — [0,) given byd(x,y) = pxye™Y.
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The integral inequalityX8) in our case takes the form

Y st(x — srl 1(y t)rz-lestt
v(xy) < / / T V(s t)dtds (18)

Sincew is nondecreasing with respecttahen integral inequalityl(8) has only the zero solution. Defined the successive
approximationsi™; ne N by

u9(x,y) = (¢ +¢,0,...,0,...); (x,y) €[0,1] x [0,1],

U™ (xy) = u@(xy)
rh— 1 ro— 1
// X=9 VU )5 )aitds (xy) € 0,1 x [0, 1),

) (rz2)
where
Vxy) = (117 (xY), 157 ()Y), . (XY, ) € Sk s
o (xy) = %e“y*; peN,
and

11O = [F (x yu™)» =€t

Consequently, Theore@implies that the successive approximatiof8; n € IN, converge to a unique solution of the
problem (L6)-(17) uniformly on[0, 1] x [0, 1].

5 Conclusion

In the present work, the global convergence of successppmapnations to the unique solution of some classes ofglarti
functional differential equations and inclusions involgithe Caputo fractional derivative was studied. A theorernthe
global convergence of successive approximations to thguarsolution of our problems is obtained.
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